
Hi-Kes Graphics and hnimatim
Using Assembly Language

Ik Biiik Itir Suplell Pfograuimers

V V _s.

l l \ V D K \ Lcofiuvcl / Mulkifi, Ph.D.

Hi-Kes Graphics and Animation
Using Assembly Langmge

Tie Gelie fir Mule H^PimaaiBers

Hi Res Graphics and Inimatiem
Using Assembly Language

m Bulile tor mie Ityrogromms

Leonard I. Malkin, Ph.D.

Hayden Book Company
A DIVISION OF HAYDEN PUBLISHING COMPANY INC

HASBROUCK HEIGHTS, NEW JERSEY

Acquisitions Editor: KAREN PASTUZYN
P r o d u c t i o n E d i t o r . A L B E R TA B O D D Y

Design: JIM BERNARD
Cover photo: LOU ODOR
Compositor: McFARLAND GRAPHICS ANT^ DESIGN, INC.
Printer: J.D. LUCAS PRINTING COMPANY

I would like to thank my editor, Karen Pastuzyn, who helped me turn a rough idea into a
finished manuscript, and also the reviewers, who lent their assembly language expertise to
many parts of the programs.

Library of Congress Cataloging-in-Publication Data
Malkin, Leonard I.

Hi-res graphics and animation using assembly language.

I n c l u d e s i n d e x .

I. Apple II (Computer) — Programming. 2. Computer
graphics. 3- Assembler language (Computer program
language) 1. Title.
Q A 7 6 . 8 A 6 6 2 M 3 5 1 9 8 5 0 0 6 . 6 8 5 - 2 4 7 5 2
I S B N 0 - 8 1 0 4 - 6 7 5 8 - 5

Copyright © 1986 by HAYDENBOOK COMPANY. All rights reserved. No part of
this book may be reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage and
retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 P R I N T I N G

8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 Y E A R

To Diane, Sonya, and Joshua,
unth whom I can now get reacquainted,

and to my parents, who made me.

EQUIPMENT NEEDED

To use the programs in this book, you will need the following equipment.
. An Apple II Plus, lie, or lie (Chapter 12 requires either a lie or an

extended-memory lie)
• A d i s k d r i v e

. A monitor (eolor for Chapter 11 and part of Chapter 12)
• A joystiek or paddle
. An assembler (see the What You Will Need seetion)

i What You Will Need

If you have an Apple II (II+, He, or lie), and someplace to plug it in, you're
practically all set. You will need a disc drive and a display screen, which can beeither a black and white or color monitor or tele\ision set. Monitors give sharper
pictures and are recommended, especially for double hi-res, but tele\ision sets
are adequate. You should also have a joystick or paddle controls.

You will also need a good assembler. Assemblers are software packages that
allow you to write and, more importantly, edit assembly language programs.
Strictly speaking, you don't need an assembler to enter the programs in this book
(you could use the Apple's resident Monitor or even BASIC), but the level ofinconvenience would be unbearably high. Also, for you assembly language
beginners out there, don't be lulled by those who may tell you that the Apple's
Mini-Assembler or some other simple assembler is sufficient for your needs. The
most important characteristic of full feature assemblers is their convenience, not
their complexity. To eliminate long hours of needless work, and certainly if
you're going to do any serious assembly language programming, a full featureassembler is a necessity. All programs in this book were assembled using the BIG
MAC assembler (available from A.P.P.L.E., 290 S.W. 43rd St., Renton, WA 98055;
call 1-800-426-3667 to order), but any full feature assembler can be used as they
all employ the same basic command set. Among others I can recommend are
Orca/M (Hayden Software), xMerlin (Southwestern Data Systems), and DOS Tool
Kit (Apple Computer, Inc.). These are available in computer stores and are also
discounted by mail order firms—check the software ads in any computer maga
zine. If you don't want to invest in an assembler just now, contact your local
Apple user's group—you may be able to borrow an assembler for temporary use.

There are usually some minor differences from assembler to assembler but
these are almost always in extra features rather than in the basic system. Features
of the BIG MAC assembler used in this book that may not be found in other
assemblers are pointed out in the text along with the normal or standard instruc
tions. If you're not going to use BIG MAC, examine your assembler's instruction
manual. This, together with an examination of the generated machine code, will
tell you what changes, if any, have to be made in the way the assembly code is
w r i t t e n .

Introduction

~M, art One of this book will lead you, step-by-step, through the construc
tion of a single, arcade-type hi-res game written entirely in Apple II assembly
language. Each chapter in Part One provides a building block leading to the final
game with minimal digressions. Later chapters (Part TWo) discuss aspects of
hi-res animated graphics important to the subject but not directly related to the
game, with suggestions about how to apply these techniques to the game itself
or to your own programs.

The game we're going to construct is relatively simple but the program code
is not. Hopefully, reading this book will reduce the level of difficulty to
manageable proportions. It is written for beginners and experienced users alike
and no prior knowledge of assembly language is required. It begins with a
discussion of bits and bytes, binary and hexadecimal numbering systems,
architecture of the Apple II hi-res screens, use of an assembler, and proceeds
with a discussion of drawing and animating shapes, paddle and joystick controls,
collision detection, scoring and sound, and finally the game itself. Other topics
discussed in both Parts One and Two include animating multiple shapes,
drawing over backgrounds, animation in color and in double hi res color and
black and white, advanced paddle and joystick routines, and integrating BASIC
with assembly language programs.

Studying this book slowly and methodically will provide you with knowledge
of the elements of hi res game design for the Apple and you will be able to
program your own hi res animation routines in assembly language. However, it
should be emphasized that the skills you will acquire have utility far beyond
merely designing games. Let me give you a concrete example. I've recently
completed an educational program for the Apple II that required moving rather
large shapes around the screen and attempts to do this from BASIC using Apple
shape tables (we'll discuss these in Chapter 1) were far from satisfactory. The
jerky, flickering animation seemed designed to ensure nervous blinking. Dsing

the simple principles described in this book, I was able to produce smooth,
professional-looking animation that contributes greatly to the visual appeal of the
program, which is one of its strong selling points. So twen if game design is not
your goal, hi-res animation using assembly language will provide you with an
extremely useful tool for a myriad of applications, limited only by your
imagination.

Finally, I strongly encourage you to play an active role in the learning
process. Do not merely read the text; type in the programs. Tr^' the advanced
techniques described in Part Two to modify the game and, above all, develop
your own programs. In this way you will learn not only the techniques of hi-res
graphics and animation but also many fundamental principles of assembly
language programming. Reading about assembly language instructions is one
thing but using them in your own programs is another. In the words of an
ancient Chinese philosopher,

/ hear, and I forget,
I see, and I remember,
I do , and I unde rs tand .

Contents

P a r t O N E
F u n d a m e n t a l s a n d t h e G a m e 1

/. Why Assembly Language for Hi-Res Animated Graphics? 3

2. Bits and Bytes, Sugar and Spice 6

Binary Number System 6
The Hexadecimal Numbering System 8
The Apple II Memory Map 9
T h e H i - R e s S c r e e n s 11

Using an Assembler 12

3. Drawing a Shape on the Hi-Res Screen 16

Displaying the Hi-Res Screen 16
Clearing the Hi-Res Screen 18
Draiving a Shape 21
L i n e A d d r e s s Ta b l e s 2 4

Shape Tables 30
Drawing Shapes Wider Than One Byte 33

4 . V e r t i c a l A n i m a t i o n 3 7

Erasing a Shape 37
T i m e D e l a y s 3 9
Vertical Animation— One Shape Moving Doivn 39
One Shc^ Moinng Up 43
D r a w - D r a w R o u t i n e s 4 8

5. Horizontal Movement and Internal Animation 5 4

The Seven Preshifted Shapes 55
TEMP and Shape Address Tables 57
Accessing Sequential Shapes and Testing for End of Screen 6o
Shapes at New Line Posi t ions 72
D r a w - E l r a w 7 7
I n t e r n a l A n i m a t i o n 8 2

6. Paddle and Joystick Controls and Multiple Shapes 89
Paddle and Joystick Controls 89
Paddle Control of Vertical Movement 90
Paddle Control of Horizontal Movement 93
Multiple Shapes—Paddle Control of Horizontal Movement and Shootinv

B u l l e t s 1 0 5

7. CoUisions and Explosions /16
Collision Detection 116
E x p l o s i o n s 1 2 7

8- Scoring, Stopping, and Restarting 140
Counting by Ones 140
Sapping at a Predetermined Score and Restarting with a Keyjxress 14anting by Multiples and Decrementing Score 154

9. Sound Generation: Explosions and Clickety-Clicks 167
The Apple Speaker and Sound Generation 167

egrating Sound Effects into the Game Program 169
fO. Putting It All Together: The Game / 72
P a r t T W O

2 1 1

11. Drawing in Color 213
Apple Color 213
Color Animation 215
Collision Detection with Color Shapes 221

12. Double Hi-Res Graphics and Animation 227

R e q u i r e d 2 2 7The Double Hi-Res Screen 228
The Double Hi-Res Mode 229
Drawing Shapes 229
Animating Shapes 231
Double Hi-Res Color Shapes 239
Animating Double Hi-Res Color Shapes 244

13. Curved and Diagonal Movement 252
i:Hagonal Motmnent 252
C i i n>ec l Movemen t 261

14. Drawing over Backgrounds 266
White Shapes ami Backgrounds 266
Color Shapes unth Color or White Backgrounds 276

15. Advanced Paddle (Joystick) Routines 283

Testing for Non-Movetnent of Paddle 283
Paddle-Smoothing Routines 288

16. Integrating BASIC with Assembly Language Programs 295
Memory Allocation 296
Zero Page Usage 299
Graphics and Text Commands from BASIC 300
Accessing Assembly Language Programs from BASIC 300

17. Suggestions for Game Modification 304

Appendix: Assembly Language Commands 306

Index 313

P a r t O n e
F u n d a m e n t a l s a n d
t h e G a m e

Assembly Language
for Hi Res Animated Graphics?
An l-Jiglisb teacher named Bea
Ktieu' the dictionary from A to Z,
But upon baying an Apple
She then bad to grapple
W i t h a b r a n d n e w v o c a b u l a r y -

J. rogramming in assembly language is not the only way to produce hi res
animated graphics on the Apple 11. Applesoft BASIC supports many graphics fea
tures that can be quite useful for displaying shapes or moving one or two rela
tively small shapes around the screen. In fact, it is often convenient to combine
graphics from BASIC with assembly language graphic routines, and we will dis
cuss how to do this in Chapter 16. But, as we'll soon see, there are problems
associated with using BASIC for graphics programming.

Simple BASIC commands allow one to plot points or lines (and thus shapes)
on the hi res screen and to move them around by erasing and redrawing at a new
position. For example, the following BASIC program plots a horizontal line and
moves it down one line;

10 HGR; REM CLEARS AND DISPLAYS HI-RES SCREEN
20 HCOLOR=3; REM COLOR SET TO WHITE
30 HPLOT 20,20 TO 100,20: REM DRAWS HORIZONTAL LINE
40 HCOLOR=0: HPLOT 20,20 TO 100,20: REM ERASES LINE BY REDRAWING IN BLACK
50 HCOLOR=3: HPLOT 20,21 TO 100,21: REM REDRAWS LINE IN NEW POSITION

The line can be made to traverse the screen by continuing the program and
changing plot coordinates. One can also draw vertical or diagonal lines and move
them across the screen. By specifying different values for HCOLOR, the lines can
be drawn in any of the four hi res colors (blue, orange, \1olet, and green). This
routine is fine for drawing and moving lines, but is far too cumbersome for
complicated shapes and entirely inappropriate for rapid and smooth animation—
BASIC is just too slow. Consider that even a simple shape may consist of 5 or 10
lines, and moving a shape across the entire hi res screen involves over 200 draw
erase cycles. Now imagine a routine to move several such shapes at the same
time. Attempting to do this in BASIC, in the way described above, would result in

Hi-Res Grephics end Animation Using Assembiy Language

an enormous, and enormously difficult to write, program. In addition, the anima
tion would be extremely slow and jerky.

There is yet another method for programming hi res graphics from BASIC
and this involves using Apple shape tables. Details are ctjntained in the Apple
BASIC manual so I wil l touch on the subject only briefly. The instructions for
drawing a shape (not the shape itself) are stored somewhere in memor\- in what
are called, appropriately enough, shape tables. A single shape table can contain
instructions for more than one shape. For example, to draw the first shape of a
shape table, the location of the table is specified by FOKiiing the appropriate
numbers into certain memory locations. Then the color is cho.sen by assigning a
number to HCOLOR, and values for rotation (ROT) and scale (SCAL1-:) are speci
fied. The instruction DRAW I AT X,Y will draw the first shape of the table at the
coordinates specified by X and Y. By changing the IKX)1.0R value, the shape can
be drawn in different colors. Changing the values for ROT and SCAI.I-; allows one
to rotate the shape and scale it up in size (although this latter feature is of
limited usefulness because the scaling is not proportional). Ihe shape can be
erased by the instruction XDRAW 1 AT X,Y or by changing the color to black
(HCOLOR = 0) and reDRAWing at X,Y. By erasing and redrawing at different

I nearby coordinates, the shape can be made to appear to move.
Using shape tables is a neat and convenient way to program hi-res graphics,

but there are three problems associated with their use. First, although any of the
hi res colors can be selected, the shape can be only one color-multiple colors
in a single shape is not possible. Second, constructing a shape table in the way
described in the Apple BASIC manual is a horrendous task. The manual itself
recommends using one of the many commercially available utility programs for
this purpose-an example is the Apple Mechanic program from Beagle Bros.
Such utilities work well (you draw the shape, point by point, and the program
assembles it automatically into a shape table) but, as is often the case with
someone else's program, you may not be able to get it to do what you want it to
do. The Apple Mechanic, for example, limits the overall size of the shape and this
may not be appropriate for your needs. Third, smooth and rapid animation with
large shapes or with many shapes moving at the same time is not possible using
shape tables. The draw erase, redraw cycles are just too slow, and excessive
flickering and jerky movement are the results. Again, as with HPLOTting, shapetables do«#t have their place (I use them in my own commercial programs),
but they do not provide the versatility afforded by assembly language program-
m i n e .

There are a few graphics utility programs on the market that purport to
greatly simplify hi res animation and they do. But they also, in my hands at least,suffer from many of the problems associated with shape tables and graphics from
BASIC and thus, in my opinion, have limited usefulness. Again, using someone
else's program almost assuredly will place limits on wTiat you can do. For exam
ple, the programs I am familiar with limit the size of the shapes and the number
of shapes you can display at any one time. Most have no provision for sound.
They are also too slow-the more and larger the shapes, the slower and jerkierthe animation. Some of these programs may satisfy your particular needs but
don't buy one without return privileges.

The essence of good animation is speed. The illusion of continuous move
ment can be accomplished only by very rapid draw and erase c-ycTes, especially
for large shapes. This also applies in the case of the game we're going to con-

Why Assembly Language for Hi-Res Animated Graphics

struct, where one desires the il lusion of simultaneous movement of multiple
shapes. Assembly language pro\ades this speed —in fact, as we'll soon see, assem
bly language speed is so great that time delays have to be placed in the game
program to slow down the action to a reasonable pace.

In addition to speed, assembly language pro\ides the ultimate in versatility.
You want to draw and move a shape that takes up half the screen? OK, no prob
lem. How about moving five shapes in different directions at the same time, with
sound effects and all possible colors? Also no problem (actually, it is a problem
but solvable with assembly language).

Finally, if you're like I am, you want to know and control what's going on.
How is your computer drawing and moving all those shapes? Using someone
else's program or using BASIC or shape tables tells you very little. Writing your
own assembly language programs tells you a great deal.

Speed, versatility, understanding—only assembly language proxides this
comb ina t ion o f v i r tues .

Bits and Bytes,
Bugar and Spice
'̂ere once was a Jellow yiamed Tex

kept him Jrom sex.When ojjerecl a slumber
y a cute little number
^ said, 'I really prefer binary and hex

A c
terns "linimal knowledge of binary and hexadecimal numbering sys-
assembler "^^mory map, details of the hi res screens, and the use of anhi-res draw'̂ "̂ cessary before going on to a discussion of assembly languageter 3 Those*̂ '̂̂ animation. Those who know this material can skip to c:hap-
make !f ^ slog their way through this chapter. I'll try toflogging as painless as possible.

S Y S T E M

Everythî ^ operate essentially by using thousands of 2-position switches,another fo ̂ tloes, taking in data (or text, which to a computer is justor other d"" data), manipulating it, and sending it out to a screen or printerr evice, is all controlled by these switches. A switch can either be on or
these"̂ t̂ernar'̂ ^̂ '̂̂ ' voltage or low voltage). If we assign a 1 and a 0 toswitches states, we then have a way of representing the status of these
set its switch To "talk" to a computer, to tell it what to do, we have to
stands is the T ̂ its language. The only language a computer under-
number sv ̂ "gaage of O's and I's, which comprises what is called a binaryZTrl ̂ computer languages, such as BASIC, use interpr̂
form convert text and decimal number instructions into a binarylower level languages, such as assembly language, and to unders an i-res graphics, some understanding of the binary system is required.

Bits and Bytas, Sugar and Spice

In any language, all possible words are represented by arranging the alphabet
characters in different combinations. Computer "words" are numbers and the
computer "alphabet" is 0 and 1. How can just two digits be used to represent
more than two numbers? The universally used numbering system is, of course,
the decimal system which uses ten digits, 0 to 9, to represent all possible
numbers (this is undoubtedly related to the fact that we have ten fingers and
toes; if we had only two, we would probably be balancing our checkbooks in
binar>') We have to realize that the decimal system is just as arbitran- as any
other system using any other number of digits. Thus, to understand the binar>'
s-ystem requires only an understanding of the principles of the decimal system.

llie decimal system works by column assignments. There is no single digit to
represent the number ten, so a 1 is placed in a second column, the tens column.
Similarly, we represent one hundred by placing a 1 in the third or hundreds
column. Each column represents some whole factor of 10.

1 0 0 0 ' s 1 0 0 ' s 1 0 ' s 1 ' s

1 0 3 1 0 2 1 0 1 1 0 0

4 3 2 7 = 4 0 0 0 + 3 0 0 + 2 0 + 7 = 4 3 2 7

In the binary system, we can count to one easily enough (zero, one) but there is
no single digit to represent the number two so we place a 1 in a second column.
Thus, binary 10 = decimal 2 and, it follows, binar>' 11 = decimal 3. What is
decimal 4? Very good. It's binary 100. Thus, the binary system uses columns just
like the decimal system except the columns are now factors of two.

8 - s 4 ' s 2 ' s I ' s

2-' 2 ' 2 ' 2 0 D e c i m a l

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 1 0
1 0 1 1 1 1
1 1 0 0 1 2
1 1 0 1 1 3
1 1 1 0 1 4
1 1 1 1 1 5

Columns can be extended to a l6's column, 32's column, etc. and so given
enough columns, we can represent any number by stringing together Os and Is.

Hi-Res Graphics and Animation Using Assembly Language

THE HEXADECIMAL NUMBERING SYSTEM

Writing numbers in binary is obviously a laborious task and is also prone to
errors try copying a string of a hundred O's and I's and see how far you get
without making a mistake. To avoid these problems, assembly language u.ses yet
another numbering system, the hexadecimal system. An interpreter program
converts hexadecimal (or hex for short) numbers into the binary format so the
computer can understand what's going on. It will be easier to understand the
exadecimal system if we first discuss some aspects of how the Apple handles

n u m b e r s .
Each position of a binary number is called a bit. A group of 4 bits is called a

rubble and a group of 8 bits is called a byte.

Bit Number -

V a l u e 1 2 8 6 4 3 2 1 6

N i b b l e

(1 at machine; that is, its microprocessor handles 8 bitsnumber thus LTlL' represent a nibble by a single hextable below we sL rh.t '"eptesent a single byte. If we look at the
digits (0-9) to work whh " T ®numbers are preceded bv aT / 5 are assigned letters A to F (hexy i sign to distinguish them from decimal numbers).

D e c i m a l Binary

Bits and Bytes. Sugar and Spice

Now we've simplified things somewhat. It's ob\iously easier to write SF than
1 1 1 1 .

Most of the time we'll be \\Titing numbers as b>tes and here the ad\mitage of
hex numbers becomes more apparent. To write a byte in hex, we simply assign a
hex number to each nibble, e.g..

D e c i m a l B i n a r y H e x

9 8 0 1 1 0 0 0 1 0 $ 6 2

1 9 8 1 1 0 0 0 1 1 0 $ C 6

2 5 5 1 1 1 1 1 1 1 1 $ F F

0 0 0 0 0 0 0 1 $ 0 1

If you ever feel an irresistible urge to convert hex numbers into binaiy, you
simply take each hex digit and write the corresponding binary nibble. Convert
ing hex to decimal and vice versa is often useful (BASIC uses only decimal
numbers). This can be done easily if you understand that the hex system also
uses column assignments, just as binary and decimal, but here the columns are
factors of l6 (hence the name hexa[6]decimal[10]) because there are 16 digits
possible in each column.

l 6 ' s I ' s
1 6 ' 1 6 " H e x D e c i m a l

$1 $0 $10 1 6

$2 $0 $20 3 2

$ 2 $ A $ 2 A 4 2

$ 6 $ 2 $62 9 8

THE APPLE II MEMORY MAP

The Apple 6502 microprocessor stores numbers in specific locations called
memory addresses. Each memory address can hold only one byte. The maximum
value of a byte is $FF (11111111 or 255 decimal) —this explains why 255 is the
maximum value you can use to POKE to a memory location in BASIC. When

Hi-Res Graphics and Animation Using Assembly Language

these addresses are scanned, a byte is retrieved from each location and depend
ing on the value, a given operation is performed. Memory addresses are accessed
by a system that can handle two bytes of data at a time. Two bytes can be repre
sented by four hex numbers, and so a memory address has the general form
SNNNN where N equals any hex number. Assemblers always access addre.s.ses
using the hex format. We can convert memory addresses from hex ttj decimal
(useful when using BASIC and assembly language in the same program) by
column assignments; e.g.;

4 0 9 6 ' s
1 6 ^

2 5 6 ' s
1 6 '

I 6 ' s
1 6 '

I ' s

1 6 " H e x D e c i r r u d

$ 0 $ 0 $ A $0 $ 0 0 A 0 1 6 0

$0 $8 $ 0 $ 0 $ 0 8 0 0 2 0 4 8

$2 $ 0 $ 0 $0 $ 2 0 0 0 8 1 9 2

$ 4 $0 $ 0 $ 0 $ 4 0 0 0 1 6 3 8 4

$6 $ 0 $0 $ 0 $ 6 0 0 0 2 4 5 7 6

$ 9 $6 $ 0 $0 $ 9 6 0 0 3 8 4 0 0

$ F $ F $ F $ F $ F F F F 6 5 5 3 5

The highest memory address is $FFFF; i.e., all 16 bits are 1. Thus the 6502
microprocessor can access only 65536 addresses (SOGGO is the first memory
location)—from this comes the term 64K of memory. Apples with 128K of
memory switch between two memory banks, each one containing 65536
addresses; Apples with less than 64K of memory have the capability of accessing
65536 addresses—it's just that they're not all there.

Memory addresses are conveniently divided into what are called pages, each
page containing 256 bytes.

Address Bytes

0 - 2 5 5
2 5 6 - 5 1 1
5 1 2 - 7 6 7

e t c .

H e x A d d r e s s

$OOGO-$OOFF
$ 0 1 0 0 - $ 0 1 F F
$0200-$02FF

Page Number

Thus, addresses in the range «GOGO to SGGFF are called zero page addresses.
We'll meet up with these later on as they play an important role in some of the
assembly language instructions used in our programs.

Memory addresses themselves are often stored at other memory addresses
for use in a program. Because^ an address can store only one byte but is itself
represented by two bytes (except for zero page addresses), we have a problem.
The solution is to store an address in two locations, one byte in one and one
byte in the other. This is done in a particular way. Memory address bytes are
divided into two classes, the high order byte (left) and the low order byte
(right). For example, $2G is the high byte and SGG the low byte of address $2GGG.
The bytes are stored in consecutive locations, low byte first. We'll learn more
about this when we get to our programs in later chapters.

There are several general areas of memory that play a distinctive role in the
operat ion of the Apple I I . The fo l lowing memory map descr ibes and locates
s o m e o f t h e s e f u n c t i o n s .

Bits and Bytes, Sugar and Spice

U S E R P R O G R A M

Page 2 Hi-Res

Page 1 Hi-Res

U S E R P R O G R A M

Tex t Sc reen and
Operating System

SFFFF (65535)

$BFFF (49151;

$9600 (38400)

$6000 (24576)

$4000 (16784)

$2000 (8192)

$0800 (2048)

$0000 (0)

THE HI -RES SCREENS

There are two areas reserved for hi-res graphics, Pages 1 and 2 (these page
numbers have nothing to do with the page numbers of memory addresses dis
cussed above). Page 1 occupies an area from 82000 to S3FFF and Page 2 from
84000 to 85FFF. Either page can be used for any hi res graphics program, the
only difference being that Page 1 has the option of displaying full-page graphics
or mixed text and graphics, the bottom four lines displaying the text. So if you
want to display text and graphics, choose Page 1. For full page graphics, you can
choose either page. The only other point to consider in choosing pages is
whether you're going to use a BASIC program along with your assembly language
program. BASIC requires a continuous stretch of memory, so the page choice
determines the maximum length of your BASIC program. For example, if you
choose Page 1, you can run BASIC from 80800 to 81FFF or load the BASIC pro
gram above Page 1 and run it from 84000 to 89600. This will be discussed in
more detail in Chapter 16.

The hi res screens are divided into screen bytes (horizontal) and lines (ver
tical). There are 192 lines, numbered 0 to 191, top to bottom, and each line
contains 40 screen bytes, numbered 0 to 39 (^800 to #827) left to right. Thus
there are 40 X 192 = 7680 screen byte positions.

In hi res drawing, only 7 of the 8 bits in a byte are plotted (more on this
later) and so each screen byte contains 7 bits, or, as they're called when plotted,
pixels (let's get away from computerese and call them dots). Each line then can
contain 7 X 40 = 280 dots. Therefore a hi res screen can display up to 280 X
192 = 53760 dots; that's why they call it hi-res. So far so good. Everything seems
to be in logical order but, of course, there are complications; otherwise, why
would you need to read this book? For reasons we won't go into, the Apple
designers decided to number hi res lines in a nonconsecutive fashion. For exam
ple, line 0 of the Page 1 screen starts at address 82000 and ends at 82027. You
might then expect line 1 to start at 82028, right? Wrong. Une 1 starts at 82400.
Line 2 starts at 82800, line 3 at 82COO, and so on, producing quite a scrambled

Hi-Res Braphics and Animation Using Assembly Language

Screen E / re

9 1 0 n 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 ' 2 8 2 9 v .

T T T

picture. The same situation holds true for the Page 2 hi res screen although, of
course, with different addresses. There is a method to this mad scramble but we
need not concern ourselves with the details because the next chapter will de
scribe a way of accessing any screen position without having to refer to the
hi-res screen memory map. The map itself is useful, however, so that you will
understand how this is done. In addition, situations may arise where you will
want to access particular screen positions directly by referring to the map.

USING AN ASSEMBLER

Finally, we get to the subject of an assembler. As mentioned in the You
Will Need section at the beginning of the book, you don't have to use an
assembler for your assembly language programs but if you don't, I'll reserve a
room for you at the home.

The object of writing an assembly language program is, fittingly enough, to
produce object or machine code. Object code is a machine language programthat consists entirely of bytes stored at memory addresses. Some of these bytes

T" "'"Z" instructions to the operating system.Object code can look something like this-.

6 0 0 0 : A 9 1 0

6 0 0 2 : 8 D 4 0 6 0

The code is interpreted as foUows. When the program gets to address $6000
byte SA9, an opcode (operation code), tells the computer to store the following
number ($10) in the Accumulator, or A, an area for number storage and manipu
lation in the microprocessor. The first byte ($8i:>) in the next program line is an
opcode that instructs the computer to put the number in the Accumulator at
memory address $6040 (note that memory addresses are stored low byte first)

Bits and Bytes. Sugar and Spice

You could enter this code directly from BASIC by POKEing appropriate numbers
into appropriate memory locations, remembering first to convert all numbers to
decimal. Tlie BASIC program would look like this:

P O K E 2 4 5 7 6 , 1 6 9
P O K E 2 4 5 7 7 , 1 6
P O K E 2 4 5 7 8 , 1 4 1
P O K E 2 4 5 7 9 , 6 4
P O K E 2 4 5 8 0 , 9 6

The program could also be entered directly from the Apple's Monitor in this
f a s h i o n :

6 0 0 0 ; A 9

6 0 0 1 : 1 0
6 0 0 2 : 8 D

6 0 0 3 : 4 0
6 0 0 4 : 6 0

Here is an assembly language code for the same instructions:

ORG $6000
L D A # $ 1 0
S TA $ 6 0 4 0

ORG $6000 says start the program at address $6000. LDA is a mnemonic for
LoaD Accumulator (the Apple 6502 microprocessor uses some 56 mnemonics
for assembly language instructions). The ^ prefix says #^$10 is a number, not a
memory address. STA is a mnemonic for STore Accumulator and $6040 is the
address where #^$10 is to be stored. This type of code is called a source code and
the assembler, when it is instructed to do so, assembles the source code into the
object code and usually will display or print both codes together, one next to the
o t h e r .

Now, imagine a program hundreds or even thousands of lines long.
Obviously, a program written in assembly language is more easily written (and
read) than one written in machine language. But assemblers have even more
useful features, not the least of which are editing capabilities that allow you to go
anywhere in the program and change numbers and lines around without having
to reenter the whole thing. In addition, assemblers allow the use of labels and
comments, both very useful features.

The source code from most assemblers is divided into several fields or
columns. First, a line number is displayed for each instruction. These line
numbers are not incorporated into the object code—they are there for editing
convenience. The next field is reserved for labels, which are optional. When a
region of the program is labeled, it can be accessed by referring to the label
rather than to a specific memory location. This not only makes the program
more readable but also eliminates the chore of changing instructions to reflect
new memory addresses when lines are shifted around. The next field is the
command field, which contains the opcode and, if required, the operand, the
number or address acted upon by the opcode. Finally, there is the comment
field, usually delimited by a semi-colon(;). Comments are similar to REM state
ments in BASIC and are not incorporated into the object code.

Hi-Res Graphics and Animation Using Assembiy Language

Let's look at a sample program. When the source code is t\ped in. it will
look like this (the field headings are not displayed by the assembler—they are
there for your edification);

L i n e L a b e l O p c o d e (J f y e r a j i d C o m t y w n t s

1 * S A M P L E P R O G R A M
2 O R G $ 6 0 0 0 i S T A R T P R O G R A M A T $ 6 0 0 0
3 L O O P L D A # $ 1 0 ; L O A D A W I T H # $ 1 0
4 S T A $ 6 0 4 0 ; S T O R E A T $ 6 0 4 0
5 J M P L O O P ; G O T O L O O P (L I N E 3)

Line numbers are entered automatically by the assembler. Line 1 demon
strates another feature of assemblers—an entire line can be a comment if de
limited by a *. Such lines are not incorporated into the (object code. When the
command to assemble (usually ASM) is given, the object and source codes are
displayed side by side.-

1 * S A M P L E P R O G R A M
2 O R G $ 6 0 0 0 ; S T A R T P R O G R A M A T $ 6 0 0 0

6 0 0 0 ; A 9 1 0 3 L O O P L D A # $ 1 0 ; L O A D A W I T H # $ 1 0
6 0 0 2 : 8 0 4 0 6 0 4 S T A $ 6 0 4 0 ; S T O R E A T $ 6 0 4 0

u 6 0 0 5 : 4 0 0 0 6 0 5 J M P L O O P ; G O T O L O O P (L I N E 3)

® The source code and object code are named by you and then saved
separately on a disc. The assembler will append a prefix or suffix automatically to
one or the other to distinguish which is which. For example, the disc catalog
may show the object code as SAMPLE PROGRAM and the source code as SAM
PLE PROGRAM.S. This is how programs appear when assembled using the BICi
MAC assembler. Other assemblers may do this differently.

The object code is the machine language program we want to run. The
source code is not a program and can't be "run" as such. How do we run the
program? Object codes are always stored as binary files. To run, we enter BRUN
<space> file name (in this case, SAMPLE PROGRAM). This program will be
loaded at address $6000 and will run starting from this location. We can also
load the program without running it if, for example, we want just to inspect it.
The instructions for this are BLOAD <space> file name. To see the program
we've loaded, enter the Monitor with CAIX-151 and then type 6000L (L for
list). The program, along with its assembly language mnemonics but without
labels or comments, will be listed starting from $6000. To run the program now
we can enter 6000G (G for go to).

Suppose we decide at some later date that $6000 is an inappropriate location for this program because we want to use this area for something else. Let's
say we now want to store it at address $4000 instead. We can do this by specify
ing the address when we BLOAD it, i.e., BLOAD <space> file nameAiS4000. The
program will now load at $4000 and we can run it from the Monitor by 4000G. Whatwill happen when we run it? Disaster! The reason is that the machine language
code is nonrelocatable, that is, it can be run only at the location specified by the
ORG statement. To see why this is so, let's look at the code itself. The assembly
langu^e instruction in line 5 is JMP LOOP. LOOP is a label that refers to address
$6000. Remember that object codes do not deal with labels, only numbers, and

Bits and Bytes, Sugar and Spice

so the assembled code for line 5 is 4C 00 60, which is interpreted by the operat
ing system to mean go to address $6000. If the program is loaded at and run
from $4000, the 4C 00 60 instruction \\ill be executed faithfully and the pro
gram will jump to $6000, which no longer contains the original instruction. Gar
bage in, garbage out.

It is fKDSsible to write relocatable codes, that is, programs that can be loaded
anywhere regardless of the address specified by the ORG statement. Sometimes
such codes are necessary, but for our purposes this represents just another com
plication we can do without. If you want to relocate a program, simply call up
the source program, change the ORG operand to the new address, and
r e a s s e m b l e .

There is one other aspect of assembler use that should be emphasized so I'll
mention it here and remind you of it again in later chapters. Assembly language
opcodes are entered as 3-letter mnemonics, designed to help you remember
what they stand for. Two such opcodes, BCC (Branch on Carry Clear) and BCS
(Branch on Carry Set) are often not helpful in this regard. In the BIG MAC and
most other full feature assemblers, these opcodes can be replaced by what are
called pseudo-opcodes; e.g., BCC can be replaced by BLT (Branch if Less Than)
and BCS by BGE (Branch if Greater or Equal). If your assembler doesn't use
these pseudo-opcodes, just use BCC and BCS—there is no difference in the
assembled program. Purists might argue against the use of pseudo-opcodes
because they are not part of the standard Apple instruction set, but they do make
programs easier to wri te and read. I should also mention at this point that the IS
instruct ion EQU, which is used to assign a label to a memory address, can be H
replaced in the BIG MAC and other assemblers by the = sign. If your assembler
doesn't allow it, use EQU.

If all this is confusing to you, don't worry about it. Get an assembler, read the
instructions, look over some of the programs in this book to get a feel for it, and
before you know it you'll be a bona fide assembly language programmer. Now,
onward and upward (or, in the case of some programs, downward and
acrossward).

3
Drawing a Shape
on the Hi Res Screen
Of graphics he certaitily c(juld write it:
His talent so great he coiikln't hide it
He plotted a shape
That looked so like a grape
It was all yon could do not to byte it.

jî-̂rawing a point or a series of points (i.e., a shape) on a hi res screen
involves only three operations;

1. Display the screen.

2 . C l e a r i t .

3. Store a byte in a hi-res screen memory location ($2000-S3FFF for Page 1
or $4000-55FFF for Page 2).

D I S P L A Y I N G T H E H I - R E S S C R E E N

In Applesoft BASIC, the command HGR can be used both to clear and to
display the Page 1 hi res screen. Similarly, HGR2 clears and displays hi res Page 2.
We can do this in assembly language by accessing built-in subroutines. For example,
JSR JF3E2 is equivalent to HGR and JSR $F3D8 is equivalent to HGR2. This is fine for
clearing and displaying a hi res screen when speed is not required (i.e., at the
beginning of a program), but to accomplish this rapidly we need to write our own
assembly language routines.

Displaying the hi res screen of choice involves accessing what are called soft
switches. These are certain memory locations that, when accessed, perform the
desired function. Accessing a soft switch means either reading from it (PHFKing
in BASIC) or writing to it (POKEing in BASIC). It doesn't make any difference
which numbers are read from or written to these memory locations. The access
process itself is all that's required. Some soft switches require a read, others a
write, and some can be accessed either way (details of soft switches can be
found in the reference manuals published by Apple for your particular machine).
'Hie soft switches of interest for hi res graphics are the following:

Drawing a Shape on the Hi-Res Screen

Metyiory Location of Snitch
I) e c i m a l

4 9 2 3 2
4 9 2 3 9
4 9 2 3 6
4 9 2 3 4
4 9 2 3 7
4 9 2 3 5
4 9 2 3 3

F t m c t i o n

$ C 0 5 0 Tu r n s o n g r a p h i c m o d e
$ C 0 5 7 S e l e c t s h i - r e s m o d e
$C054 Selects Page 1
$C052 Selects full page graphics (Page 1)
$C055 Selects Page 2
$C053 Selects mixed text and graphics (Page 1
$ C 0 5 1 S e l e c t s t e x t m o d e

Arbitrarily, I've decided to use Page 1 with full-screen graphics as the screen
of choice for all programs in this book. The switches we want to access then are
the first four in the table above. These switches can be accessed by either a read
or a write. Try this in BASIC or directly from the keyboard:

POKE 49232,0 :POKE 49239,0: POKE 49236,0: POKE 49234,0

The Page 1 hi-res screen will be displayed (you will probably see a screen
filled with random dots as these instructions, unlike HGR or HGR2, do not clear
the hi res screens). Now, how do we do this in assembly language? The assembly
language instruction equivalent to a PEEK in BASIC is LDA, the mnemonic for
LoaD Accumulator (the Accumulator is a part of the Apple's 6502 microproces
sor that performs most number manipulations). The LDA instruction is used to
load the Accumulator with a byte (LDA ^$08 loads the number 8 into the
Accumulator) or with the contents of a memory location (LDA S2057 loads the
Accumulator with the byte stored in location $2057) —note that * preceding a
number means it is a number, not a memory location. Because we're simply
accessing a soft switch, the particular number loaded into the Accumulator is
i m m a t e r i a l .

The assembly language instruction equivalent to a POKE in BASIC is STA
(STore Accumulator). This instruction stores the number in the Accumulator in
a specified memory location (STA $4097 stores the number in the Accumulator
in location $4097). Again, when accessing a soft switch, the particular number is
i m m a t e r i a l .

Either LDA or STA can be used to access the soft switches we're interested
in but I'm going to use LDA throughout (it appears to be the traditional choice
among assembly language programmers). Thus, the assembly language code for
displaying the Page 1 hi res screen with full screen graphics is as follows.

]PR0GRAM 3-1

6000: AD 50 CO
6003: AD 57 CO
6006: AD 54 CO
6009: AD 52 CO
600C: 60

O R G $ 6 0 0 0
L D A $ C 0 5 0
LDA $C057
L D A $ C 0 5 4
L D A $ C 0 5 2
RTS

•.START PROGRAM AT $6000
;GRAPHICS
; h i - r e s
;PAGE 1
; f u l l s c r e e n g r a p h i c s

- -End assembly—

1 3 b y t e s

Hi-Res Brephlcs and Animation Using Assembly Language

That's all there is to it! Running this program (sec the section in Chapter 2
on using an assembler) will display the Page 1 hi res screen (again prcjhably
with random dots as the screen is not cleared by these instructions). Ix-t's now
use a feature of the assembler to make this program more readable. As men
tioned previously, we can assign labels to particular memor>' kK-aticjns so that the
code reads more like text rather than a scries of numbers (this is always nice to
do so that when you come back to it three months later you wajn't wonder why
in heaven's name you LDAed IC050). Here is the same program with labels for
the soft switches QMP is an instruction equivalent to CiOTO in liASIc:)

^PROGRAM 3-2

1 ORG $ 6 0 0 0
6 0 0 0 : 4C 0 3 6 0 2 JMP P G M

3 G R A P H I C S = $ C 0 5 0
4 H I R E S = $ C 0 5 7
5 P A G E l = $ C 0 5 4
6 M I X O F F = $ C 0 5 2

6 0 0 3 : A D 5 0 C O 7 P G M L D A G R A P H I C S

6 0 0 6 : A D 5 7 C O 8 L D A H I R E S

6 0 0 9 : A D 5 4 C O 9 L D A P A G E l
6 0 0 C : A D 5 2 C O 1 0 L D A M I X O F F
6 0 0 F : 6 0 1 1 R T S

— E n d a s s e m b l y - -

1 6 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

P G M = $ 6 0 0 3 G R A P H I C S = $ C 0 5 0
H I R E S = $ C 0 5 7

M I X O F F = $ 0 0 5 2

Obviously this is a much more readable listing. We're going to use labels asoften as we can throughout the book with the idea of eliminating numbers from
the source code as much as poss ib le . numoers r rom

CLEARING THE HI-RES SCREEN

„ n i t b e f o r e d r a w i n gon It C earing the screen means turning it all to black, i.e., no dots displayed. The
âmbly tanguage clear routine is a relatively short program (13 lines), and besidesclearing the screen, it also serves as a good example of the use of some common
assembly language instructions.

Remember we said before that to draw on a hi-res screen we first display the
screen and then store bytes at hi res screen memory locations Well we've
already displayed the screen. Now, what bytes do we store and where to clearthe screen? It turns out that if you load a hi res screen location with byte ̂ $00
that portion of the screen will turn to black, i.e., no dots (the relationship of

Drawing a Shape on the Hi-Res Screen

other bytes to what appears on the screen will be dealt with later in this chap
ter). Thus, to clear the Page 1 hi-res screen we load all the screen locations,
from J2000 to J3FFF, with zeros. The following program show^s how this is done.

]PROGRAM 3 - 3

: A S M
1 ORG $6000

6 0 0 0 : 4 C 0 3 6 0 2 J M P PGM
3 G R A P H I C S $ C 0 5 0
4 H I R E S = $C057
5 P A G E l = $ C 0 5 4
6 M I X O F F = $C052

6 0 0 3 A D 5 0 C O 7 PGM L D A G R A P H I C S

6 0 0 6 A D 5 7 CO 8 L D A H I R E S

6 0 0 9 AD 54 CO 9 LDA PA G E l
6 0 0 C A D 52 CO 1 0 LDA M I X O F F
6 0 0 F A 9 0 0 11 L D A # $ 0 0
6 0 1 1 8 5 2 6 1 2 S T A $26
6 0 1 3 A 9 2 0 1 3 L D A # $ 2 0
6 0 1 5 8 5 2 7 1 4 S T A $ 2 7
6 0 1 7 A O 0 0 1 5 C L R l L D Y # $ 0 0
6 0 1 9 A 9 0 0 1 6 L D A # $ 0 0
6 0 1 8 9 1 2 6 1 7 C L R S T A ($26) ,Y
6 0 1 0 C 8 1 8 I N Y

6 0 1 E DO F B 1 9 B N E CLR
6 0 2 0 E 6 2 7 2 0 INC $27
6 0 2 2 A 5 27 2 1 L D A $27
6 0 2 4 C 9 4 0 2 2 CMP # $ 4 0
6 0 2 6 9 0 E F 2 3 B L T C L R l

6 0 2 8 6 0 2 4 R T S

; C L E A R S C R E E N PA G E 1

- - E n d a s s e m b l y —

4 1 b y t e s

Symbol table - numerical order:
P G M = $ 6 0 0 3 C L R l = $ 6 0 1 7 C L R = $ 6 0 1 6
M I X O F F = $ C 0 5 2 P A G E l = $ C 0 5 4 H I R E S = $ C 0 5 7

GRAPH1CS=$C050

Let's see how it works (assembly language literates or those simply uninter
ested can skip to the next section). First, byte ^^$00 is stored in location S26
(lines 11 and 12). Location $26 is called a zero page address because its actual
address is $0026. There's a reason for choosing a zero page address as we'll soon
see. Lines 13 and 14 load #$20 into zero page address $27. Line 15 loads #$00
into the Y register (the Apple's microprocessor has two areas other than the
Accumulator that can store bytes—the X and Y registers). Line 16 loads the
Accumulator with #$00. Line 17 does the real work. It uses a type of command
called indirect indexing, which works only with the Y register and a zero page
address (hence choosing a zero page address to begin with). STA ($26),Y says
take the contents of the Accumulator (#$00 from line 16) and store it in a
memory address calculated as follows: go to location $26 to get the low byte of

Hi-Res Gnphlcs and Animation Using Assembiy Language

the address and then get the high byte from the next zero page loc ation. i e , $2'
add the contents of the Y register to get the final address

STA {$26),Y L O C A T I O N C O N T E N T S A C C U M U l A T O M

a S O O

S 2 0 0 0 - Y S 2 0 0 0

Y a s o o

Note what has happened. A zero has been stored at Ujcation $2()()() tiie first
^^een Page 1, turning it black. VC e re on our way- l ine IH

conten ts o f the Y reg is te r by one . now con ta ins

value iJsPci u if Y has not yet reached zero (incrementing the niaxumini, , i "y one results in *$00), branch back to C:i.R (line 1"') line 1nowtes the new address as $2001.

STA ($26),Y
L O C A T I O N C O N T E N T S A C C U M U L A T O R

t t S O O

$ 2 0 0 0 + Y $ 2 0 0 1

Y = tt$01

^ow We've Hi i""til Y is incre screen location at $2001. T his continues
located in addr̂ ^?^̂ blacking out 256 bytes. Then the numberson to see if r • *"t:remented by one (line 20). Next we do a compari-
compare it to *$4n Accumulator with the byte in $27 and
because this win 22). If the Accumulator contains *$40 we want to stop
(BLT. Branch if I ^ screen. The command in line 23o f t h e s t a n d a r d R ? r ^ a s s e m b l e r s i n p l a c e
Accumulator byte : 'i "5^ Carry Clear) says branch or jump to CLRl if theprogram ends. S5,en w' n T"'^. " " '^kcn and theputs a zero at location J2100 ^ and line 17
STA ($26),Y —

L O C AT I O N C O N T E N T S a c c u m u l a t o r

» $ 0 0

$2100 + Y = $2100

« $ 0 0

Drawing a Shape on the Hi-Res Screen

Hach time 256 b>tes are blacked out, S27 is incremented by one and a new page
o f m e m o r y i s s e l e c t e d .

Determined by $27 $ 2 0 0 0 —
$ 2 1 0 0 —
$ 2 2 0 0 —

?56 bytes (determined by Y) - t o $ 2 0 F F
- t o $ 2 1 F F
- t o $ 2 2 F F

$ 3 F 0 0
$ 4 0 0 0 Stop — beginning of page 2 hi-res-

• t o $ 3 F F F

Tills whole routine takes less than a tenth of a second. Talk about assembly
language speed! By the way, if you want to clear hi-res Page 2, place #^S40 in line
13 and in line 22. The screen addresses will then be S4000 to S5FFF.

DRAWING A SHAPE

Now that we've displayed the screen and cleared it, let's draw something on
it (about time, eh?).

We've seen that i f we store a zero at a h i - res screen locat ion, that locat ion
turns black. The heart of hi-res drawing is the fact that if we write any byte other
than zero to the screen, dots wi l l appear (actual ly, stor ing b>i :e wi l l a lso
produce no dots—this is a complication we don't need, right? We'll discuss why
this happens below). Let's now discuss the relationship of bytes to dot patterns.
The details are a bit messy but the application is easy.

Remember that a byte is a series of 8 bits, each one of which can be off (0)
or on (1). You guessed it! If a bit is 0, the screen is black at that point; if a bit is
1, a dot is turned on. But there are complications (you wouldn't want this to be
too easy, would you, else how could you impress your friends?). First, only 7 of
the 8 bits determine a dot pattern. The leftmost or most significant bit (also
called the high bit) is used to select colors for the byte (more on this in a later
chapter). This is why storing byte ^!^$80 will produce no dots. For now, we'll
always use 0 as the high bit. Second, the remaining 7 bits are plotted backwards!
Why? Don't ask. Let's just see how it works. Here is a byte and the dot pattern
that results wTten this byte is sent to a hi-res screen location.

High Bit

\
0 0 0 1 1 1 H e x t t $ 4 F

How does one convert a dot pattern to a byte? Don't fret. It's easy. Place the
desired dot pattern in 7 boxes and number the boxes as shown.

Hi-Res Graphics and Animation Using Assembly Language

1 2 4 8 1 2 4

Take the rightmost 3 bits and convert them to a hex number. Iliis is the first
number of the byte. Then do the same for the leftmost 4 bits. 'ITiis gives you the
second number of the byte. You now have the byte, *$4F, that will give you the
desired dot pattern. Let's try another example.

1 2 4 8 1 2 4

last examnle • write a program that will display the dot pattern in the
first line Clin'e'n\ specified by #$6B. We're going to put this byte in the
*2000), which • (byte 0) of the hi res screen Page 1 (locationdistingiiish betw^ "Pper left-hand corner of the screen. (Be careful tocolumn [0-39 a screen byte, which is the location of the horizontal
fiyte, which is tĥ the screen] where the shape is to be drawn, and the shapethe byte that determines the dot pattern.)

p̂rogram 3-4

6 0 0 0 : 4C 03 60

6 0 0 3 :
6 0 0 6 :
6 0 0 9 :
6 0 0 C :
6 0 0 F :
6 0 1 1 :
6 0 1 3 :
6 0 1 5 :

AD 50 CO
AD 57 CO
AD 54 CO
AD 52 CO
A 9 0 0
8 5 2 6
A 9 2 0
8 5 2 7

g r a p h i c s
H I R E S
PA G E l
MIXOFF
PGM

$6000
PGM
$C050
$C057
$C054
$C052
GRAPHICS
H I R E S
PA G E l
M I X O F F
$ 0 0
$ 2 6
$ 2 0
$ 2 7

; C L E A R S C R E E N PA G E

Drawing a Shape on the Hi-Res Screen

6 0 1 7 : A O 0 0
6 0 1 9 : A 9 0 0
6 0 1 B : 9 1 2 6
6 0 1 D : C 8
6 0 1 E : D O F B
6 0 2 0 : E 6 2 7
6 0 2 2 : A 5 2 7
6 0 2 4 : C 9 4 0
6 0 2 6 : 9 0 E F
6 0 2 8 : A 9 6 B
6 0 2 A : 8 D 0 0 2 0
6 0 2 D : 6 0

$ 0 0
$ 0 0
($ 2 6) . Y

C L R
$ 2 7
$27
$ 4 0
C L R l

#$6B
$2000 : P L O T B Y T E

— E n d a s s e m b l y —

4 6 b y t e s

Symbo l t ab le - numer i ca l o rde r :

P G M = $ 6 0 0 3
M I X O F F = $ 0 0 5 2

C L R l = $ 6 0 1 7 C L R = $ 6 0 1 B
P A G E l = $ 0 0 5 4 H I R E S = $ 0 0 5 7

G R A P H I C S = $ C 0 5 0

We've now drawn our first shape; admittedly, it's not much of a shape but
we have to start somewhere (actually it does look something like a far-away bird
or maybe an airplane—it helps to have imagination in this business). Let's get
more ambitious now and draw something more interesting, say, a person. The
shape will be 1-byte wide by 6-lines deep. Here is the dot pattern, the corres
ponding bytes, and the line addresses where the bytes will be drawn.

1 2 4 8 1 2 4 Shape Byte L i n e A d d r e s s

$ 2 0 0 0

$ 3 E

$ 5 D

$ 1 C

$ 2 4 0 0

$ 2 8 0 0

$ 2 C 0 0

$ 3 0 0 0

$ 3 4 0 0

]PROGRAM 3-5
: A S M

6 0 0 0 : 4 0 0 3 6 0

6 0 0 3 : A D 5 0 0 0
6 0 0 6 : A D 5 7 0 0
6 0 0 9 : A D 5 4 0 0
6 0 0 0 : A D 5 2 0 0

O R G
JMP

G R A P H I C S =
H I R E S
P A G E l
M I X O F F
P G M L D A

L D A
L D A
L D A

$6000
PGM

$0050
$0057
$0054
$0052
G R A P H I C S
H I R E S
P A G E l
M I X O F F

Hi-Res Graphics and Animation Using Assembiy Language

6 0 0 F :
6 0 1 1 :
6 0 1 3 :
6 0 1 5 :
6 0 1 7 :
6 0 1 9 :
6 0 1 B :
6 0 1 D :
6 0 1 E :
6 0 2 0 :
6 0 2 2 :
6 0 2 4 :
6 0 2 6 :
6 0 2 8 :
6 0 2 A :
6 0 2 D :
6 0 2 F :
6 0 3 2 :
6 0 3 4 :
6 0 3 7 :
6 0 3 9 :
603C:
603E:
6 0 4 1 :
6 0 4 3 :
6046 :

A 9 0 0
8 5 2 6
A 9 2 0
8 5 2 7
A O 0 0
A 9 0 0
9 1 2 6
C 8
DO FB
E 6 2 7
A 5 2 7
C 9 4 0
9 0 E F
A 9 0 8
8 0 0 0
A 9 3 E
80 00
A9 50
8 0 0 0
A9 IC
80 00
A9 14
80 00
A9 22
80 00
6 0

« S 0 0
S 2 6
$ 2 0
$ 2 7
» S 0 0
aSOO
(S 2 6) , Y

C L R
$ 2 7
$ 2 7
$ 4 0
C L R l
$ 0 8
$ 2 0 0 0
$ 3 E
$ 2 4 0 0
$ 5 0
$ 2 8 0 0
$ 1 C
$ 2 C 0 0
$ 1 4
$ 3 0 0 0
$ 2 2
$ 3 4 0 0

; C L E A R S C R E E N (A ' , f 1

: O R A W S H A P E

--End assembly--
71 bytes

Symbol tabl e - numerical order:

=$6003MIXOFF =$0052 C L R l = $ 6 0 1 7 C L R
P A G E l = $ 0 0 5 4 H I R E S

= $ 6 0 1 6
= $ 0 0 5 7

GRAPHICS=$C050

locations. shape anywhere on the hi-res screen by changing the .screenleft screen bord If we want to plot it one byte over (one byte from theer), the addresses would be S2001, S2401, $2801, etc.

TABLES

(pardon the pun)̂ tl̂ '̂ "̂̂ -program (it works) but it doesn't addressaddresses. We would lik'̂ f'̂ '̂ headache in hi res plotting, i.e., calculating line
ing about the nr»n.r^ ^ shape from, say, lines 0 to 5 without bother-pr^edure Tm abourrT''^^ addresses. With the
position without havino^tr. a shape at any line and byte
will become ec -• • ̂ f̂er to a huge map of all 7680 screen positions. I his
movino «h ly Important when we deal with animation, which involves
Z b l e m K t h a n o n e w a y t o s o l v e t h i s, , . ^ easiest and fastest way is to use table look-ups. ITie high byteand low byte of each line addre.ss is stored in tables. A line number from O to
y 1 IS speci led, by looking up the table, the correct line address is retrieved.

Drawing a Shape on the Hi-Res Screen

The byte position (0-39) also is specified and added to the line address to get
the correct screen position. Let's see how it works (see Program 3-6).

Tliere are two tables, one labeled HI for the high b>tes and one labeled LO
for the low b>tes. Each table is 192 b)tes long for the 192 line addresses. (The
BIG MAC Assembler and some others allow the entry of hex numbers without
prescripts using the HEX command; some assemblers do not support this
instruction and require the code DFB ^S20, ^S24, ^S28, etc. The ORCA/M
assembler uses a DC H' directive; refer to your assembler's instructions.) Sup
pose we want to plot our man shape at b>te 0, lines 0 to 5 as before. We'll use
the Y register to hold the b>te position and the X register to hold the line
posit ion.

D I S P L AY S C R E E N ,
H I - R E S P A G E 1

C L E A R S C R E E N

X = L I N E N U M B E R
Y = B Y T E P O S I T I O N

G E T L I N E A D D R E S S

L O A D A W I T H
S H A P E B Y T E

D R A W

N E X T L I N E

]PR0GRAM 3-6
; A S M

6 0 0 3
6 0 0 6
6 0 0 9
6 0 0 C
6 0 0 F
6 0 1 1
6 0 1 3
6 0 1 5
6 0 1 7
6 0 1 9

4 C 0 3 6 0 2
3
4

AD 50 CO 7
AD 57 CO 8
AD 54 CO 9
AD 52 CO 1(
A 9 0 0 1]
8 5 2 6 1
A 9 2 0 1
8 5 2 7 1
A O 0 0 1
A 9 0 0 1
9 1 2 6 1
C 8 1
D O F B 1
E 6 2 7 2
A 5 2 7 2

G R A P H I C S
H I R E S
P A G E l
M I X O F F
PGM

$6000
PGM

$C050
$C057
$C054
$C052
G R A P H I C S
H I R E S
P A G E l
M I X O F F

$ 0 0
$26
$ 2 0
$27
#$00
#$00
($26) ,Y

•.CLEAR SCREEN PAGE 1

Hi-Bes Bnphics and Animation Using Assembiy Language

6 0 2 4 : C 9 4 0
6 0 2 6 : 9 0 E F

6 0 2 8 : A 2 0 0
6 0 2 A : A O 0 0
6 0 2 C : B D 8 6 6 0
6 0 2 F : 8 5 7 7
6031: BD 46 61
6 0 3 4 : 8 5 7 6
6 0 3 6 : A 9 0 8
6 0 3 8 : 9 1 7 6
6 0 3 A : E 8
603B: BD 86 60
6 0 3 E : 8 5 7 7
6040: BD 46 61
6 0 4 3 : 8 5 7 6
6045 : A9 3E
6 0 4 7 : 9 1 7 6
6 0 4 9 : E 8
6 0 4 A : B D 8 6 6 0
6 0 4 D : 8 5 7 7
6 0 4 F : B D 4 6 6 1
6 0 5 2 : 8 5 7 6
6 0 5 4 : A 9 5 0
6 0 5 6 : 9 1 7 6
6 0 5 8 : E 8
6 0 5 9 : B D 8 6 6 0
6 0 5 C : 8 5 7 7
6 0 5 E : B D 4 6 6 1
6 0 6 1 : 8 5 7 6
6 0 6 3 : A 9 I C
6 0 6 5 : 9 1 7 6
6 0 6 7 : E 8
6068: BD 86 60
606B : 85 77
606D: BD 46 61
6 0 7 0 : 8 5 7 6
6 0 7 2 : A 9 1 4
6 0 7 4 : 9 1 7 6
6 0 7 6 : E 8
6077 : BD 86 60
6 0 7 A : 8 5 7 7
6 0 7 C : B D 4 6 6 1
6 0 7 F : 8 5 7 6
6 0 8 1 : A 9 2 2
6 0 8 3 : 9 1 7 6
6 0 8 5 : 6 0
6 0 8 6 : 2 0 2 4 2 8
6 0 8 9 : 2 C 3 0 3 4
6 0 8 E : 2 0 2 4 2 8
6091: 2C 30 34
6 0 9 6 : 2 1 2 5 2 9
6099: 20 31 35
6 0 9 E : 2 1 2 5 2 9
60A1: 2D 31 35
6 0 A 6 : 2 2 2 6 2 A
60A9: 2E 32 36
6 0 A E : 2 2 2 6 2 A
60B1: 2E 32 36
6 0 B 6 : 2 3 2 7 2 8
6 0 B 9 : 2 F 3 3 3 7

2 2 CMP # $ 4 0
2 3 8 L T C L R l
2 4 * * * * * * * * * * * * * * * * * *

2 5 L D X # $ 0 0
2 6 L D Y # $ 0 0
2 7 L D A H I . X
2 8 S TA $ 7 7
2 9 L D A LO.X
3 0 S TA $ 7 6
31 L D A # $ 0 8
3 2 S T A ($ 7 6) , Y
3 3 I N X
3 4 L D A H I . X
3 5 S T A $ 7 7
3 6 L D A L O . X
3 7 S T A $ 7 6
3 8 L D A #$3E
3 9 S TA ($ 7 6) . Y
4 0 I N X
4 1 L D A HI .X
4 2 S T A $ 7 7
4 3 L D A L O . X
4 4 S T A $ 7 6
4 5 L D A # $ 5 D
4 6 S T A ($ 7 6) . Y
4 7 I N X
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9

3 8 3 C
7 0

3 8 3 C
71

3 9 3 D
7 2

3 9 3 D
7 3

3 A 3 E
7 4

3 A 3 E
7 5

3 8 3 F

I D A H I , X
S T A $ 7 7
L D A L 0 , X
S T A $ 7 6
L D A # $ 1 C
STA ($76) .Y
I NX
L D A H I , X
S T A $ 7 7
LDA LO.X
S TA $ 7 6
LDA #$14

LDA HI.X
S T A $ 7 7
LDA LO.X
S T A $ 7 6
LDA #$22
STA ($76) .Y

L I N E N U M B E R
B Y T E N U M B E R
G E T L I N E A D D R E S S

;PLOT
i N E X T L I N E

;PLOT
t N E X T L I N E

; P L O T
;NEXT L INE

;PLOT
; N e x t l i n e

;PLOT
; N e x t l i n e

; P L O T
R T S '
HEX 2024282C3034383C

HEX 2024282C3034383C
HEX 2125292D3135393D
HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

H E X 2 3 2 7 2 8 2 F 3 3 3 7 3 B 3 F

HIGH BYTE LINE ADDRESSES

Drawing a Shape on the Hi-Res Screen

6 0 B E : 2 3 2 7 28 7 6 HEX 23272B2F33373B3F
6 0 C 1 : 2 F 3 3 3 7 3 B 3 F
6 0 C 6 : 2 0 2 4 2 8 7 7 H E X 2024282C3034383C
6 0 C 9 : 2 C 3 0 3 4 3 8 3 C
6 0 C E : 2 0 2 4 2 8 7 8 H E X 2024282C3034383C
6 0 D 1 : 2 C 3 0 3 4 3 8 3 C
6 0 D 6 : 2 1 2 5 2 9 7 9 H E X 2125292D3135393D
6 0 D 9 : 2 D 3 1 3 5 3 9 3 D
6 0 D E : 2 1 2 5 29 8 0 H E X 2125292D3135393D
6 0 E 1 : 2 D 3 1 35 3 9 3 D
6 0 E 6 : 2 2 2 6 2A 8 1 H E X 22262A2E32363A3E
6 0 E 9 : 2 E 3 2 3 6 3 A 3 E
6 0 E E : 2 2 2 6 2 A 8 2 H E X 22262A2E32363A3E
6 0 F 1 : 2 E 3 2 3 6 3 A 3 E
6 0 F 6 : 2 3 2 7 2 B 8 3 H E X 2 3 2 7 2 B 2 F 3 3 3 7 3 B 3 F
6 0 F 9 : 2 F 3 3 3 7 3 B 3 F
6 0 F E : 2 3 2 7 2 B 8 4 H E X 23272B2F33373B3F
6 1 0 1 : 2 F 3 3 3 7 3 B 3 F

6 1 0 6 : 2 0 2 4 28 8 5 H E X 2024282C3034383C
6 1 0 9 : 2C 3 0 3 4 3 8 3 C
6 1 0 E : 2 0 2 4 2 8 8 6 H E X 2024282C3034383C
6 1 1 1 : 2 C 3 0 3 4 3 8 3 C
6 1 1 6 : 2 1 2 5 2 9 8 7 H E X 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 1 1 9 : 2 D 3 1 3 5 3 9 3 D
6 1 1 E : 2 1 2 5 2 9 8 8 H E X 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 1 2 1 : 2 D 3 1 3 5 3 9 3 D

276 1 2 6 : 2 2 2 6 2 A 8 9 H E X 2 2 2 6 2 A 2 E 3 2 3 6 3 A 3 E
6 1 2 9 : 2 E 3 2 3 6 3 A 3 E
6 1 2 E : 2 2 2 6 2A 9 0 H E X 2 2 2 6 2 A 2 E 3 2 3 6 3 A 3 E

6 1 3 1 : 2 E 3 2 36 3 A 3 E
6 1 3 6 : 2 3 2 7 2B 91 H E X 2 3 2 7 2 B 2 F 3 3 3 7 3 B 3 F

6 1 3 9 : 2 F 3 3 37 3 B 3 F

6 1 3 E : 2 3 2 7 2 B 9 2 H E X 23272B2F33373B3F
6 1 4 1 : 2 F 3 3 3 7 3 8 3 F
6 1 4 6 : 0 0 0 0 0 0 9 3 L O H E X 0000000000000000 ; L O W B Y T E L I N E A D D R E S S E S
6 1 4 9 : 0 0 0 0 0 0 0 0 0 0
6 1 4 E : 8 0 8 0 8 0 94 H E X 8080808080808080
6 1 5 1 : 8 0 8 0 8 0 8 0 8 0
6 1 5 6 : 0 0 0 0 0 0 9 5 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 5 9 : 0 0 0 0 0 0 0 0 0 0

6 1 5 E : 8 0 8 0 8 0 9 6 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
6 1 6 1 : 8 0 8 0 8 0 8 0 8 0
6 1 6 6 : 0 0 0 0 0 0 97 HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 6 9 : 0 0 0 0 0 0 0 0 0 0
6 1 6 E : 8 0 8 0 8 0 9 8 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
6 1 7 1 : 8 0 8 0 8 0 8 0 8 0
6 1 7 6 : 0 0 0 0 0 0 9 9 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 7 9 : 0 0 0 0 0 0 0 0 0 0
6 1 7 E : 8 0 8 0 8 0 1 0 0 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
6 1 8 1 : 8 0 8 0 8 0 8 0 8 0
6 1 8 6 : 2 8 2 8 2 8 1 0 1 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8

6 1 8 9 : 2 8 2 8 2 8 2 8 2 8
6 1 8 E : A 8 A 8 A 8 1 0 2 HEX A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8

6 1 9 1 : A 8 A 8 A 8 A 8 A 8
6 1 9 6 : 2 8 2 8 2 8 1 0 3 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 1 9 9 : 2 8 2 8 2 8 2 8 2 8
6 1 9 E : A 8 A 8 A 8 1 0 4 H E X A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8
6 1 A 1 : A 8 A 8 A 8 A 8 A 8
6 1 A 6 : 2 8 2 8 2 8 1 0 5 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 1 A 9 : 2 8 2 8 2 8 2 8 2 8

6 1 A E : A 8 A 8 A 8 1 0 6 H E X A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8

Hi-Res Braphics and Animation Using Assembly Language

6 1 B 1 : A 8 A 8 A 8 A 8 A 8
6 1 8 6 : 2 8 2 8 2 8 1 0 7
6 1 8 9 : 2 8 2 8 2 8 2 8 2 8
6 1 8 E : A 8 A 8 A 8 1 0 8
6 1 C 1 : A 8 A 8 A 8 A 8 A 8
6 1 C 6 : 5 0 5 0 5 0 1 0 9
6 1 C 9 : 5 0 5 0 5 0 5 0 5 0
6 1 C E : D O D O D O 1 1 0
6 1 D 1 : D O D O D O D O D O
6 1 D 6 : 5 0 5 0 5 0 1 1 1
6 1 D 9 : 5 0 5 0 5 0 5 0 5 0
61 t)E : DO DO DO 112
6 1 E 1 : D O D O D O D O D O
6 1 E 6 : 5 0 5 0 5 0 1 1 3
6 1 E 9 : 5 0 5 0 5 0 5 0 5 0
61EE: DO DO DO 114
61F1: DO DO DO DO DO
61F6: 50 50 50 115
61F9: 50 50 50 50 50
61FE: DO DO DO 116
6201: DO DO DO DO DO

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

—End assembly—
518 bytes

Symbol table numer i ca l o rde r :

=$6003
=$6146HIRES =$C057

C L R l = $ 6 0 1 7
GRAPHICS=$C050

C L R = $ 6 0 1 8
M I X O F F = $ 0 0 5 2

Let s look at the program starting from line 25.
LDX #$00

LDY #$00

LDA HI .X

S TA $ 7 7

L D A L O , X

Line number in X register
Byte number in Y register

ioade!?̂ i!̂ called absolute indexing. The Accumulator is
is a label f ̂ found m location HI + X (remember that HI
t h e B e c a u s e X = O , t h e fi r s t b y t e i ntable (#^$20) is loaded into the Accumulator.

Srat̂ô "̂'̂ Accumulator (̂$20) are placed in a zero page
The Accumulator is loaded with the low byte of the line address
a b l e ™ ' h t l otable (#$00) is loaded into the Accumulator.

STA $76 #$00 is placed in another zero page location.

$76 and $77 now contain the low and high bytes of the address of
line 0 ($2000).

The first shape byte to be plotted is put into the Accumulator.

$ 6 0 8 6
$ C 0 5 4

Drawing a Shape on the Hi-Res Screen

STA ($76).Y We've seen this instruction before in the clear screen routine. It
stores the Accumulator contents at a screen address retrieved
from the contents of zero page addresses S76 and $77 plus Y, the
b>te position.

STA ($76),Y - L O C A T I O N C O N T E N T S A C C U M U L A T O R

$2000 + Y = $2000 (LINE 0)

Y = « $ 0 0

We've now plotted the first shape b)te at line 0, b>te 0. The second shape
byte now goes on line 1. To plot on this line, we increment X by one and repeat
the above steps with the next shape byte.

I N X X n o w c o n t a i n s # S 0 1

LDA HI.X Loads the Accumulator with the second byte in table HI (HI +
1 = #$24)

STA $77 $77 now contains #$24.

LDA LO,X Loads the Accumulator with the second byte in table LO (LO +
1 = #S00).

STA $76 $76 now con ta ins #$00 .

LDA #$3E Loads the Accumulator with the second shape byte.

STA ($76),Y The second shape byte is plotted at $2400 + Y = $2400 (line 1).

STA ($76),Y L O C A T I O N C O N T E N T S A C C U M U L A T O R

$ 3 E

$2400 + Y = $2400 (LINE 1]

Y = « $ 0 0

These steps are repeated until all the shape bytes are drawn. We can change
the byte and line locations by putting different values in the Y and X registers.
For example, to plot the shape starting at screen line $ and screen b>te 4, place
5 in X and 4 in Y. LDA HI.X and LDA LO,X retrieves the line address $3400. STA
($76),Y adds 4 to this address to get the desired screen position, $3404.

Hi-Res Graphics and Animation Using Assembiy Language

S y m b o l t a b l e - n u m e r i c a l o r d e r :

LOW
D E P T H
C L R
L O
H I R E S

= $ 1 A
= $ 6 0 0 5
= $ 6 0 1 F
= $ 6 1 2 E
= $ 0 0 5 7

H I G H = $ 1 B B Y T E = $ 6 0 0 3 1 I N F
X C O U N T = $ 6 0 0 6 P G M = $ 6 0 0 7 C L R l
D R A W = $ 6 0 4 1 S H A P E = $ 6 0 6 8 H I
G R A P H I C S = $ C 0 5 0 M I X O F F = $ 0 0 5 2 P A G E l

HI and LO refer to the tables in Program 3-6.
Let's examine the program in some detail, because some new elements of

assembler use have been added. We need to reserve some space in the program
to hold the values for byte, line, depth of shape, and XCXYLNT" (the u.se of
XCOLFNT will be described below). This is done by using the code fXS for
Defined Storage. Thus, BYTE OS 1 will reserve one memory location .somewhere
between S6000 and PGM and label it BYTE (the precise location is displayed in
the Symbol Table at the end of the program listing). Also, in keeping with our
desire to remove numbers from the source code, we define zero page addresses
$1A as LOW and $1B as HIGH, and use these labels also in the clear screen
routine. (Using $1A and JIB as zero page addresses ensures no conflict with
DOS commands or any BASIC program we might want to integrate with our
assembly language program—see Chapter 16).

We first enter the initial values for line, byte, and depth of shape (lines 3 1 to
37). Note that the shape depth is added to the starting line number (lines 33 to
35) so that DEPTH will contain the value #J05 + *^J06 = #^SOB (ADC means
d̂ with Carry and must always be preceded with CLC, CLear Carry). In theW routine, Y is loaded with the screen byte (line 40) and X with the start

ing line (line 41). XCOUNT is initially set to zero (lines 38 to 39). Lines 42 toget the line address for the first line to be plotted.
^ now need another counter to access the bytes in the shape table but

ere are no more available—A, X, and Y are being used already. To get around
ts, we load X temporarily with the value in XCOUNT and use XCOUNT as the

counter (X is reloaded with the line number by line 4 1). Thus, LDA
loads A, the Accumulator, with the first byte of the shape

then ' ̂ = 0 from the initial value of XCOUNT. STA (LOW),Y (line 48)dinê î x" shape byte at line 5, byte 4. XCOUNT is incremented by one
(Une contains the value #J01. LINE is also incremented by one
pared i ' contains the value #J06. This new line number is now com-o the value in DEPTH (line 52). ^
comnareH ̂ comparison, you must first load A with the number to benumber ®LT DRAW (line 53) is an instruction tl̂ t says if
DRa\)(a line number) is less than the number in DE , go ac
(*J06i drawing. At DRAW, X is loaded with the new line number
With the address is obtained from the HI and LO tables. X is lea eof the Shane (*J01) and LDA SHAPE,X loads A with the second byte
the second sh ̂ plotted at the new line by STA (LOW),Y. Thus,
program the plotted at screen line 6 and screen byte 4 (in t isuntil the last , isn't changed). This whole process is then repeatedtaken and the progr̂ "̂^ DEPTH. Then the branch at line 53 is not
easî t̂"̂ ^̂ *̂ ^̂ previous program, this program is not only shorter but alsoread and manipulate. For example, if we don't like the way the shape

Drawing a Shape on the Hi-Res Screen

looks, we can simply change numbers in the shape table. For larger programs
with multiple shapes, the advantage of using shape tables becomes even more
a p p a r e n t .

D R A W I N G S H A P E S W I D E R T H A N O N E B Y T E

We've one more topic to discuss before we leave this chapter. Up to now,
we've only plotted shapes of width one screen byte or less. Suppose we want to
plot a shape that extends over two bytes or more. A slight change in the dra^ving
routine is required. The following program (Program 3-8) plots the shape of a
plane that is 2-bytes wide and 5-lines deep.

The order of drawing will be:

line 1, first screen byte, second screen byte

line 2, first screen byte, second screen byte

line 3, first screen byte, second screen byte, etc.

Thus, the order of shape bytes in the shape table is 03 00 03 00 7D 3F 01 40
7 F 3 F.

In the DRAW routine, we get the address of the first screen line and first
screen byte and plot the first byte of the shape table. Then, on the same line, we
increment Y (line 49) so that the next plot (STA (LOW),Y) will be at the
second screen byte. LDA SHAPE4-1,X (line 50) retrieves the second byte of the
shape table for this plot. XCOUNT is then incremented by the number of bytes
in the shape width; in this case, two. We then go to the next line by increment
ing LINE (line 54) and, because the shape isn't finished yet, we go back to
DRAW to reset the screen byte to its initial value (line 40) and obtain the new
line address. Now LDA SHAPE,X will get the third shape byte because X = 2
from XCOUNT. INY gets us to the next screen byte and LDA SHAPE+1,X
retrieves the fourth shape byte. This continues until CMP DEPTH tells us the
shape is finished.

Hi-Rss Grsphics 8nd Animstion Using Asssmbly Language

D I S P L A Y S C R E E N .
H I - R E S P A G E 1 I

C L E A R S C R E E N

S E T I N I T I A L L I N E N U M B E R ,
B Y T E P O S I T I O N A N D D E P T H

Z E R O X C O U N T

X = L I N E N U M B E R
Y = B Y T E P O S I T I O N

L O A D A W I T H S H A P E
B T Y E — L D A S H A P E , X

D R A W

N E X T B Y T E L O C A T I O N

L O A D A W I T H N E X T S H A P E
B Y T E — L D A S H A P E + 1 . X

D R A W

I N C X C O U N T B Y N O . O F
B Y T E S I N W I D T H

N E X T L I N E

L I N E = D E P T H ?

S T O P

Drawing a Shape on the Hl-Res Screen

]PROGRAM 3-8
: A S M

1

6 0 0 0 : 4 C 0 7 6 0 2
3
4
5
6
7
8
9
1 0

1 2

6 0 0 7 : A D 5 0 CO 1 3
6 0 0 A : A D 5 7 CO 1 4
6 0 0 D : A D 5 4 CO 1 5

6 0 1 0 : A D 5 2 CO 1 6

6 0 1 3 : A 9 0 0 1 7
6 0 1 5 : 8 5 l A 1 8

6 0 1 7 : A 9 2 0 1 9

6 0 1 9 : 8 5 I B 2 0

6 0 1 B : AO 0 0 2 1

6 0 1 D : A 9 0 0 2 2
6 0 1 F : 9 1 l A 2 3
6 0 2 1 : C 8 2 4

6 0 2 2 : DO F B 2 5

6 0 2 4 : E 6 I B 2 6

6 0 2 6 : A 5 I B 27
6 0 2 8 : C 9 4 0 2 8

6 0 2 A : 9 0 E F 2 9
3 0

6 0 2 C : A 9 0 5 3 1

6 0 2 E : 8 D 0 4 6 0 3 2
6 0 3 1 : 1 8 3 3

6 0 3 2 : 6 9 0 5 3 4

6 0 3 4 : 8 D 0 5 6 0 3 5

6 0 3 7 : A 9 0 4 3 6
6 0 3 9 : 8 D 0 3 6 0 3 7

6 0 3 C : A 9 0 0 3 8
6 0 3 E : 8 D 0 6 6 0 3 9

6 0 4 1 : A C 0 3 6 0 4 0

6 0 4 4 : A E 0 4 6 0 4 1

6 0 4 7 : B D 7 B 6 0 4 2
6 0 4 A : 8 5 I B 4 3
6 0 4 C : B D 3 B 6 1 4 4

6 0 4 F : 8 5 l A 4 5

6 0 5 1 : A E 0 6 6 0 4 6
6 0 5 4 : B D 7 1 6 0 4 7
6 0 5 7 : 9 1 l A 4 8
6 0 5 9 : C 8 4 9

6 0 5 A : B D 72 6 0 5 0

6 0 5 D : 91 l A 5 1

6 0 5 F : EE 0 6 6 0 52
6 0 6 2 : EE 0 6 6 0 53
6 0 6 5 : E E 0 4 6 0 54
6 0 6 8 : A D 0 4 6 0 5 5
6 0 6 B : C D 0 5 6 0 5 6
6 0 6 E : 9 0 0 1 5 7
6 0 7 0 : 6 0 5 8

O R G $ 6 0 0 0
J M P P G M

B Y T E D S 1
L I N E D S 1
D E P T H D S 1
X C O U N T D S 1
G R A P H I C S = $ C 0 5 0
H I R E S = $ C 0 5 7
P A G E l = $ C 0 5 4
M I X O F F = $ C 0 5 2
H I G H = $ 1 B
L O W = $ 1 A
P G M L D A G R A P H I C S

L D A H I R E S
L D A P A G E l
L D A M I X O F F
L D A # $ 0 0 ; C L E A R S C R E E N P A G E 1
S T A L O W
L D A # $ 2 0
S T A H I G H

C L R l L D Y # $ 0 0
L D A # $ 0 0

C L R S T A (L 0 W) , Y
I N Y
B N E C L R
I N C H I G H
L D A H I G H
CMP # $ 4 0
B LT C L R l

* * * * * * * * * * * * * * * * * *

L D A #$05
STA L I N E ;LINE NUMBER
C L C
A D C # $ 0 5
S T A DEPTH ;ADD DEPTH OF SHAPE
LDA #$04
S TA B Y T E ;BYTE
L D A # $ 0 0
S TA XCOUNT ZERO XCOUNT

D R A W L D Y BYTE B Y T E I N Y R E G I S T E R
L D X L I N E L I N E I N X R E G I S T E R
LDA H I , X G E T L I N E A D D R E S S
STA H I G H
LDA LO,X
S T A LOW
L D X XCOUNT LOAD X WITH XCOUNT
L D A SHAPE, X G E T S H A P E B Y T E
S T A (LOW).Y P L O T
I N Y J N E X T B Y T E
L D A S H A P E + 1 , X ; N E X T S H A P E B Y T E

S TA (L O W) , Y ; PLOT
INC X C O U N T ; INC XCOUNT BY NO. OF
INC XCOUNT B Y T E S I N S H A P E W I
I N C L I N E ;iNEXT LINE
L D A L I N E

CMP D E P T H IS SHAPE DONE?
B LT DRAW IF NO, CONTINUE DRAW
R T S IF YES, STOP

Hi-Res Graphics and Animation Using Assembiy Language

6 0 7 1 : 0 3 0 0 0 3 5 9 S H A P E
6 0 7 4 : 0 0 7 0 3 F 0 1 4 0 7 F 3 F

H I
L O

H E X 0 3 0 0 0 3 0 0 7 D 3 F 0 1 4 0 7 F 3 F

5 0 7 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

L O W
D E P T H
C L R
L O
H I R E S

=$1A
= $ 6 0 0 5
= $ 6 0 1 F
= $ 6 1 3 6
= $ C 0 5 7

H I G H = $ 1 8 B Y T E
X C O U N T = $ 6 0 0 6 P G M
D R A W = $ 6 0 4 1 S H A P E
G R A P H I C S = $ C 0 5 0 M I X O F F

=$6003
=$6007
= $ 6 0 7 1
=$0052

L I N E
C L R l
H I
P A G E l

DRAW LDY BYTE
LDX LINE
lda hi.x
s t a h i g h
lda LO.X
s t a l o w
LDX XCOUNT

sta Town "Tie
I f ^ y ' ' a t fi r s t s c r e e n b y t e

sta TZT'" pmT
I f v / Y ^ s e c o n d s c r e e n b y t e

i K i ^ . P l o t ^ t t h i r H o ^

Plot at second screen byte

XCOUNT
XCOUNT
XCOUNT

'NO LINE
lda l ine
CMP depth
®lt draw
R T S

Plot at third screen byte
Increment XCOUNT by shape width

Wc now know how
shape tables and line addrê r̂ K̂T̂ anywhere on the hi res screen usingmove shapes around the screen ̂ ̂ ^̂ ôwing chapters will discuss how to

tising animation routines.

Vertical Animation
There wcis ci youn^ nutu ruinieci Brown
Oti whose brow Program -TP prochieed frown,
"I nncierstanci it all right
But there's been an orersight
What goes up is not coining clown. "

cV^omputer animation is an illusion. Shapes do not move in a continuous,
unbroken path but rather in fits and starts, bit by bit (literally!), or sometimes
byte by byte. The illusion is created essentially by speed, in the same way that
rapidly changing still pictures create the illusion of movement in mo\ie films. We
touched on this before in discussing why the speed of assembly language is
essential to animation. But speed is not the only factor. Tlie basic cycle for any
a n i m a t i o n r o u t i n e i s a s f o l l o w s - .

Draw —^ Delay —^ Erase —Move to new position

If the new position is close to the old one and if the process is fast enough, the
illusion of continuous movement is created. The reason for the time delay is to
ensure that the shape is on the screen longer than it is off; otherwise, excessive
flicker will result.

erasing A SHAPE

Before we get to the actual vertical animation programs, we first have to
discuss the problem of the shape erase. We could erase a shape by clearing the
entire screen with our clear screen routine but obviously this would be inap
propriate if there are other shapes on the screen we want to retain. We could
also just store zeros in the general shape area, but there is an easier and neater
way. For this we have to introduce another assembly language instruction, FOR
(Exclusive-OR). FOR compares a byte, bit by bit, with a byte in the Accumula-

Hi-Res Graphics and Animation Using Assembiy Language

tor. If either bit, but not both, is one, the result is one: otherwise, the result is
z e r o . T h e r e s u l t i s s t o r e d i n t h e A c c u m u l a t o r .

E x a m p l e :

A c c u m u l a t o r
EOR byte

Resul t in Accumulator

1 1 0 1 0 0 1 1
0 1 1 0 1 0 1 0

1 0 1 1 0 0 1

Let s see how the EOR instruction can be used to erase a shape. Suppose we
load the Accumulator with a shape byte from a particular screen location. Iben

we EOR the Accumulator with the same shape bvte and store the result at the
same screen location, the shape will be erased.

LDA $NNNN
EOR #$2D

Result

STA $NNNN

00101101 (in Accumulator)
0 0 10 110 1

00000000 (in Accumulator)

Content of screen
l o c a t i o n S N N N N

$ 2 D

$ 0 0

t̂etty neat eh^ n
only to era^ h there's more. We can use this same EOR routine not
stored ct tu' t lraw a shape. All that's necessary is to have a zero« the screen location Initially,

hDA$NNNN
#$2D

Result

STA $NNNN

Content of screen
l o c a t i o n S N N N N

00000000 (in Accumulator)0 0 10 110 1

OOlOlioi (in Accumulator)
$ 2 D

This makes life a hn
(us), because now for beleaguered assembly language programmersThe shape is dr ̂ ̂ single routine to both draw and erase a shape,
screen location h ^t:reen location contains a zero, and erased if the
tine will nrodnr-#" ̂ ̂ ̂ contains the shape byte. Alternate calls to the EOR rou-P oaucc a draw-erase cycle. To recapitulate brleHy:

Ordinary draw routine

Draw with EOR

LDA shape byte
STA screen locat ion

LDA screen location contents (zero)
EOR shape byte
S TA s a m e s c r e e n l o c a t i o n

Vertical Animation

Hrase with EOR IDA screen location contents (shape b>te)
EOR same shape b>te
STA same screen location

7 7 M E D E L AY S

We now need a routine to introduce a time delay in our programs. For this
we can take advantage of certain subroutines built into the Apple's operating
s->'stem (for details, see the Apple Reference Manual). These subroutines perform
many functions, from ringing a bell to printing a character. The subroutine we're
interested in is at memoiy location JFCA8. When SFCAS is accessed, a delay
results, the length of \\tiich depends on the number in the Accumulator. For
example, the following instructions:

LDA #$40
JSR $FCA8 (JSR means Jump to SubRoutine)

will produce a delay of approximately 0.01 second. The larger the number in the
Accumulator, the longer the delay. In most of our programs, we're going to
define the label WAIT as $FCA8 and reser\'e a memory location for the number
to be loaded into the Accumulator; we'll call this DELAY. We then can load
D E L A Y w i t h a n u m b e r :

LDA #$40
S T A D E L A Y

A delay is then produced by:

L D A D E L A Y

J S R W A I T

This comes in handy if we want the same delay in several different routines.
To see the effect of different delay times, we need change only the value in
DELAY. For programs using different delays, we would LDA with the appropriate
byte and do a JSR WAIT.

VERTICAL ANIMATION—ONE SHAPE MOVING DOWN

Let's get now to our first vertical animation program. The concept of vertical
animation is relatively simple—we draw a shape, delay, erase it, and redraw it
either one line down if we're moving down or one line up if we re moving up.
We then access the routine repeatedly to traverse the screen (we actually could
move any number of lines at a time but a one-line move produces the smoothest
results—we're going to use one-line moves for the programs in this chapter).

Hi-Res Graphics and Animation Using Assembly Language

Our first program (Program 4-1) will move an old friend, the person shape, from
the top of the screen to the bottom in a straight line. When it reaches the bot
tom, the shape will disappear only to reappear at the top for another .screen
traversal. This will continue ad infinitum until the program is stopped with
CONTROL RESET. The program will be using EOR draw routines and also a few
things we haven't seen before, so let's discuss some of the details.First of all, we're going to use the JSR (Jump to SubRoutine) instruction
rather extensively. JSR is equivalent to the GOSUB instruction in BASIC. All sub-
routiiies called by JSR must end with RTS (ReTurn from Subroutine) in the same-
way that BASIC subroutines must end with the RETURN instruction.

JSR INITIAL
I N I T I A L

JSR INITIAL

jump instrucL̂ ̂ "t̂ routines does slow a program somewhat (it takes time for any
overshadô d̂ K most programs is insignificant and is certainlygreater clarkv ' advantage, especially for beginners, of providing
allows one t ̂ ^̂ 'gr̂ 'rig and reading the program. The use of subroutines

SUBRQypjĵ '̂^ ̂ program conveniently in two parts—the MAIN PROGRAMProgranv's ore • • MAIN PROGRAM gives us an overall view of the
program the SUBROUTINES supply most of the details. In

^hout to discuss, for example, one can look at the MAIN
Program 4.1 ̂ ̂ hnost at a glance, what's going on.hon, " stans with the usual display and clear screen routines. In addi-

Program ^ delay byte (lines 37 to 38). Let's now look at the* tn some detail.
START 'NiTiAL A call to the INITIAL subroutine sets the initial byte

position, line number, and depth of the shape.START1 JSR

lda delay
JSR Wait

l d a l i n e a
^ t a l i n e

The shape is drawn with an EOR routine.

A time delay is introduced.

Because the shape is drawn line-by-line starting from
the top and working down, to erase the shape using the
same EOR-draw routine, the starting line number for
the erase has to be reset to its original value; e.g..

Vertical Animation

D R A W

L i n e 0

L i n e 1

L i n e 2

L i n e 4

L i n e 5

E R A S E

L i n e 0

e t c .

LINEA is used as a repository for the original line number—unlike LINE, it is not
changed by the DRAW subroutine.

JSR DRAW This call to the DRAW subroutine now erases the shape since the
screen locations already contain the shape bytes.

I N C D E P T H

I N C L I N E A

L D A L I N E A

ST A LINE Because we're moving the shape down, we want the top of the
shape to begin at a new line, one down from the pretious position.
To move down a line, we increment, as lines are counted 0 to 191,
top to bottom. The new line number is stored in LINE and also in
LINEA so that it can be recalled for the erase routine. Note that we
do not do an INC LINE because LINE has been altered by the
DRAW subroutine. DEPTH is also incremented so that the DRAW
routine will draw the entire shape.

CMP #$BB This compares the new line number in the Accumulator to the
value #«BB to see if the shape has reached the bottom of the
screen. If it has, we want to erase the last drawn shape and start
over from the beginning, or at least do something other than
allowing the shape to go beyond the screen border. If this
happens, the shape may appear in unexpected locations and you
will lose control of your program (you could always pull the plug
at this point to show who's boss, but let's be more elegant). To
see why we selected #$BB as the comparison byte, we should look
at how the shape is drawn as it approaches south of the border.

Hi-Res Graphics and Animation Using Assembly Language

L I N E N U M B E R

D e c i m a l H e x

1 8 5 # S B 9

1 8 6 S $ B A

1 8 7 # $ B B

1 8 8 t tSBC

1 8 9 # $ B D

1 9 0 t t S B E

191 (bottom) # $ B F

L

The value we want to use in this comparison is the top or starting line of the
shape (it doesn't have to be; it's just that we're drawing the shape from top to
bottom). Thus, the last shape we want to draw (and erase) starts at line 186
(̂ B̂A). If we start a shape at line 187 (#$BB), part of it will be off the screen.
b g e s t a r t
JMP STARTI BGE (Branch if Greater or Equal) can be used by some

assemblers in place of the normal BCS (Branch if Carry Set).
Together with the CMP #^$BB instruction, it says that if the
number in the Accumulator (the new line number) is greater
than or equal to ^^'^SBB, branch back to START to begin animation
from the initial parameters, i.e., the top of the screen. This
branch will be taken when the line number reaches #SBB. If the
line number is less than #5BB, the branch will not be taken and
the JMP instruction sends the program back to continue drawing
from the last line number.

The Jthe Screen is t when using these instructions to test for the bottom of
really isfi'j all̂ tĥ shape depth from 193 (193 6 = 187 = #$BB). It
(right?). ^nniplicated once you understand the principles involved

p * J
Thus, We arênot̂ f̂t̂^̂ last JSR DRAW before this comparison is a shape erase,
top of the screen ^ ^Be screen when we start again from the

The initial s khere we set the init '̂ ?̂ *"̂ program is essentially self-explanatory. It is
position—I've chosê ^ * number (0 for top of screen) and the screen byteborder. n # lo (decimal 16) just to get the shape away from the

TTio DRAW subrou *
position, X with the should be familiar to you. We load Y with the byteand XCOUNT for ac ̂ timber, use the HI and LO tables to get line addresses,
both drawing and er̂ t̂ ^ shape table. We then use an EOR routine for

o *

LDA (LOW),Y Load th^ aliic Accumulator with the byte at the screen position
determined by X and Y.

Vertical Animation

L D A (L O W l . Y L O C A T I O N C O N T E N T S A C C U M U L A T O R

t t S N N

Byte at location ttSNNnn + Y

EOR SHAPE,X EOR the Accumulator with a byte from the shape table (X is
loaded from XCOUNT).

ST A (LOW),Y Store the result at the same screen position.

STA (LOW),Y L O C A T I O N C O N T E N T S A C C U M U L A T O R

t tSNNnn + Y

Because the screen initially is clear, when first accessed these instructions will
draw. When accessed next, they will erase.

DISPLAY SCREEN, HI-RES
P A G E 1

C L E A R S C R E E N

SET INITIAL LINE NUMBER,
B Y T E P O S I T I O N A N D D E P T H

D R A W

D E L A Y

R E S E T L I N E

E R A S E

N E X T L I N E D O W N

N o I ^ 1 Y e s
1 B O T T O M O F S C R E E N ?

Hi-Res Braphics and Animation Using Assembiy Language

]PROGRAM 4-1
: A S M

6 0 0 0 : 4 C 0 9

6033
6036
6039
603c
603F
6042
6045
6048
6 0 4 6
604E
6 0 5 1
6 0 5 4
6 0 5 6
6 0 5 8

6 0 5 B
6 0 5 0
6 0 6 0
6 0 6 2

AD 50
AD 52
AD 57
AD 54
A 9 0 0
85 lA
A9 20
85 IB
AO 00
A9 00
91 lA
C8
DO FB
E6 IB
A5 IB
C9 40
90 EF
A9 40

20 5B
20 6F
AD 08
20 A8
AD 06
80 05
20 6F
EE 07
EE 06
Ad 06
8D 05
C9 BB
BO DB
4C 36

A9 10
8D 04
A9 00
8 D 0 5

1
2
3
4
5

6 0 6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
16
1 7
1 8
1 9

C O 2 0
C O 2 1
C O 2 2
C O 2 3

2 4
25
26
27
2 8
2 9
30
3 1
3 2
3 3
34
3 5
3 6
37

6 0 3 8
39

6 0 4 0
6 0 4 1
6 0 4 2
EC 43
6 0 4 4
6 0 4 5
6 0 4 6
6 0 4 7
6 0 4 8
6 0 4 9

' 60 50
51

; 5 2' 60 53
54' 5 5

6 0 5 6
' 5 7
' 6 0 5 8

;CLEAR SCREEN 1

*ONE SHAPE VERTICAL MOVING DOWN

* S H A P E I S 1 B Y T E W I D E B Y 6 B Y T E S D E E P

O R G $ 6 0 0 0
J M P P G M

X C O U N T D S 1
B Y T E D S 1
L I N E D S 1
L I N E A D S 1
D E P T H D S 1
D E L A Y D S 1
GRAPHICS = $0050
M I X O F F = $ C 0 5 2
H I R E S = $ 0 0 5 7
P A G E l = $ 0 0 5 4
H I G H = $ 1 B
L O W = $ 1 A
W A I T = $ F O A 8
P G M L D A G R A P H I O S ; H I R E S , P. l

L D A M I X O F F
L D A H I R E S
L D A P A G E l
L D A # $ 0 0 ; O L E A R S O R E E I
S T A L O W
L D A # $ 2 0
S T A H I G H

C L R l L D Y # $ 0 0
L D A # $ 0 0

C L R S T A (L 0 W) , Y
I N Y
B N E O L R
I N O H I G H
L D A H I G H
O M P # $ 4 0
B L T O L R l
LDA #$40 ;L0AD TIME DE
S T A D E L A Y* * * * * * * * * * p r o g r a m * * * * * * * * * * _

S T A R T J S R I N I T I A L
STARTl JSR DRAW ;DRAW SHAPE

LDA DELAY ;DELAY
J S R W A I T ,
LDA LINEA ;RESET LINE 1
S T A L N E O R I G I N A lJsS DRAW ;ERASE SHAPE
INO DEPTH ;NEXT DEPTH
I N O L I N E A & N E X T L ,
L D A L I N E A
S T A L I N E
OMP #$BB ; IS L INE AT I
BGE START ; IF YES , DRA l
JMP STARTl ; IF NO, DRAW********* SUBROUTINES **********

INITIAL LDA #$10
S T A B Y T E ; S E T S T A R T I N l
L D A # $ 0 0
S T A L I N E ; S E T S T A R T I N i

: L O A D D E L AY

D E P T H
★★★★★★★★★★

;SETUP BYTE,LINE &
;'DRAW SHAPE
; DELAY

;reset l ine to
ORIGINAL LINE

;Erase shape
;NEXT DEPTH

& NEXT LINE

•IS LINE AT BOTTOM OF SOREEN?
•IF YES, DRAW FROM INITIAL VALUES
|lF NO,'DRAW NEXT LINE

STARTING BYTE

STARTING LINE

Vertical Animation

6 0 6 5 : 8 0 0 6 6 0 5 9 STA L I N E A
6 0 6 8 : 1 8 6 0 C L C
6 0 6 9 : 6 9 0 6 6 1 AOC #$06 ;A00 DEPTH OF SHAPE TO LINE
6 0 6 B : 8 0 0 7 6 0 6 2 S T A O E P T H
6 0 6 E : 6 0 6 3 RT S

6 0 6 F : A 9 0 0 6 4 ORAW L O A #$00
6 0 7 1 : 8 0 0 3 6 0 6 5 S T A XCOUNT ;ZERO XCOUNT
6 0 7 4 : A C 0 4 6 0 6 6 O R A W l L O Y B Y T E ;LOAO BYTE
6 0 7 7 : A E 0 5 6 0 6 7 L O X L I N E ;LOAO LINE
6 0 7 A : BO A 3 6 0 6 8 L O A H1,X ;LOAO LINE ADDRESS INTO HIGH,LOW
6 0 7 0 : 8 5 I B 6 9 S T A H I G H

6 0 7 F : BO 6 3 6 1 7 0 L O A LO,X
6 0 8 2 : 8 5 l A 7 1 S T A LOW

6 0 8 4 : A E 0 3 6 0 7 2 L O X X C O U N T ;LOAO X WITH XCOUNT
6 0 8 7 : B 1 l A 7 3 L O A (LOW),Y ;6ET BYTE FROM SCREEN
6 0 8 9 : 5 0 9 0 6 0 7 4 EOR SHAPE, X ;EOR BYTE FROM SHAPE AOORESS+X
6 0 8 C : 9 1 l A 7 5 S T A (LOW),Y ;PLOT BYTE
6 0 8 E : E E 0 3 6 0 7 6 I N C XCOUNT
6 0 9 1 : EE 0 5 6 0 7 7 INC L I N E ;NEXT LINE
6 0 9 4 : A O 0 5 6 0 7 8 LOA L I N E
6 0 9 7 : CO 0 7 6 0 7 9 CMP OEPTH ;F1N1SH SHAPE?
6 0 9 A : 9 0 0 8 8 0 B L T O R A W l ;1F NO, ORAW NEXT LINE
6 0 9 C : 6 0 8 1 RT S ;1F YES, NEXT ORAW CYCLE
6 0 9 0 : 0 8 3 E 5 0 8 2 S H A P E HEX 083E501C1422 ;SHAPE TABLE
6 0 A 0 : I C 1 4 2 2

547 bytes

Symbol table - numerical order:

L O W = $ 1 A H I G H =$1B XCOUNT =$6003 B Y T E =$6004
L I N E = $6005 L I N E A = $ 6 0 0 6 O E P T H =$6007 D E L A Y = $ 6 0 0 8
PGM =$6009 C L R l =$6010 C L R =$6021 S T A R T =$6033
S T A R T l =$6036 I N I T I A L =$605B ORAW =$606F O R A W l =$6074
S H A P E =$6090 H I =$60A3 LO =$6163 G R A P H I C S =$0050
M I X O F F =$C052 PA G E l =$0054 H I R E S =$0057 W A I T =$FCA8

O N E S H A P E M O V I N G U P

Suppose now we want to move a shape up, from the bottom to the top of
the screen (see Program 4-2). There are very few changes that have to be made.
First, in the INITIAL subroutine, we set the starting line to ^$BA (186). The
shape is 6 lines deep, so the first shape will be drawn from lines 186 to 191, just
at the bottom border. Second, in the MAIN PROGRAM, we decrement (DEC)
LINE and DEPTH instead of increment, because going up means lower line
numbers. Then, to test for the top border, we check if LINE has reached zero:

L D A L I N E A

S T A L I N E

B E Q S T A R T

J M P S T A R T 1

A CMP #«00 is not needed here because BEQ executes a branch if the result of a
previous operation was zero. Thus, when LINE equals zero, the branch is taken

Hi-Res Graphics and Animation Using Assembiy Language

and the sh^e begins another journey from the screen bottom. Tliese instruc
tions actually stop (and erase) the shape at line 1. This is of little impon in our
programs, as a one-line difference at a screen border is hardly n<Jticeablc,

Finally, the shape has been changed (easy to do just by changing bvie.s in the
shape table) from a person to a sort of spaceship, as it's a bit disquieting to see a
person rising without any visible means of support.

D I S P L AY S C R E E N , H I - R E S
P A G E 1

C L E A R S C R E E N

SET IN IT IAL L INE NUMBER.
B Y T E P O S I T I O N A N D D E P T H

D R A W

D E L A Y

R E S E T L I N E

E R A S E

N E X T L I N E U P

T O P O F S C R E E N ?

p̂rogram 4-?
: ASM

6000: 40 09

*ONE SHAPE VERTICAL MOVING UP
'k ' k ' k -k -k -k i c i c i c -k -k i c -k ' k ' k ' k ' k - k ' k ' k ' k i c -k -k -k -k -k -k

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP

ORG $6000
J M P P G M

X C O U N T O S 1
b y t e D S 1
L I N E D S 1
L I N E A D S 1
D E P T H D S 1
D E L A Y D S 1
GRAPHICS = $0050
M I X O F F = $ 0 0 5 2
H I R E S = $ 0 0 5 7

Vertical Animation

1 6 P A G E l = $ 0 0 5 4
17 HIGH = $1B
1 8 LOW = $ 1 A
19 WAIT = SFOAB

6 0 0 9 : A D 5 0 CO 2 0 PGM L D A G R A P H I C S ; H I R E S , P. l
6 0 0 C : A D 5 2 0 0 2 1 L D A M I X O F F

6 0 0 F : A D 5 7 0 0 2 2 L D A H I R E S
6 0 1 2 : A D 5 4 0 0 2 3 L D A P A G E l

6 0 1 5 : A 9 0 0 2 4 L D A # $ 0 0 ;OLEAR SCREEN 1
6 0 1 7 : 8 5 l A 25 STA LOW
6 0 1 9 : A 9 2 0 2 6 LDA #$20
6 0 1 B : 8 5 I B 2 7 STA H I G H

6 0 1 D : A O 0 0 2 8 O L R l L D Y #$00
6 0 1 F : A 9 0 0 2 9 LDA #$00
6 0 2 1 : 9 1 l A 3 0 O L R S T A (LOW),Y
6 0 2 3 : C 8 3 1 I NY
6 0 2 4 : D O F B 3 2 BNE O L R

6 0 2 6 : E 6 I B 3 3 I NO H I G H

6 0 2 8 : A 5 I B 3 4 LDA H I G H

6 0 2 A : C 9 4 0 3 5 OMP #$40
6 0 2 C : 9 0 EF 3 6 B L T O L R l
6 0 2 E : A 9 4 0 3 7 LDA #$40 ;LOAD TIME DELAY
6 0 3 0 : 8 D 0 8 6 0 3 8 STA D E L A Y

3 9 * * * * * * * * * * M A I M P R O G R A M * * * * * * * * * *

6 0 3 3 : 2 0 5 9 6 0 4 0 START J S R I N I T I A L ;SETUP BYTE,LINE & DEPTH
6 0 3 6 : 2 0 6 0 6 0 4 1 S TA R T l J S R DRAW ;DRAW SHAPE
6 0 3 9 : A D 0 8 6 0 4 2 L D A D E L A Y ; DELAY
6 0 3 C : 2 0 A 8 F O 4 3 J S R W A I T

6 0 3 F : A D 0 6 6 0 4 4 L D A L I N E A ;RESET LINE TO
6 0 4 2 : 8 0 0 5 6 0 4 5 STA L I N E O R I G I N A L L I N E

6 0 4 5 : 2 0 6 0 6 0 4 6 JSR DRAW ;ERASE SHAPE
6 0 4 8 : C E 0 7 6 0 4 7 DEO DEPTH ;NEXT DEPTH
6 0 4 B : C E 0 6 6 0 4 8 DEO L I N E A & N E X T L I N E
6 0 4 E : A D 0 6 6 0 4 9 L D A L I N E A
6 0 5 1 : 8 0 0 5 6 0 5 0 S T A L I N E ;IS LINE AT TOP OF SCREEN?
6 0 5 4 : F O 0 0 51 BEQ S TA RT ; IF YES, DRAW FROM INITIAL VALUES
6 0 5 6 : 4 0 3 6 6 0 5 2 JMP S TA R T l ;IF NO, DRAW NEXT LINE

5 3 * * * * * * * * * * S U B R O U T I N E S ★★★★★★★★★★

6 0 5 9 : A 9 1 0 5 4 I N I T I A L LDA #$10
6 0 5 B : 8 0 0 4 6 0 5 5 STA BYTE ;SET STARTING BYTE
6 0 5 E : A 9 8 A 56 LDA #$BA
6 0 6 0 : 8 0 0 5 6 0 5 7 STA L I N E •,SET STARTING LINE
6 0 6 3 : 8 0 0 6 6 0 5 8 S TA L I N E A
6 0 6 6 : 1 8 5 9 OLO
6 0 6 7 : 6 9 0 6 6 0 ADO #$06 ;ADD DEPTH OF SHAPE TO LINE
6 0 6 9 : 8 0 0 7 6 0 61 STA DEPTH
6 0 6 0 : 6 0 6 2 RTS
6 0 6 0 : A 9 0 0 6 3 DRAW L D A # $ 0 0
6 0 6 F : 8 0 0 3 6 0 6 4 S TA XOOUNT ;ZERO XOOUNT
6 0 7 2 : A O 0 4 6 0 6 5 DRAWl L D Y B Y T E ;LOAD BYTE
6 0 7 5 : A E 0 5 6 0 6 6 L D X L I N E ;LOAD LINE
6 0 7 8 : 8 0 A 1 6 0 6 7 LDA H I , X ;LOAD LINE ADDRESS INTO HIGH,LOW
6 0 7 8 : 8 5 1 8 6 8 STA HIGH

6 0 7 0 : 8 0 6 1 61 6 9 L D A LO,X
6 0 8 0 : 8 5 l A 7 0 STA LOW

6 0 8 2 : A E 0 3 6 0 71 LDX XOOUNT ;LOAD X WITH XOOUNT
6 0 8 5 : 8 1 l A 7 2 LDA1 (LOW),Y ;GET BYTE FROM SCREEN

Hi-Res Graphics and Animation Using Assembly Language

6 0 8 7 : 5 0 9 B 6 0 7 3
6 0 8 A : 9 1 l A 7 4
6 0 8 C : E E 0 3 6 0 7 5
6 0 8 F : E E 0 5 6 0 7 6
6 0 9 2 : A D 0 5 6 0 7 7
6 0 9 5 : C D 0 7 6 0 7 8
6 0 9 8 : 9 0 D 8 7 9
6 0 9 A : 6 0 8 0
6 0 9 B : 0 8 I C 2 2 8 1
6 0 9 E : 3 E 2 2 7 F

SHAPE

SHAPE,X
(LOW),Y
XCOUNT
L I N E
L I N E
D E P T H
D R A W l

;EOR BYTE FROM SHAPE ADDRESS+X
;PLOT BYTE

;FINISH SHAPE?
;IF NO, DRAW NEXT LINE
:IF YES, NEXT DRAW CYCLE

HEX 081C223E227F ;SHAPE TABLE

545 by tes

Symbo l tab le - numer ica l o rder

L O W =$1A HIGH =$1B XCOUNT = $ 6 0 0 3 BYTE = $6004
L I N E =$6005 L I N E A =$6006 D E P T H = $ 6 0 0 7 DELAY = $6008
P G M =$6009 C L R l =$6010 C L R = $6021 S TA R T = $ 6 0 3 3
S TA R T l = $ 6 0 3 6 I N I T I A L = $ 6 0 5 9 DRAW = $ 6 0 6 0 DRAWl = $6072
SHAPE =$6098 H I = $ 6 0 A 1 L O = $ 6 1 6 1 G R A P H I C S = $0050
MIXOFF =$0052 P A G E l = $ 0 0 5 4 H I R E S = $C057 W A I T = $FCA8

^ r o u t i n e s

EOR in the previous two programs, how to erase a shape using the
a n o t h e r r o u t i n e D R A W - E R A S E . T h e r e i s y e t
advantap̂ ^̂ erase a shape and that is by drawing over it, a process that hasThe salie ̂ ̂ ̂ disadvantages. We'll call this type of routine DRAW-DRAW,
any) alre"d" ^ ^ screen position, the byte (ifay present at that position is replaced by the new byte.
^ t r ip le

LDA #$23
STA $NNNN

Contents of screen location SNNNN

#$17

$ 2 3

the screen (see Pr ̂ ^̂T)RAW routine to Program 4-1, moving a shape down
shape byte, STA s '̂ '3)- The shape is drawn with an ordinary draw (LDAdown one line at̂^̂ '̂" location) instead of the EOR routine. The shape is moved
down two lines ̂ without any erase routine. Let's follow the shape moving

Vertical Animation

N E X T L I N E D O W N N E X T L I N E D O W N

As you can see, each shape b>te, as it moves do\sTi one line, erases the b>te
that was there before, thus preserving the shape. As you can also see, something's
not quite right. We're always left with the top b)te on the screen, because
nothing moves into those positions. We solve this problem by providing the
shape with a border of #$00 at the top. Now see what happens.

N E X T L I N E D O W N N E X T L I N E D O W N

The border is always placed behind the direction of movement and serves to
erase the first line of the shape. To introduce the border into the person shape,
we add #$00 at the beginning of the shape table. Thus, the person-shape table
with a trailing border is 00083E5D1C1422 (compare to Program 4-1). We must
also remember to change the shape depth from 6 to 7 in the INITIAL subroutine.
A general rule is that the border size has to equal the maximum shape move.
Thus, if we're moving a shape two lines at a time, the trailing border would be
t w o # $ 0 0 ' s .

There is one further complication we have to deal with in programs that use
DRAW-DRAW routines. For example, in the program we're discussing, when the
shape reaches the bottom of the screen, it will stop and then appear again from

Hi-Res Graphics and Animation Using Assembly Language

the top. Then, because we have no erase instructions, the shape at the bottom
stays on the screen. We have to introduce an erase routine to erase the last shape
when i t reaches a border. For th is , we can use our usual FOR inst ruct ions in a
routine called ERASE. Thus, in the MAIN PROGRAM of Program 4-3,

C M P # $ B A

B G E E R A S E

J M P S T A R T 1

^!^$BA is used instead of #$BB as in Program 4-1 because this shape
is 7 lines deep due to the border (193~7 = 186 = #^SBA).

Now the comparison tells us if the shape is at the screen bottom,
go to the ERASE routine, which erases the shape and then sends
the program back to START to continue the animation from the
initial parameters, i.e., top of the screen.

]PR0GRAM 4-3
:ASM

6000: 4C 09 60

1
2
3
4
5
6
7
8
9
1 0
1 1

1 2
1 3
1 4
1 5
1 6

*ONE SHAPE VERTICAL MOVING DOWN; DRAW-DRAW CYCLE

* S H A P E I S 1 B Y T E W I D E B Y 7 B Y T E S D E E P
* *

O R G $ 6 0 0 0
J M P P G M

XCOIJNT D S 1
BYTE D S 1
L I N E D S 1
L I N E A D S 1
D E P T H D S 1
D E L A Y D S 1
G R A P H I C S = $C050
M I X O F F = $C052
H I R E S = $C057
PA G E l = $ C 0 5 4

Vertical Animation

AD 50 CO
A D 5 2 C O
AD 57 CO
A D 5 4 C O
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 4 0
8 0 0 8 6 0

2 0 5 2 6 0
2 0 6 6 6 0

A D 0 8 6 0
2 0 A 8 F C
E E 0 7 6 0
E E 0 6 6 0
A D 0 6 6 0
8 D 0 5 6 0

; C 9 B A
B O 4 3

: 4 C 3 6 6 0

: A 9 1 0
8 D 0 4 6 0
A 9 0 0
8 D 0 5 6 0
8 D 0 6 6 0
1 8
6 9 0 7
8 D 0 7 6 0
6 0
A 9 0 0
8 D 0 3 6 0
A C 0 4 6 0
A E 0 5 6 0
B D C C 6 0
8 5 I B

B D 8 C 6 1
8 5 l A
A E 0 3 6 0
B D C 5 6 0
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
C D 0 7 6 0
9 0 D A
6 0

l I G H = $ 1 B
. O W = $ 1 A
^ A I T = $ F C A 8
P G M L D A G R A P H I C S

L D A M I X O F F
L D A H I R E S
L D A P A G E l
L D A # $ 0 0
STA LOW
L D A # $ 2 0
STA HIGH

C L R l L D Y # $ 0 0
L D A # $ 0 0

C L R S TA (L O W) , Y
I N Y
BNE CLR
INC HIGH
LDA HIGH
CMP #$40
BLT CLRl
LDA #$40
STA DELAY

********** main program

; H I R E S , P. l

i C L E A R S C R E E N 1

START
S TA R T l

IN IT IAL L !

D R A W l

R I N I T I A L
R DRAW
A DELAY
,R WAIT
IC DEPTH
IC LINE A
lA LINEA
■A L I N E
I P # $ B A
iE ERASE
IP STARTl
SUBROUTINES

) A # $ 1 0
l A B Y T E
l A # $ 0 0
TA LINE
TA LINEA
LC
DC #$07
TA DEPTH
r s
D A # $ 0 0
LA XCOUNT
DY BYTE
DX L INE
D A H I , X
FA HIGH
DA LO,X
TA LOW
DX XCOUNT
DA SHAPE, X
TA (LOW),Y
NC XCOUNT
NC LINE
DA LINE
MP DEPTH
IT DRAWl

;LOAD TIME DELAY
* * * * * * * * * *

•setup byte,line & DEPTH
[draw shape
;DELAY

;NEXT DEPTH
& NEXT LINE

!1? S! 5.KK S""
jlF NO, DRAW NEXT LINE

* * * * * * * * * *

;SET STARTING BYTE
;SET STARTING LINE

;ADD DEPTH OF SHAPE TO LINE

ZERO XCOUNT
LOAD BYTE

[Z UNE ADDRESS INTO HIGH,LOW

•LOAD X WITH XCOUNT
■LOAD SHAPE BYTE
';PL0T BYTE
;NEXT LINE

;FINISH SHAPE?
•IF NO, DRAW NEXT LINE
•IF YES, NEXT DRAW CYCLE

Hi-Res Graphics and Animalion Using Assembly Language

6092: CE 05 60 78
6 0 9 5 : A 9 0 0 7 9
6097: 80 03 60 80
609A: AC 04 60 81
6090: AE 05 60 82
60A0: BO CO 60 83
6 0 A 3 : 8 5 I B 8 4
6 0 A 5 : B O 8 0 6 1 8 5
6 0 A 8 : 8 5 l A 8 6
60AA: AE 03 60 87
6 0 A 0 : B 1 l A 8 8
60AF: 50 05 60 89
6 0 B 2 : 9 1 l A 9 0
60B4: EE 03 60 91
60B7: EE 05 60 92
60BA: AO 05 60 93
60B0: 00 07 60 94
6 0 0 0 : 9 0 0 8 9 5
pnr?* ' ^0 966005: 00 08 3E 97
6008: 50 10 I4 22

E R A S E

E R A S E l

SHAPE

O E O L I N E
L O A # $ 0 0 ; Z E [
S T A X C O U N T
L O Y B Y T E
L O X L I N E
L O A H I , X
S T A H I G H
L O A L O , X
S T A L O W
L O X X C O U N T
L O A (L 0 W I , Y
EGR SHAPE,X
S T A (L 0 W) , Y ; E R ,
I NO XCOUNT
I N O L I N E
L O A L I N E
C M P O E P T H
B L T E R A S E l
J M P S T A R T
H E X 0 0 0 8 3 E 5 D 1 C 1 4 2 2

;ZERO XCOUNT

;ERASE

;SHAPE TABLE

688 bytes

Symbol table -
LOW
l i n e
PGM
s t a r t i
Erase
LO
H I R f c

n u m e r i c a l o r d e r :

=$1A
=$6005
=$6009
=$6036
=$6092
=$6180
=$0057

H I G H
L I N E A
C L R l

W A I T

$1B XCOUNT =$6003 B Y T E = $ 6 0 0 4
$6006 D E P T H = $ 6 0 0 7 D E L A Y = $ 6 0 0 8
$6010 C L R =$6021 S T A R T = $ 6 0 3 3
$6052 DRAW = $6066 D R A W l =$606B
$609A S H A P E =$6005 H I = $ 6 0 0 0
$C050 M I X O F F =$0052 P A G E l = $ 0 0 5 4
$FCA8

routines have certain advantages
shapes animated by DRAW-

characte ̂ ̂ " î̂ ctive term flicker. (It should be pointed out that
i z e t h e m o n i t o r r e t e n t i o nwhereas shon tim<̂ ' you re using—long retention times minim-
^mong different brandnfT.o, retention times vary greatlyquires two routines one screens.) On the other hand, DRAW-DRAW
course, a shape is to stay on rh (unless, of
^ R A W - D R a w r o u t i n e s d ' f fl t : u l t w i t hChapter 7). ̂ ̂ "h horizontally moving shapes as we'll see in
grams, U mom'.htmfeaf.hf1 "'̂ '̂ DRAW, a. leasi in simple pro-
you'll see that the shane t P̂ '̂ '̂ Pcal. If you compare Programs 4-1 and 4-3,
cases. This is because Jh screen at about the same speed in both
hoth programs k determining factor is the time delay, which is #$40 in
HRASF the sneed H-J DRAW-DRAW is greater than DRAW-
lage o f DRAW DRAwl ' ' ' " " ' " 'P^ ' ^d advance imnlie t̂ 1 .U becomes important only in programs with larger and more. I ̂ shapes where drawing and erasing the shape takes up an apprecia-amount of time. It should also be noted that a time delay in DRAW-DRAW

Vertical Animation

routines is not necessar}' tt) reduce flicker by ensuring that the shape is on the
screen longer than it is off because the shape is not erased. However, delay's are
still generally required to slow a program down to a reasonable pace.

One birther drawback of DRAW-DRAW is that it is inappropriate for drawing
over backgrounds—this will be discussed in more detail in Chapter 14.

l i te decis ion whether to use DRAW-DRAW or DRAW-ERASE rout ines
depends on the particular requirements of the program. If the shape is not
involved in collision detection, if you're not drawing over a background, and if
more speed and the absence of flicker are desirable, use DRAW-DRAW. If speed
and flicker are not problems and collision detection (for shapes mo\ing horizon
tally) is required, use DRAW-ERASE, llie final game program uses DRAW-ERASE
routines, mostly because it makes the program easier to write and read, requir
ing only one draw routine, and speed and flicker are not problems. This should
no. be construed in any way as relegating DRAW-DRAW routines to second-class
status n,cy are quite useful for smooth and rapid ammatton and shouM be kept
in mittd for yttttr own prt,grams, and indeed for thethe reader t̂tay f.nd it a useful and
r I e isfOAW T^RAW With this m mind, Ive included, in later cnapfinal program to .^^d DRAW-DRAW modes. There will
ters, some routines in both DRAW-ERASE ana î ka
be more on program modifications in the ast c ap

Horizontal Movement and
Internal Animation
Moving a shape horizontal
Can cause problems periodontal
The frustrations underneath
Lead to gnashing of teeth
Side to side and hack to frontal

M . oving a shape horizontally across the hi-res screen involves the same
basic animation principles as vertical movement, i.e., DRAW-DELAY-ERASE-
MOVE-DRAW, but a certain complication arises that will become immediately
apparent upon examining the following diagram.

Screen Byte

P lo t

Next plot

Next plot

Next plot

Next plot

Next plot

Next plot

1 2 4 8 1 2 4 1 2 4 8 1 2 4 Shape Byte
$ 0 1

$ 0 2

$ 0 4

$ 0 8

$ 1 0

$ 2 0

$ 4 0

Next screen byte

Next plot

$ 0 1

$ 0 2

e t c .

Horizontal Movement and Internal Animation

THE SEVEN PRESHIETED SHAPES

Here the shape is a single dot, moving left to right one bit position at a time
(we can move the shape any number of bits at a time, but a one-bit move pro
duces the smoothest animation). Obviously what's happening is that everj' time
we move the shape over one bit, the shape byte changes. After moving seven bit
positions (one screen byte), the same series of shape bytes is plotted, but now in
the next screen byte. Thus, for each shape to be moved horizontally, we need
seven different shape bytes (or shape tables in the case of larger shapes). Shapes
plotted in this manner are called preshifted shapes. Note that movement results
from plotting the different shape bytes and not by changing screen byte positions
(except at the screen byte boundaries).

Actually, the example just shown is a special case (one dot at the leftmost
position). Let's look at a more general example.

Screen Byte

1 2 4 8 1 2 4 1 2 4 1 2 4 1 2 4

Next plot

Next plot

Next plot

Next plot

Next plot

Next plot

Next screen byte | | | I I I I I • I • I I I I I I I I I 1 I 1

Next plot I I I I 1 I I I I * 1 ♦ I I I 1 1 I 1 1 1 1 —1—
Next p lo t I I 1 I I I I I I I I I I I 1 1 1 i 1 1 -
Next plot I I I I I I I I I I l»l»l I I 1 I I I l~r
N e x t p l o t I I I I I I I I I I I l » l « l I I I I I I r
N e x t p l o t I I I I I I I I I I I I l « l * l I I I I M
N e x t p l o t I I I I I I I l « l » l I I I I I

Here we're moving a two-dot shape left to right one bit position at a time.
Again, seven different shape tables are required. We also see that the seventh
shape is partly in one screen byte and partly in the next. Therefore, in construct
ing our shape tables, we have to include an extra screen byte in the direction of
movement (for one-bit moves). Thus, for a shape one screen byte wide or less,
as in the above example, the shape table will cover two screen bytes, and a two
screen byte wide shape will require a shape table covering three screen bytes,
and so on. This is a general rule, applicable in all cases except the special case of
the one-dot shape in the first example.

Hi-Res Graphics and Animation Using Assembly Language

To summarize, horizontal movement for one-hit moves requires:

1. Seven shape tables for each shape.
2. Shape tables with an extra screen byte in the direction of movement.

Obviously a higher level of complication has been introduced compared to
vertical animation, but that's the way it is. There's no way to get around it unless
we want to move a shape just one screen byte at a time. In some cases this may
be satisfactory, but usually the large distances involved produce an unacceptably
jumpy animation.

Let's now look at some actual shape tables we're going to use in our game-
program. The following diagrams illustrate the seven shape tables for a two-

Shape Number 1 2 4 8 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 S h a p e Ta b l e s

56

m a m ■ ■ ■ ■ ■ ■ ■ ■ ■ H i ■ ■ ■ H I m B■ D C] ■ ■ ■ ■ H I n H I H I WM H I ^ 1 ^ 1 ■ H I■ ■
n n n □ □ □ □ D H I ■ ■ ■ I H ■ ^ H ■ ■
n n a E Ha a m a n ■ 1 ■ m ■ H■ H I■ ■

■ D E JCHO a a a a a o n □ ■ IHI H I■ ■|BI

■ ■ ■ ■ ■ ■ ■ H I m ■ ■ ■ ■ ■ ■ ■ I H
■ 1 ■ i ■ O E I ■ ^ 1 ■ ■ ■ ^ 1 ■ m ■ ■ ■ ■ ■ ■ ■ ■ H
■ ■ m a a □ o □ □ □ D □

r i
□ B B B ■

B1̂2m a aSo □ Q a
l i ^ J l

a a o □ □ ■ ■ B B
■ ■ m a m ■ ■ m ■ ■ ■ ■ ■ ■ m ■ ■ ■ ■ ■

m ■ ■ ■ O C I ■ ■ m ■ ■ ■ ■ ■ ■ m ■ ■ ■ ■ ■
m ■ ■ m a a □ □ a □ a D □ a □ m ■ ■ ■ ■

■ D E HD a a a O a i ^ H a C J■ ■ ■ ■ I H !
■ ! ■ ■ ■ I D QO a o o O o o a o o ■ 1 ■ ■ 1

0 2 0 0 0 0
0 6 0 0 0 0
7 E 1 F 0 0
7 E 3 7 0 0
7 E 7 F 0 0

0 4 0 0 0 0
O C 0 0 0 0
7 C 3 F 0 0
7 C 6 E 0 0
7 C 7 F 0 1

0 8 0 0 0 0
1 8 0 0 0 0
7 8 7 F 0 0
7 8 5 F 0 1
7 8 7 F 0 3

1 0 0 0 0 0
3 0 0 0 0 0
7 0 7 E 0 1
7 0 3 F 0 3
7 0 7 F 0 7

2 0 0 0 0 0
6 0 0 0 0 0
6 0 7 F 0 3
6 0 7 F 0 6
6 0 7 F O F

4 0 0 0 0 0
4 0 0 1 0 0
4 0 7 F 0 7
4 0 7 F O D
4 0 7 F I F

0 0 0 1 0 0
0 0 0 3 0 0
0 0 7 F O F
0 0 7 F I B
0 0 7 F 3 F

Horizontal Movement and Internal Animation

scrccn-b>tc-\vi(Je airplane that's going to move horizontally across the screen,
left to right, one bit position at a time (the tables are labelled 0 to 6 instead of 1
to 7, because they will be referred to by these numbers in the program to facili
tate routines that access them).

Hie trick to incorporating these shapes into a program is to direct each of
the seven shapes to its proper location. Tlie following program (5-1) illustrates
one approach to this problem. Tlie program moves the plane shape across the
screen from left to right. Wdien the shape reaches the right border, it disappears
and then reappears at the left border for another screen journey ad infinitum,
'nius we're also going to discuss in this program tests for the vertical ends of
screens. Pay attention to Program 5-1 because we're going to use its routines in
our final game program.

TEMP AND SHAPE ADDRESS TABLES

A t̂ roeramming technique I generally strive for is to minimize the number ofA programming ̂ oossible This produces a more compact program,
drawing routines as ^as only a single draw routine for all
easier to write and understand. Progra instruction
seven preshifled shapes, and both draws and erases „b,esoL- way to use a single draw routine ̂
is to store the .shape bjles temporan̂ tn "p" ̂ ,l,e shape tables In
(aren't we clever with our labels), and use TEMP with thethe draw routine. To draw any of the seven »hapeŝ «e M ™
appropriate shape bytes and accc,ss the draw routine. reloaded because ittV'mP is that for the shape erase, TEMP doesn't have to be reloaded
already contains the appropriate shape bytes, i.e..

SHAPE 1 IN TEMP

d r a w
ERASE

SHAPE 2 IN TEMP

To load the shape bytes into TEMP, the ̂ shape address
memory the shape tables are located. To do this, we c will store the
table and let's label it SHPADR (more clever la e mg . P^j. example, in
beginning memory locations of each of the seven s SHAPE2 at $6104,Prtigram 5.1, the SHAPEl table begins at 'L ̂SHAPF.,5 at .611,5, and so on The SHPADR table w.11 look

S H P A D R F 5 (S H A P E 1)
6 0

0 4 (S H A P E 2)
6 1

1 3 (S H A P E S)

Shape address tables contain 14 bytes, 2 for each address ol the ̂ ̂apctables (note that the shape table addres-ses are stored low byte ftrst). Now we

Hi-Res Braphics and Animation Using Assembly Language

can access each shape table by referring only to SHPADR—this allows us to use a
single routine for loading all the shape tables into TEMP. SHPADR and
SHPADR+1 will give us the address of SHAPEl, SHPADR-r2 and SHPADR+3 will
give us the address of SHAPE2, SHPADR+4 and SHPADR+5 \Nill give us the
address of SHAPE3, and so on. More specifics about this technique will be dis
c u s s e d b e l o w .

For now we have to discuss how the SHPADR table is constructed. Hiis
depends on the type of assembler you're using. Full-feature assemblers support
instructions that allow the assembler to construct a shape address table directly
from within the program. This is illustrated in Program 5-1. Look at the SHPADR
table starting at line 22. The instruction DFB *<SHAPE1 loads the low b>te of
the SHAPEl table; DFB *>SFLAPE1 loads the high byte (the DOS Tool Kit
assembler does this backwards —for the low byte and *< for the high byte —
the ORCA/M assembler uses the instruction DC A 'shape table' —a good rea.son
to read your assembler's instructions!). The entire SHPADR table is constructed
by the assembler using these DFB instructions for all seven shape tables. If your
assembler doesn't have this capability, you have a problem, but one that is not
insurmountable, merely inconvenient. In this situation, the problem is you (and
the assembler) don't know the shape table memory addresses until after the
program is assembled, because assemblers simply start at the C3RG and then fill
up memory sequentially. The solution in this case is to assemble the nronram
rnJuse' .hferfear: or ̂r assemble, to atld the SHPADR table at the end oftable is located, as it is accerd ProS^am the SHPADR
memory address. erence to its label and not to a specific-

load TEMP with shlt̂ r SHPADR table, let's see how it's used totemp. To d^his we ha k an area of memory for•nic plane shape is 2 screen ^ "'"'P'^ 'able,
mle discussed before the sfia f nr'* oi deep. Following the general■able Will contar,, bisT^T "°7 1'""" Ihape
instruction TEMP DS 15 (line 12) TEMP then is reserved by the
severS:;errw"rrg„r.: uf Which of theborder with SHAPEl. In the Î IN PROĈ RAM traversal at the leftnumber is loaded into a reŝ d̂T.̂ ^̂ of Program 5-1, the shape
reasons that will soon become clear SHAPEl labeled SHPNO. For
0 (l ines 57 and 58). „e«subroutine it is herêTEMP is L̂aUrwirthe t A ̂7
tor ,s loaded with the value in SHPNO (LDA SHPNO li7«:f a uvalue is 0. The next instruction, ASL, is a mnemonic'for A 1the contents of the Accumulator are to be shifted, some ̂'emhr'"''
as the operand —the BIG MAC does not). What this does is m require an AAccumulator one position to the left-the result is o ll pmXr'',!''' ̂
A c c u m u l a t o r b y 2 , i . e . , ^ ^ n u m b e r i n t h e

/ 2 S (> 4 . i 2 1 6 8 4 2 1 D e c i m a l

0 0 0 0 0 1 1 0 6
0 0 0 0 1 1 0 0 1 2
0 0 0 1 1 0 0 0 2 4

Horizontal Movement and Internal Animation

T h e r e s u l t o f t h e A S L i n s t r u c t i o n i s s t o r e d i n t h e A c c u m u l a t o r . B e c a u s e t h e
Accumulator contained 0, the result is still 0. The next instruction (TAX—
Transfer Accumulator to X-Register) does what it sa>'s—the number in the
Accumulator is transferred to the X register. X now contains 0. Now the instruc
tion LDA SHPADR.X loads the Accumulator with the byte found at address
SHPADR + X; because X = 0, A is loaded with the value *$F5, the b>te at loca
tion SHPADR. This b>te is stored in a zero page location, LOW or $1A. The
Accumulator is then loaded \sith the next b>te in the SHPADR table, ^f60, by the
instruction LDA SHPADR+1,X. This b>te is stored in another zero page location,
HIGH or $13. LOW and HIGH now contain the low byte and high byte respec
tively, of the address of SHAPE! ($60F5). This completes the process of selecting
which shape table is to be loaded into TEMP. The next step is to load TEMP with
the shape bytes.

The Y register is loaded with 0 (line 90). The next instruction on line 91
(LDA(LOW),Y) is one we've seen before—indirect indexing. It says load the
Accumulator with the byte to be found at a memory address calculated as
follows-get the low byte of the address from LOW, the high byte from HIGH,
and add the contents of the Y register. The byte found at this address is then
l o a d e d i n t o t h e A c c u m u l a t o r.

LDA (LOW),Y L O C A T I O N C O N T E N T S a c c u m u l a t o r

H I G H

BYTE IN $60F5 («$02)

The Accumulator now contains the first byte of the SHAPE! ̂ Y
instruction, STA TEMP,Y stores this byte in the first position of TEMP,
register is then incremented by one (INY) and, if it is less . o.-rbytes in the shape table (15 or #$0F), CPY #$0F (compare Y to /jOW) Y
(Branch if Less Than) LOADSHPl sends the program back to LDA
(line 91) to load the second byte of SHAPE! into the second position o

$60F5 -L 0; 1st byte in SHAPE1 loaded into 1st position of
$60F5 + 1; 2nd byte in SHAPE1 loaded into 2nd position of
$60F5 + 2; 3rd byte in SHAPE1 loaded into 3rd position of T

$60F5 + 14; 15th (last) byte in SHAPE1 loaded into last position of TEM
$60F5 + 15; stop and return to MAIN PROGRAM

The shape in TEMP is then drawn and erased ̂th EOR
seen before, except TEMP instead of a shape table
shape bytes. We'll discuss the draw routine in more detail be ow.

Now we would like to draw the next shape, SHAPE2. T^' t. is we
ment SHPNO by one (line 64) so that SHPNO now contains the value lie

Hi-Res Graphics and Animation Using Assembly Language

LOADSHP subroutine (line 83) multiplies this by 2 (result = 2), and the result
is then placed in the X register (line 85). The instruction LDA SHPADR.X (line
86) now loads the Accumula tor w i th the th i rd b>te o f the SflPADR tab le
(SHPADR + 2), which is the low byte of the address of SHAPi:2 (^S04). This
byte is stored in LOW. LDA SHPADR+1,X loads the Accumulator with the fourth
byte of SHPADR, which is the high byte of the address of SHAPi;2 (^S6l), Hiis
byte is stored in HIGH. Thus, LOW and HIGH now contain the low and high
bytes, respectively, of the address of SHAPE2. The subsequent instructions load
the bytes from SHAPE2 into TEMP in preparation for drawing and erasing. In the
same way, SHAPE3 is selected by loading SHPNO with 2, SHAPE4 by loading
SHPNO with 3, and so on, i.e..

S H A P i ; T A B I . I iS H P N O A S L X LDA SHPAIDR,X LDA SHPADR+I,X

0 0 0 SHPADR -f 0 S H P A D R + 1
1 2 2 S H P A D R + 2 S H P A D R + 3
2 4 4 S H PA D R - f 4 S H P A D R + 5
3 6 6 S H P A D R + 6 S H P A D R + 7
4 8 8 S H P A D R + 8 S H P A D R - f 9
5 1 0 1 0 S H PA D R - f 1 0 S H P A D R + 1 1
6 1 2 1 2 S H P A D R + 1 2 S H P A D R - f 1 3

1

2
3
4
5
6
7

ACCESSING SEQUENTIAL SHAPES
AND TESHNG FOR END OF SCREEN

<0 in V subroutine, which sets the initial screen byte and linewhh S^FT chpIo ? Because we want to start
e r a s e " " e n l o a d T E M P , d r a w , d e l a y , a n dthrE^ tnTAw'p^sSirfi'self because we re using
TEMP already r ' ̂ discussed in previous chapters. Note that
does not havJ t we want to erase and so TEMPdoes not have to be reloaded with shape bytes for the erase routine

we re now ready to draw and erase SHAPE2. To do this we first load SHPNO
"«• instructions (LDA SHPNO, CMP «07 BLT

continue the program atSTART2; i.e., load TEMP, draw, delay, erase. SHPNO is incremented again for the
r . t e d r ' ^ " h i s p o i n t , w e ' v eplotted the seven shapes (0 to 6 in SHPNO) in the first screen byte.

We now want to start over with SHAPE I but at the next screen bvteBecause SHPNO contains the value 7, the branch BLT START2 (line 67) is not
B^^E Tt ?h7DRAr -hich inJremen"YTE by I . The DRAW routine will now draw in the next screen byte. Before we
draw, however, we have to test to see if the shape has reached the right end of
the scTeen because we can't allow the shape to go beyond the screen bound
aries. To do this, we load the Accumulator with the value in BYTE and compare
it to the value *$26 (decimal 38). If the value is less than #826, the branch in
line 71 (BLT STARTl) is taken and the program continues with all seven shapes

Horizontal Movement and Internal Animation

drawn in the next screen b\te starting with SHAPE 1. This continues until the
value in B^"I"E is -$26, at which point the branch is not taken and the program
skips to line 72 (JMP START), which starts the program from the beginning; i.e.,
the shape now begins its screen traversal in the first (leftmost) screen b\te.
Because we always follow a draw with an erase, the last shape at the right border
is not left on the screen when the shape begins its new journey on the left.

'Hie reason for choosing *$26 for the end of screen comparison warrants
some di.scussion, because it might seem at first glance that we should use *$27
(decimal 39) for the comparison since *$27 is in fact the last screen bne
(remember .screen b>les are numbered 0 to 39 or *$00 to *$27, left to right),
llie reason for choosing ^$26 becomes apparent when we examine our shape as
it approaches the right border.

Screen Byte
E n d o f s c r e e n

■ I 1 I

I I I I

Here we see the first two shapes drawn starting at screen byte *$25. It s
that once we get past SHAPE 1, the other shapes extend into byte
screen byte, as the shape table is 3 bytes wide. If we start at byte *$26,
to SHAPE7 will extend beyond byte *$27, i.e., beyond the screen ̂ 'order. ®
the value for BYTE reaches *$26, we want to start over from tee
p o s i t i o n . . g e e a t

This discussion emphasizes the importance of examining a to
detail before choosing numbers or instructions that seem right. ̂ . seldom
debug a program is to get it right from the \ll save vour-
realized. But if you make prior examination of details a naoit, yu
s e l f m a n y h e a d a c h e s l a t e r o n . . a s o n e s

Finally, the DRAW routine in Program 5-1 is essentially using EORwe've seen in previous chapters. It is a DRAW ERASE ̂ ghape table,
both to draw and erase the shape. However, instea o routine, LINE
TEMP is accessed to obtain the shape bytes. Also, a cycle,
is reset to its starting value (from LINEA) m routine and so
(Remember that LINE, but not LINEA, is change in each shape
must be reset for the erase cycle because we wan ^mpnt)
on the same line—otherwise, it wouldn't be horizonta mov

Hi-Res Graphics and Animation Using Assembiy Language

IPROGRAM 5-1
:ASM

6000: 4C 27 60

1 * 1 S H A P E H O R I Z O N T A L *
2 * 2 B Y T E S W I D E , 5 L I N
3 ORG $ 6 0 0 0
4 J M P PGM
5 L I N E D S 1
6 L I N E A D S 1
7 BYTE DS 1
8 DEPTH DS 1
9 XCOUNT DS 1
10 SHPNO D S 1
1 1 DELAY D S 1
1 2 TEMP D S 1 5
1 3 GRAPHICS = $ 0 0 5 0
1 4 M I X O F F = $ 0 0 5 2
1 5 H I R E S = $ 0 0 5 7
1 6 P A G E l = $ 0 0 5 4
1 7 H I G H = $1B
1 8 LOW $ 1 A

Horizontal Movement and Internal Animation

6 0 7 F
6 0 8 1
6 0 8 4
6 0 8 7
6 0 8 A
6 0 8 B

F 7
6 0
0 6
6 1
1 5
6 1
2 4
6 1
3 3
6 1
4 2
6 1
5 1
6 1
AD 50 CO
AD 52 CO
A D 5 7 C O
AD 54 CO
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F B
E 6 I B
A 5 I B
C 9 4 0

; 9 0 E F
; A 9 6 0
: 8 D 0 9 6 0

2 0 7 F 6 0
A 9 0 0
8 D 0 8 6 0
2 0 9 1 6 0
2 0 A D 6 0
A D 0 9 6 0
2 0 A 8 F C
2 0 A D 6 0
E E 0 8 6 0
A D 0 8 6 0
C 9 0 7
9 0 E 7
E E 0 5 6 0
A D 0 5 6 0
C 9 2 6
9 0 D 8
4 C 5 1 6 0

: A 9 0 0
: 8 0 0 5 6 0
: 8 D 0 3 6 0
: 8 D 0 4 6 0

i : 1 8
6 9 0 5

1 9
2 0
2 1
2 2
2 3
2 4
2 5
26
2 7
28
2 9
3 0
3 1
3 2
3 3
34
3 5
36
3 7
3 8
3 9
4 0
4 1
4 2
4 3
44
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
53
5 4
5 5
5 6
57
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6

6 7
6 8
6 9
7 0
7 1

I 7 2

7 3
7 4

I 7 5
I 7 6
I 7 7

7 8
7 9

W A I T = $ F C A 8
*LOAD SHAPE ADDRESSES INT
★CONTINUE FOR ALL 7 SHAPE

0 SHPADR, LOW BYTE FIRST
S

SHPADR DFB #<SHAPE1
D F B # > S H A P E 1
D F B # < S H A P E 2
D F B # > S H A P E 2
D F B # < S H A P E 3
DFB #>SHAPE3
DFB #<SHAPE4
DFB #>SHAPE4
DFB #<SHAPE5
DFB #>SHAPE5
DFB #<SHAPE6
DFB #>SHAPE6
DFB #<SHAPE7
DFB #>SHAPE7
LDA GRAPHICS
l d a m i x o f f
LDA h i res
lda PA6E1
L D A # $ 0 0
STA LOW
l d a # $ 2 0
STA HIGH

CLRl LDY #$00
LDA #$00

CLR STA (L0W),Y
INY
BNE CLR
INC HIGH
LDA HIGH
CMP #$40
BLT CLRl
l d a # $ 6 0
STA DELAY

********** MAIN PROGRAM
START JSR
c ta r t i l da #$00

STA SHPNO
START2 JSR LOADSHP

JSR draw
l d a d e l a y
JSR WAIT
JSR DRAW
INC SHPNO
lda SHPNO
CMP #$07
BLT START2
INC BYTE
LDA BYTE
CMP #$26
BLT STARTl
JMP START

********** SUBROUTINES

START
STARTl

< S H A P E 1
> S H A P E 1
#<SHAPE2
#>SHAPE2
#<SHAPE3
#>SHAPE3
#<SHAPE4
#>SHAPE4
#<SHAPE5
#>SHAPE5
#<SHAPE6
#>SHAPE6
'#<SHAPE7
#>SHAPE7
g r a p h i c s
MIXOFF
HIRES
PAGEl
#$00
LOW
#$20
HIGH
#$00
#$00
(L0W),Y

CLR
HIGH
HIGH
#$40
CLRl

, # $ 6 0
, DELAY

SHPNO
LOADSHP
DRAW
DELAY
WAIT
DRAW
SHPNO
SHPNO
#$07
START2
BYTE
BYTE
#$26
STARTl
START

; H I R E S , P. l

;CLEAR SCREEN 1

;LOAD DELAY

**SET INITIAL BYTE, LINE, DEPTH
•FIRST SHAPE NUMBER

;LOAD SHAPE INTO TEMP
•DRAW
;DELAY

•,ERASE
;NEXT SHAPE NUMBER

•.FINISHED ALL 7 SHAPES?•IF NO, CONTINUE WITH NEXT shArt
•IF YES, NEXT BYTE

;END OF SCREEN?•IF NO CONTINUE DRAW
';IF YES, START OVER

* * * * * * * * * *

I N I T I A L #$00
BYTE
L I N E
LINE A

-.depth of shape

Hi-Res Graphics and Animation Using Assembiy Language

8 D 0 6 6 0
6 0

A D 0 8 6 0
OA
A A
B D 1 9 6 0
8 5 l A
B D l A 6 0
8 5 I B
A O 0 0
B 1 l A
9 9 O A 6 0
C 8
CO OF
9 0 F 6
6 0

A 9 0 0
8D 07 60
AC 05 60
AE 03 60
BD 60 61
85 IB
BD 20 62
85 lA
AE 07 60
B1 lA
50 OA 60
91 lA
C8
B 1 l A
5D OB 60
9 1 l A
C 8
B1 lA
50 OC 60
91 lA
EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
DD 06 60
90 C2
AD 04 60
80 03 60
oO
02 00 00
06 00 00
11 37 007E 7F 00
04 00 00
OC 00 00
7C 6F 00
7C 7F 01
08 00 00
18 00 00
78 5F 01
78 7F 03
10 00 00

S T A D E P T H
R T S

* *

L O A D S H P

L O A D S H P l

1 1 6
11 7
1 1 8
1 1 9
1 2 0
121
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8

7E IF
1 2 9

S H P N O

SHPADR.X
LOW
S H P A D R + 1 .
H I G H
$ 0 0
(L0W),Y
TEMP,Y

#$0F
L O A D S H P l

* *

D R A W L D A # $ 0 0
S TA X C O U N T

D R A W l L D Y B Y T E
L D X L I N E
L D A H I , X
S T A H I G H
L D A L O . X
S TA L O W
LDX XCOUNT
LDA (LOW),Y
E O R T E M P. X
STA (LOW),Y
I N Y
LDA (LOW),Y
EOR TEMP+1,X
STA (LOW),Y
I N Y
LDA (LOW).Y
EOR TEMP+2,X
STA (LOW),Y
INC XCOUNT
INC XCOUNT
INC XCOUNT
I N C L I N E
L D A L I N E
CMP DEPTH
BLT DRAWl
L D A L I N E A
S T A L I N E

;LOAD SHAPE

ESET LINE FOR NEXT CYCLE

SHAPEl
0 0

0200000600007E1F00 ;SHAPE TABLES
7E37007E7F00

130 SHAPE2 HEX 0400000C00007C3F00
7C 3F 00

1 3 1 h e x 7 C 6 F 0 0 7 C 7 F 0 1

132 SHAPE3 HEX 080000180000787F00
78 7F 00

1 3 3 h e x 7 B 5 F 0 1 7 8 7 F 0 3

1 3 4 S H A P E 4 H E X 1 0 0 0 0 0 3 0 0 0 0 0 7 0 7 F 0 1

Horizontal Movement and Internal Animation

6 1 2 7 :
6 1 2 D :
6 1 3 0 :
6 1 3 3 :
6 1 3 6 :
6 1 3 C :
6 1 3 F :
6 1 4 2 :
6 1 4 5 :
6 1 4 B :
6 1 4 E :
6 1 5 1 :
6 1 5 4 :
6 1 5 A :
6 1 5 D :

3 0 0 0 0 0
7 0 3 F 0 3
7 0 7 F 0 7
2 0 0 0 0 0
6 0 0 0 0 0
6 0 7 F 0 6
6 0 7 F O F
4 0 0 0 0 0
4 0 0 1 0 0
4 0 7 F 0 0
4 0 7 F I F
0 0 0 1 0 0
0 0 0 3 0 0
0 0 7 F I B
0 0 7 F 3 F

7 0 7 F 0 1
1 3 5

1 3 6 S H A P E 5
6 0 7 F 0 3

1 3 7

138 SHAPE6
4 0 7 F 0 7

1 3 9

140 SHAPE7
00 7F OF

1 4 1

H E X 7 0 3 F 0 3 7 0 7 F 0 7

H E X 2 0 0 0 0 0 6 0 0 0 0 0 6 0 7 F 0 3

H E X 6 0 7 F 0 6 6 0 7 F 0 F

H E X 4 0 0 0 0 0 4 0 0 1 0 0 4 0 7 F 0 7

H E X 4 0 7 F 0 D 4 0 7 F 1 F

H E X 0 0 0 1 0 0 0 0 0 3 0 0 0 0 7 F 0 F

HEX 007F1B007F3F

7 3 6 b y t e s

Symbol table - numerical order
LOW = $1A
BYTE =$6005
D E L A Y =$6009
C L R l =$603B
START2 =$6059
DRAW =$60AD
SHAPE3 =$6115
S H A P E 7 =$6151
M I X O F F =$C052

H I G H = $ 1 B
depth =$6006
TEMP =$600A
CLR =$603F
initial =$607F
DRAWI =$60B2
SHAPE4 =$6124
H I = $ 6 1 6 0
PAGEl =$0054

LINE
XCOUNT
SHPADR
START
LOADSHP
SHAPEl
SHAPES
LO
HIRES

= $ 6 0 0 3
=$6007
=$6019
=$6051
=$6091
=$60F7
=$6133
=$6220
=$0057

L I N E A
SHPNO
PGM
S TA RT l
LOADSHPl
SHAPE2
SHAPE6
GRAPHIOS
WAIT

nrhv TFMP is used at all, as mul-The more astute among you might won x ̂ counter (i.e., a number
tiple shape tables can be accessed direct y SHAPE,X if the shape tablesstored in the X register) with seven shapes contains 10 bytes,
begin with a single label, SHAPE. If X = 0, the second shapethe first shape can be called by LDA ̂ ̂ ' g manipulating X, all seven
wben X = 10, the third shape ^en X ^ register (as well
shape tables can be addressed. The pro ^as the Y register and the Accumulator) number of bytesa maximum value of 255 decimal (J$F ̂ roblem if X cannot be largein all seven shape tables is largê we ̂ J ̂ se two or more
enough to access all the shape bytes, wecounters and/or a more complicated draw routine. Propram

Les, you think this an unusual situation, look at the shape tables5.4. Each shape contains 39 bytes, the seven shapes together cont™ 27} byteŝ
and this for shapes that are not particularly large. The use o i ̂
problem to a large extent. TEMP also uses a counter (see line 9 o ̂
5-1), but only to load a single shape, so the limitation here is that a sing e s
must contain 256 bytes or less. 1 suppose it's conceivable that in a
programming frenzy, you might want to draw and animate horizonta y a s p̂that contains more than 256 bytes, although it would be so large, screen
bytes wide by 30 lines deep, that it would hardly have room to move. is can edone (didn't I say at the beginning that versatility is one of the viitUf̂ s
assembly language?), but not with the exact routines described here. 1 eave

Hi-Res Braphics and Animation Using Assembly Language

this to you as a problem you should be able to solve after reading this book
(hint: divide the shape into less than 256 byte sections, use multiple THMPs, and
modify the draw routine).

Using TEMP and a single draw routine makes for a neat and compact pro
gram but the price we pay is an increase in program execution time because
TEMP has to be loaded for each draw. Ordinarily this is not a problem, and it
certainly isn't for our game program, but if extra speed is required, we can do
away with TEMP and use seven different draw routines, each accessing one of
the seven shape tables. This would also eliminate the need for shape address
tables and counting shape numbers, and the program flow would be relatively
simple—we would just draw and erase each shape in turn, testing only for the
end of the screen. The program size would increase, and dramatically so with
large numbers of shapes, but the program would run faster. The next program
(Program 5-2) illustrates the point—it's the same as Program 5-1 but without
TEMP and shape address tables.

Horizontal Movement and Internal Animation

JPROGRAM 5-2
: A S M

6 0 0 0 ; 4 C 0 9 6 0

1 SHAPE HORIZONTAL 7 DRAW ROUTINES
* 2 B Y T E S W I D E , 5 L I N E S D E E P

n o n t a n n n

6 0 0 9 :
6 0 0 C :
6 0 0 F :
6 0 1 2 :
6 0 1 5 :
6 0 1 7 :
6 0 1 9 :
6 0 1 8 :
6 0 1 D :
6 0 1 F :
6 0 2 1 :
6 0 2 3 :
6 0 2 4 :
6 0 2 6 :
6 0 2 8 :
6 0 2 A :
6 0 2 C :
6 0 2 E :
6 0 3 0 :

6 0 3 3
6 0 3 6
6 0 3 9
6 0 3 C
6 0 3 F
6 0 4 2
6 0 4 5
6 0 4 8
6 0 4 8
6 0 4 E
6 0 5 1
6 0 5 4
6 0 5 7
6 0 5 A
6 0 5 0
6 0 6 0
6 0 6 3
6 0 6 6
6 0 6 9
6 0 6 C
6 0 6 F
6 0 7 2 :

AD 50 CO
AD 52 CO
AD 57 CO
AD 54 CO
A 9 0 0
8 5 l A
A 9 2 0
8 5 1 8
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F 8
E 6 1 8
A 5 1 8
C 9 4 0
9 0 E F
A 9 6 0
8 D 0 8 6 0

2 0 9 7 6 0
2 0 8 D 6 0
A D 0 8 6 0
2 0 A 8 F C
2 0 8 D 6 0
2 0 F 7 6 0
A D 0 8 6 0
2 0 A 8 F C
2 0 F 7 6 0
2 0 3 1 6 1
A D 0 8 6 0
2 0 A 8 F C
2 0 3 1 6 1
2 0 6 8 6 1
A D 0 8 6 0
2 0 A 8 F C
2 0 6 8 6 1
2 0 A 5 6 1
A D 0 8 6 0
2 0 A 8 F C
2 0 A 5 6 1
2 0 O F 6 1

L I N E
L I N E A
BYTE
DEPTH

O R G $ 6 0 0 0
J M P P G M
D S 1
D S 1
D S 1
D S 1

U f L . I I • > " ^

X C O U N T D S 1
D E L A Y D S 1
GRAPHICS = $C050
M I X O F F = $
h i r e s = 5
M I X O F F = S C 0 5 2
h i r e s = $ C 0 5 7
PA G E l = $ C 0 5 4
h i g h =
L O W = $ 1 ^
W A T T = $ F C A 8
PGM LDA GRAPHICS ;HIRES,P.l

LDA MIXOFF
l d a h i r e s
L D A P A G E l S C R t
lda #$00 -.clear SCRl
STA LOW
LDA #$20
STA HIGH

CLRl LDY #$00
LDA #$00

GLR STA (LOW),Y
I N Y
BNE CLR
INC HIGH
LDA HIGH
CMP #$40

rt60 il-OSDOEU

start JSR INITIAL
STARTl JSR ORAWl

l d a d e l a y
J S R W A I T ^
JSR DRAWl .ERA.l
JSR DRAW2
l d a d e l a y
J S R - F R A S E
JSR DRAW2 'DRAW
JSR DRAW3
lda delay
J S R W A I T rJSR DRAWS .tRASc
JSR DRAW4 .DHAW
lda delay
JSR WAIT .FRASE
JSR DRAW4
JSR DRAW5 .DRAW
lda de lay

j s R - . e r a s e
JSR 0RAM6 -.mm

;ERASE
;DRAW

; erase
;DRAW

; erase
•draw

-.erase
;DRAW

; erase
;DRAW

Hi-Res Graphics and Animation Using Assembly Language

68

6 0 7 5 ;
6 0 7 8 :
6 0 7 B :
6 0 7 E :
6 0 8 1 :
6 0 8 4 :
6 0 8 7 :
6 0 8 A :
6 0 8 0 :
6 0 9 0 :
6 0 9 2 :
6 0 9 4 :

A D 0 8 6 0
2 0 A 8 F C
2 0 O F 6 1
2 0 1 9 6 2
A D 0 8 6 0
2 0 A 8 F C
2 0 1 9 6 2
E E 0 5 6 0
A D 0 5 6 0
0 9 2 6
9 0 A 2
4 0 3 3 6 0

6 0 9 7 : A 9 0 0
6099: 80 05 60
6090: 80 03 60
609F: 80 04 60
60A2 : 18
60A3: 69 05
60A5: 80 06 60
60A8: 60

6 0 A 9 :
60A0:
60AF:
6082 :
60B4:
6087 :
6089:
6080 :

6 0 8 0
6 0 8 F
6002
6005
6007
600A
6000
6000
60CF
6002
6004
6 0 0 5
6 0 0 7
6 0 0 A
6 0 0 0
6 0 D F
6 0 E 2
6 0 E 5
6 0 E 8
6 0 E B
6 0 E E
6 0 F 0
6 0 F 3
6 0 F 6
6 0 F 7
6 0 F 9
6 0 F C
6 0 F F
6 1 0 1
6 1 0 4

AO 05 60
AE 03 60
BO 80 62
85 IB
BD 70 63
8 5 l A
AE 07 60
6 0

A9 00
80 07 60
20 A9 60
B1 lA
50 53 62
91 lA
0 8
B1 lA
50 54 62
91 lA
0 8
B1 lA
50 55 62
91 lA
EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
CD 06 60
90 02
AD 04 60
8D 03 60
6 0
A 9 0 0
80 07 60
20 A9 60
B 1 l A
5 D 6 2 6 2
9 1 l A

6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9
100
101
102
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9
1 1 0
111
11 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0

* * * * * *

S E T U P

ORAWl

DRAWIA

DRAW2

0RAW2A

L O A D E L A Y
J S R W A I T
J S R 0 R A W 6
J S R 0 R A W 7
L O A D E L A Y
J S R W A I T
J S R DRAW7
I MO B Y T E
I D A B Y T E
OMP # $ 2 6
8 L T S T A R T l
J M P S T A R T

J B R O U T I N E S * * * * * *
L O A # $ 0 0
S T A B Y T E
S T A L I N E
S TA L I N E A
O L O
ADO # $ 0 5
S T A D E P T H
R T S

k - k - k - k - k - k - k - k - k

L O Y B Y T E
L O X L I N E
L O A H I , X
S T A H I G H
L O A LO,X
S T A LOW
L O X X O O U N T
R T S

* * * * * * * * * * * * * * *

L O A # $ 0 0
S T A X O O U N T
J S R S E T U P
L O A (L 0 W) , Y
EOR SHAPEl.X
S T A (LOW),Y
I N Y
L O A (LOW),Y
EOR S H A P E 1 + 1 , X
S T A (LOW),Y
I N Y
L O A (LOW),Y
EOR S H A P E 1 + 2 , X
S T A (LOW) ,Y
I NO XOOUNT
I NO X O O U N T
I NO XOOUNT
I NO L I N E
L O A L I N E
OMP D E P T H
B L T D R A W I A
L O A L I N E A
S T A L I N E
RT S
L O A # $ 0 0
S T A XOOUNT
J S R S E T U P
L O A (LOW) ,Y
EOR S H A P E 2 , X
S T A (LOW),Y

;ERASE
•.DRAW

;ERASE

;DEPTH OF SHAPE

Horizontal Movement and Internal Animation

C 8
B 1 l A
5 0 6 3 6 2
9 1 l A
C 8
B 1 l A
5 0 6 4 6 2
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A O 0 3 6 0
C O 0 6 6 0
9 0 0 2
A D 0 4 6 0
8 0 0 3 6 0
6 0
A 9 0 0
8 0 0 7 6 0
2 0 A 9 6 0
B 1 l A
5 0 7 1 6 2
9 1 l A
C 8
B 1 l A
5 0 7 2 6 2
9 1 l A
0 8
B 1 l A
5 0 7 3 6 2
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A O 0 3 6 0
C O 0 6 6 0
9 0 0 2
A O 0 4 6 0
8 0 0 3 6 0
6 0
A 9 0 0
8 0 0 7 6 0
2 0 A 9 6 0
B 1 l A
5 0 8 0 6 2
9 1 l A
C 8
B 1 l A
5 0 8 1 6 2
9 1 l A
C 8
B 1 l A
5 0 8 2 6 2
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A O 0 3 6 0

1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
127
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
139 0RAW3
1 4 0
141 DRAW3A
1 4 2
1 4 3
1 4 4
1 4 5
1 4 6
147
1 4 8
1 4 9
1 5 0
1 5 1
1 5 2
1 5 3
1 5 4
1 5 5
1 5 6
1 5 7
1 5 8
1 5 9
1 6 0
1 6 1
1 6 2
163 0RAW4
1 6 4
165 DRAW4A

I N Y
I D A (LOW),Y
EOR SHAPE2+1,X
S T A (LOW),Y
I N Y
I D A (LOW),Y
EOR S H A P E 2 + 2 , X
S T A (LOW).Y
I N C X C O U N T
I N C XCOUNT
I N C X C O U N T
I N C L I N E
I D A L I N E
CMP D E P T H
B L T DRAW2A
I D A L I N E A

STA L I N E
RTS
I D A #$00
STA XCOUNT
J S R SETUP
L D A {LOW),Y
EOR SHAPE3,X
S TA (LOW),Y
I N Y
LOA (LOW),Y
EOR SHAPE3+1,X
STA (LOW),Y
I N Y
LOA (LOW).Y
EOR SHAPE3+2,X
STA (LOW),Y
INC XCOUNT
I N C XCOUNT
INC XCOUNT
IMC l i n e
LOA LINE
CMP d e p t h
BLT 0RAW3A
LOA l i n e a
STA l i n e
RTS
LOA #$00
STA XCOUNT
JSR SETUP
LDA (L0W),Y
EOR SHAPE4,X
STA (LOW),Y
INY
LOA (LOW),Y
EOR SHAPE4+1,X
STA (LOW),Y
INY
LOA (LOW),Y
EOR SHAPE4+2,X
STA {LOW),Y
INC XCOUNT
I N C XCOUNT
I N C XCOUNT
I N C L I N E
L D A L I N E

Hi-Res Graphics and Animation Using Assembiy Language

6 1 9 9 :
6 1 9 C :
6 1 9 E :
6 1 A 1 :
6 1 A 4 :
6 1 A 5 :
6 1 A 7 :
6 1 A A :
6 1 A D :
6 1 A F :
6 1 B 2 :
6 1 B 4 :
6 1 B 5 :
6 1 B 7 :
6 1 B A :
6 1 B C :
6 1 B D :
6 1 B F :
6 1 C 2 :
6 1 C 4 :
6 1 C 7 :
61CA:
61CD:
6100:
6103:
6106:
6108:
6108:
610E:
610F:
61E1:
61E4:
61E7:
61E9:
61EC:
61EE:
61EF:
61F1;
61F4;
61F6;
61F7:
61F9;
61FC
61FE
6 2 0 1
6 2 0 4
6 2 0 7 :
6 2 0 A :
6 2 0 0 :
6 2 1 0 :
6 2 1 2 :
6 2 1 5 :
6 2 1 8 :
6 2 1 9 :
6 2 1 B :
6 2 1 E :
6 2 2 1 :
6 2 2 3 :
6 2 2 6 :
6 2 2 8 :
6 2 2 9 :

C D 0 6 6 0
9 0 0 2
A D 0 4 6 0
8 0 0 3 6 0
6 0
A 9 0 0
8 0 0 7 6 0
2 0 A 9 6 0
B 1 l A
5 0 8 F 6 2
9 1 l A
C 8
B 1 l A
50 90 62
9 1 l A
C 8
B 1 l A
50 91 62
91 lA
EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
CD 06 60
90 02
AD 04 60
80 03 60
6 0
A9 00
80 07 60
20 A9 60
B1 lA
50 9E 62
91 lA
C 8

: B1 lA
: 50 9F 62
: 91 lA
: C 8
: B1 lA
= 50 AO 62
: 91 lA
• EE 07 60
= EE 07 60

EE 07
: E E 0 3

AO 03 60
•• CO 06 60

90 02
AD 04 60
80 03 60
6 0
A 9 0 0
80 07 60
20 A9 60
B 1 l A

6 0
6 0

5 0 A O 6 2
9 1 l A
C 8
B 1 l A

1 8 2
1 8 3
1 8 4
1 8 5
1 8 6
1 8 7
1 8 8
1 8 9
1 9 0
1 9 1
1 9 2
1 9 3
1 9 4
1 9 5
1 9 6
1 9 7
1 9 8
199
2 0 0
201
2 0 2
2 0 3
2 0 4
2 0 5
2 0 6
2 0 7
2 0 8
2 0 9
2 1 0
2 11
2 1 2
2 1 3
2 1 4
2 1 5
2 1 6
2 1 7
2 1 8
2 1 9
220
221
2 2 2
2 2 3
224
225
2 2 6
2 2 7
2 2 8
2 2 9
230
2 3 1
2 3 2
2 3 3
2 3 4
2 3 5
2 3 6
2 3 7
2 3 8
2 3 9
2 4 0
2 4 1
2 4 2

0RAW5

0RAW5A

0RAW6

0RAW6A

DRAW7

DRAW7A

CMP
B L T
L O A
S TA
R T S
L O A
S TA
J S R
L O A
EOR
S T A
I N Y
L O A
EOR
S T A
I N Y
L O A
EOR
S T A
I N C
I N C
I N C
I N C
L O A
CMP
B L T
L O A
S T A
R T S
L O A
S TA
J S R
L O A
EOR
S T A
I N Y
L O A
EOR
S T A
I N Y
L O A
EOR
S TA
I N C
I N C
I N C
I N C
L O A
CMP
B L T
L O A
S T A
RTS
L O A
S TA
J S R
L O A
EOR
S T A
I N Y

L O A

D E P T H
0 R AW 4 A
L I N E A
L I N E

$ 0 0
XCOUNT
S E T U P

(L0W),Y
SHAPES,X
(L0W),Y

(L0W),Y
SHAPE5+1,X
(L0W),Y

(LOW) .Y
SHAPE5+2,X
(LOW) ,Y
X C O U N T
XCOUNT
XCOUNT
L I N E
L I N E
D E P T H
0 R A W 5 A
L I N E A
L I N E

$ 0 0
XCOUNT
S E T U P
(L0W),Y
SHAPE6,X
(L0W) ,Y

(L0W),Y
SHAPE6+1,X
(LOW).Y

(L0W),Y
SHAPE6+2,X
(L0W),Y
XCOUNT
XCOUNT
XCOUNT
L I N E
L I N E
DEPTH
0RAW6A
L I N E A
L I N E

$ 0 0
XCOUNT
S E T U P

(L0W) ,Y
SHAPE 7, X
(LOW) ,Y

(LOW),Y

Horizontal Movement and Internal Animation

5 D A E 6 2
9 1 l A
C 8
B 1 l A
5 0 A F 6 2
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A D 0 3 6 0
C D 0 6 6 0
9 0 D 2
A D 0 4 6 0
8 D 0 3 6 0
6 0
0 2 0 0 0 0
0 6 0 0 0 0
7 E 3 7 0 0
7 E 7 F 0 0
0 4 0 0 0 0
O C 0 0 0 0
7 C 6 F 0 0
7 C 7 F 0 1
0 8 0 0 0 0
1 8 0 0 0 0
7 8 5 F 0 1
7 8 7 F 0 3
1 0 0 0 0 0
3 0 0 0 0 0
7 0 3 F 0 3
7 0 7 F 0 7
2 0 0 0 0 0
6 0 0 0 0 0
6 0 7 F 0 6
6 0 7 F O F
4 0 0 0 0 0
4 0 0 1 0 0
4 0 7 F 0 0
4 0 7 F I F
0 0 0 1 0 0
0 0 0 3 0 0
0 0 7 F I B
0 0 7 F 3 F

2 4 3
2 4 4
2 4 5
2 4 6
2 4 7
2 4 8
2 4 9
2 5 0
2 5 1
2 5 2
2 5 3
2 5 4
2 5 5
2 5 6
2 5 7
2 5 8
259 SHAPEl

7E IF 00

261 SHAPE2
7 0 3 F 0 0

2 6 2

263 SHAPE3
78 7F 00

2 6 4

265 SHAPE4
7 0 7 F 0 1

2 6 6

267 SHAPE5
60 7F 03

2 6 8

269 SHAPE6
40 7F 07

2 7 0

271 SHAPE7
00 7F OF

2 7 2

SHAPE7+1,X
(LOW),Y

(L0W) ,Y
SHAPE7+2 ,X
(L0W) ,Y
X C O U N T
X C O U N T
XCOUNT
L I N E
L I N E
D E P T H
DRAW7A
L I N E A
L I N E

0200000600007E1FOO ;SHAPE TABLES

7E37007E7F00

0400000C00007C3FOO

7C6F007C7F01

080000180000787F00

785F01787F03

100000300000707F01
703F03707F07

200000600000607F03
607F06607FOF

400000400100407F07
407F0D407F1F

000100000300007F0F
007F1B007F3F

1084 bytes

-Res Graphics and Animation Using Assembly Language

S y m b o l t a b l e - n u m e r i c a l o r d e r :

L O W = $ 1 A H I G H = $ 1 8 L I N E = $ 6 0 0 3 L I N E A = $ 6 0 0 4
B Y T E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 X O O U N T = $ 6 0 0 7 D E L A Y = $ 6 0 0 8
PGM = $ 6 0 0 9 O L R l = $ 6 0 1 0 O L R = $ 6 0 2 1 S T A R T = $ 6 0 3 3
S T A R T l = $ 6 0 3 6 I N I T I A L = $ 6 0 9 7 S E T U P = $ 6 0 A 9 DRAW I = $ 6 0 8 0
D R A W ! A = $ 6 0 0 2 D R AW 2 = $ 6 0 F 7 D R AW 2 A = $ 6 0 F 0 D R AW 3 = $ 6 1 3 1
D R A W 3 A = $ 6 1 3 6 D R A W 4 = $ 6 1 6 8 0 R A W 4 A = $ 6 1 7 0 D R AW S = $ 6 I A 5
D R A W 5 A = $ 6 1 A A D R AW 6 = $ 6 1 0 F 0 R A W 6 A = $ 6 1 E 4 D R A W 7 = $ 6 2 1 9
D R A W 7 A = $ 6 2 1 E S H A P E l = $ 6 2 5 3 S H A P E 2 = $ 6 2 6 2 S H A P E 3 = $ 6 2 7 1
S H A P E 4 = $ 6 2 8 0 S H A P E 5 = $ 6 2 8 F S H A P E 6 = $ 6 2 9 E S H A P E 7 = $ 6 2 A D
H I = $ 6 2 8 0 L O = $ 6 3 7 0 G R A P H I O S = $ 0 0 5 0 M I X O F F = $ 0 0 5 2
P A G E l = $ 0 0 5 4 H I R E S = $ 0 0 5 7 W A I T = S F 0 A 8

As you can see, Program 5-2 is larger than Program 5-1. With more shapes, it
would be larger still, but it does run faster, even though it doesn't seem to —the
plane traverses the screen in about the same time for bttth programs but this isecause the programs are simple, with only one shape, and so the determining
actor is the time delay. The speed difference would be noticeable only with
larger and more complicated programs.

l i n e p o s i t i o n s

illustrate'̂ h section, allow a minor digression —1 want to
the n modify our programs to make them more interesting,

planes Program (5-3) we're going to modify Program 5-1 so that the air-same linê '" screen traversal at five different line positions instead of at the
The m̂ d̂T makes for a more visually appealing program,

line for each simple. In the INITIAL subroutine, the starting
NEWline th determined by accessing numbers in a table labelled
selected b bytes, one for each new line position. The b>tes arevalues for X ̂ '̂EWLINE,X (line 86) where X contains values 0 to 4. The
(LDXcountf̂ loaded from a reserved memory location labeled CIOIJNTER's increment d k COUNTER is set to 0 (lines 79 and 80) and
values in CQunt^ each screen traversal (line 75). When the
starts at a n 0 to 4, the branch in line 78 is taken and the shapeI the end of position. When the value in COUNTER reaches 5, we're at
branch at lin^ table and so we want to start over. At this point, the
next sereen jou ̂ "̂ 1 COUNTER is reset to 0 before we begin the
place the desired"̂ !̂ to 81). To program more or less line positions,
number of NEWLINE and change the CMP value in line 77 to theyres m the NEWLINE table.

Horizontal Movement and Internal Animation

L O A D S H A P E A D D R E S S E S
I N T O S H R A D R

D I S P L A Y A N D
C L E A R S C R E E N

S E T I N I T I A L B Y T E
P O S I T I O N A N D D E P T H

G E T L I N E P O S I T I O N
F R O M T A B L E

F I R S T S H A P E

L O A D I N T O

D R A W

D E L A Y

E R A S E

N E X T S H A P E

A L L 7 S H A P E S ?

N E X T S C R E E N B Y T E

E N D O F S C R E E N ?

N E X T L I N E P O S I T I O N

E N D O F L I N E N o
P O S I T I O N TA B L E ?

R E S E T T O F I R S T L I N E
P O S I T I O N I N T A B L E

Hi-Res Graphics and Animation Using Assembiy Language

74

]PROGRAM 5-3
; A S M

6000: 4C 28 60

601A: 17
6018: 61
601C: 26
6010: 61
601E: 35
601F: 61
6020: 44
6021: 61
6022: 53
6023: 61
6024: 62
6025: 61
6026: 71
6027: 61

IIP6036: 85 u
6038: A9 20

85 IB
AO 00

603A
603C:
603E: A9 00
6040: 91 lA
6 0 4 2 :
6 0 4 3 :
6 0 4 5 :
6 0 4 7 :
6 0 4 9 :
604B :
6 0 4 0 :
604F :
6 0 5 2 :
6 0 5 4 :

C8
DO FB
E6 IB
A5 IB
C9 40
90 EF
A9 60
80 09 60
A 9 0 0
80 OA 60

605 7: 20 94 60

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
22
2 3
24
25
26
27
28
2 9
3 0
31
32
3 3
3 4
3 5
36
37
3 8
39
4 0
41
42
43
44
45
4 6
4 7
48
49
50
51
52
53
54
55
56
5 7
5 8
5 9

* 1 S H A P E
* 2 B Y T E S

J M P
L I N E OS
L I N E A OS
B Y T E OS
D E P T H DS
X C O U N T OS
SHPNO DS
D E L AY DS
COUNTER DS
T E M P DS
GRAPHICS
MIXOFF I T .

H IRES =

PAGEl
HIGH
LOW
WAIT
*LOAD SHAPE Al
*CONTINUE FOR
SHPADR D F B

DFB
D F B
D F B
D F B
D F B
D F B
D F B
D F B
D F B
D F B
D F B
D F B
D F B

PGM L D A
L D A
L D A
L D A
LDA
S T A
L D A

CLR l
S TA
L D Y

n D
L D A

HORIZONTAL NEWLINE*
WIDE, 5 LINES DEEP
O R G $ 6 0 0 0

PGM

S TA
INY
BNE
INC
LDA
CMP
B LT
L D A
S TA
L D A
S TA

* * * * * * * * * *

START

5

$C050
$C052
$C057
$C054
$1B
$1A
$FCA8

ALL 7 SHAPES
< S H A P E 1
> S H A P E 1
#<SHAPE2
#>SHAPE2
< S H A P E 3
> S H A P E 3
< S H A P E 4
> S H A P E 4
< S H A P E 5
> S H A P E 5
< S H A P E 6
> S H A P E 6
#<SHAPE7
#>SHAPE7
GRAPHICS
M I X O F F
HIRES
P A G E l
$ 0 0
LOW
#$20
H I G H
$ 0 0
$ 0 0
(L0W),Y

F I R S T

; H I R E S , P. l

;CLEAR SCREEN 1

CLR
HIGH
HIGH
$ 4 0
CLR l
$ 6 0
D E L AY
#$00
COUNTER

M A I N P R O G R A M
J S R I N I T I A L

;LOAD DELAY

;ZERO COUNTER

;SET INITIAL BYTE, LINE, DEPTH

Horizontal Movement and Internal Animation

A 9 0 0
8 0 0 8 6 0
2 0 A C 6 0
2 0 C 8 6 0
A D 0 9 6 0
2 0 A 8 F C
2 0 C 8 6 0
E E 0 8 6 0
A D 0 8 6 0
C9 07
9 0 E 7
E E 0 5 6 0
A D 0 5 6 0
C 9 2 6
9 0 0 8
EE OA 60
AD OA 60
0 9 0 5
9 0 0 5
A 9 0 0
8 0 O A 6 0
4 0 5 7 6 0

A 9 0 0
8 0 0 5 6 0
AE OA 60
B O 1 2 6 1
8 0 0 3 6 0
8 0 0 4 6 0
1 8
6 9 0 5
8 0 0 6 6 0
6 0

A O 0 8 6 0
OA
A A
B O l A 6 0
8 5 l A
B O I B 6 0
8 5 I B

: A O 0 0
B 1 l A
9 9 O B 6 0
0 8
0 0 O F
9 0 F 6
6 0

A 9 0 0
8 0 0 7 6 0
A C 0 5 6 0
A E 0 3 6 0
8 0 8 0 6 1
8 5 I B
B O 4 0 6 2
8 5 l A
A E 0 7 6 0
B 1 l A
5 0 O B 6 0
9 1 l A

S TA RT l

START2

* * * * * * * * * * S I

I N I T I A L L O A

$ 0 0
SHPNO
L O A O S H P
DRAW
D E L A Y
W A I T
DRAW
S H P N O
SHPNO
$ 0 7
S T A R T 2
B Y T E
B Y T E
$ 2 6
S TA RT l
COUNTER
COUNTER
#$05
CONT
#$00
COUNTER
START

IBROUTINES *
#$00
BYTE
COUNTER
NEWLINE.X
L I N E
LINEA

DEPTH

;FIRST SHAPE NUMBER

;LOAO SHAPE INTO TEMP
;ORAW
;nELAY

;ERASE
;NEXT SHAPE NUMBER

;FINISHEO ALL 7 SHAPES?
;IF NO. CONTINUE WITH NEXT SHAPE
; I F Y E S , N E X T B Y T E

;ENO OF SCREEN?
; IF NO, CONTINUE DRAW
; IF YES, INCREMENT COUNTER

;FINISHEO 5 LINES?
;IF NO, CONTINUE
;IF YES, RESET COUNTER

TO ZERO AND
START OVER

•depth of SHAPE

RTS

LOAOSHP LOA SHPNO
A S L
TAX
LOA SHPADR.X
STA LOW
LOA SHPAOR+1,̂
STA HIGH
LOY #$00

LOAOSHPl LOA (LOW)»YSTA TEMP.Y
INY
CPY #$0F
BLT LOAOSHPl

*̂*******SI************
DRAW LDA #$00STA XCOUNT
ORAWl LDY byte

LOX LINE
LOA HI,X
STA HIGH
LOA LO,X
STA LOW
LOX XCOUNT
LOA {LOW),Y
EOR temp,x
STA {L0W),Y

•load shape INTO TEMP

Hi-Res Graphics and Animation Using Assembly Language

6 0 E 7 :
6 0 E 8 :
6 0 E A :
6 0 E D :
6 0 E F ;
6 0 F 0 :
6 0 F 2 :
6 0 F 5 ;
6 0 F 7 :
6 0 F A :
6 0 F D ;
6 1 0 0 ;
6 1 0 3 :
6 1 0 6 :
6 1 0 9 :
6 1 0 B :
6 1 0 E :
6 1 1 1 :
6 1 1 2 :
6 1 1 5 :
6 1 1 7 :
6 11 A :
6 1 2 0 :
6 1 2 3 :
6 1 2 6 :
6129:
612F:
6132:
6135:
6138-
613E-
6141:
6144:
6147:
6140:
6150-
6153-
6156-
615c-
615F:
6162:
6165-
616B-
616E-
6171-
6174-
617A:
6170 :

0 8
B 1 l A
5 0 0 0 6 0
9 1 l A
0 8
B 1 l A
5 0 0 0 6 0
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
AO 03 60
CO 06 60
9 0 0 2
AO 04 60
80 03 60
6 0
00 AO 14
3 0 6 0
02 00 00
06 00 00
7E 37 00
7E 7F 00
04 00 00
OC 00 00
7C 6F 00
7C 7F 01
08 00 00
18 00 00
78 5F 01
78 7F 03
10 00 00
30 00 00
70 3F 03
70 7F 07
20 00 00
80 00 00
80 7F 06
80 7F OF
40 00 00
40 01 00
40 7F OD
40 7F IF
00 01 00
00 03 00
00 7F IB
00 7F 3F

1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9 NEWLINE

768 bytes

140 SHAPEl
7E- IF 00

1 4 1

142 SHAPE2
70 3F 00

143

144 SHAPE3
78 7F 00

145

146 SHAPE4
70 7F 01

1 4 7

148 SHAPE5
60 7F 03

149

150 SHAPE6
40 7F 07

151

^152 SHAPE700 7F OF
153

H I
L O

Symbol tab l

LOW
BrTE
DELAY
P G M

S TA RT l
l-OADSHP
NEWl. I WE
L I I A P L 4
H i
PAGE]

n u m e r

=$1A
=$6005
= $ 6 0 0 9
= $ 6 0 2 8
=$605A
=$60AC
= $ 6 11 2
= $ 6 1 4 4
= $ 6 1 8 0
= $ 0 0 5 4

ical order:

h i g h
d e p t h =
COUNTER =
C L R l
START2
LOADSHPI
SHAPFl
SHAPES
LO
h i r e s

=$1B
= $ 6 0 0 6
=S600A
=$603C
=$605F
=$6061)
= $ 6 11 7
=$6153
=$6240
=$C057

I N Y
IDA {L0W) ,Y
E O R T E M P + 1 , X
STA (LOW),Y
I N Y
LDA (LOW),Y
EOR TEMP+2,X
STA (LOW),Y
I N C X C O U N T
I N C X C O U N T
I N C X C O U N T
I N C L I N E
L D A L I N E
C M P D E P T H
B LT D R A W l
L D A L I N E A
S T A L I N E
RT S
H E X 0 0 A 0 1 4 3 0 6 0

;RESET LINE FOR NEXT CYCLE

HEX 0200000600007E1F00 ;SHAPE TABLES

H E X 7 E 3 7 0 0 7 E 7 F 0 0

HEX 0400000C00007C3F00

H E X 7 C 6 F 0 0 7 C 7 F 0 1

HEX 080000180000787F00

HEX 785F01787F03

HEX 100000300000707F01

HEX 703F03707F07

HEX 200000600000607F03

H E X 6 0 7 F 0 6 6 0 7 F 0 F

HEX 400000400100407F07

HEX 407F0D407F1F

HEX 000100000300007F0F

H E X 0 0 7 F 1 B 0 0 7 F 3 F

L I N E = $ 6 0 0 3 L I N E A = $ 6 0 0 4
XCOUNT = $ 6 0 0 7 S H P N O = $ 6 0 0 8
TEMP = $ 6 0 0 8 S H PA D R =$601A
C L R = $ 6 0 4 0 S T A R T = $ 6 0 5 7
CONT =$6091 I N I T I A L = $ 6 0 9 4
DRAW = $ 6 0 0 8 D R A W l = $ 6 0 C D
S H A P E 2 = $ 6 1 2 6 S H A P E 3 = $ 6 1 3 5
S H A P E 6 = $ 6 1 6 2 S H A P E ? = $ 6 1 7 1
G R A P H I C S = $ C 0 5 0 M I X O F F = $ 0 0 5 2
W A I T = $ F C A a

Horizontal Movement and Internal Animation

D R A W - D R A W

As a special added attraction, for your edification and programming pleasure,
I hereby present Program S-4, which is the same as Program 5-1, except it uses a
DRAW-DRAW routine instead of DRAW-ERASH. Let's look at some of the differ
ences hetween Program 5-1 and 5-1.

First, since there is no erase step, attention has to be paid to the shape tables
to insure that no part of a shape is left on the screen. For vertical animation, we
include a bt^rder of *SOO's equal to the maximum shape move. For horizontal
animation the situation is somewhat different. If we look at the shape tables at
the beginning of this chapter, we see that the last shape (number 6) has no bits
in the first b>te llms when we continue with shape 0 in the second bjte, shape
6 i,s c.>n,plcaly erased. Fine. Bu, suppose rr-e drew ,he shape starring ,1.h drenrst coluL instead of the seeond. Shape 6 would rtten h-e b. s .n the firs byte.

•^1 in tl ic second byte, the bits in the first by^eIt we then cot t t .nt ie w, lh
would remain on "be " wi l l have to be included,
at shape 6—otherwise, a trai ini, shape tables but would also mean
□lis not only would increase the size of t *P
that a .shape could not start at a .screen t'order " plots by

Next, the DRAW routine does not ust ^ ^ retrieved
LDA shape byte, STA .screen location. Note a so i. jn program 5-1.
from TEMP rather than from the shape tables ' ̂ ĵ r̂der in prepara-
Because we want to era.se the shape when it reac les frASE routine. This
tion for a new .screen traversal, we do need
ERASE routine is essentially identical to the DRA ' accessed the screencra.scs using the FOR method of plotting because when accessed,
bytes already contain the shape bytes to be Aiyf First we initialize

Finally, let's examine some details in d.e and then
the shape position and depth, select the first s ap , necessary only
delay. We do not erase as was done in ̂ Q̂ tinue by testing to see ifwhen the shape has reached the screen borde . screen
we've drawn all seven shapes and, if we have, we s ^ ^^26).
byte; this continues until we've reached the en o traversal, we go to
At this point, before going to START to ^ last shape is drawn
the ERASE routine to erase the last shape. No ^ yne in
starting in screen byte *$25 but BYTE BYTE in preparation for the
the ERASE routine is DEC BYTE, which puts *$2. i ^ new be-
erase. The last line of ERASE then sends the prog
g i n n i n g . d i f f e r e n c e w i t h p e r h a p sIf we run Programs 5-1 and 5-4, we se . p̂ j-tion. The price we pay lor
somewhat smoother animation in 5-4 on erase routine. Again, the
this is a somewhat longer program because o t e program's particular
choice of DRAW-ERASE or DRAW-DRAW smoothness inherent
requirements. With a larger, more complicate s.̂ j- course, if the programin DRAW-DRAW may become more apparen a routine would not bedoesn't remove shapes from the screem ihe ex r̂^ appropriate if the shape
needed. On the other hand. Program 5-̂ wou. n ̂ background,
were involved in collision detection or were to > game program

Programs 5-2, 5-3, and 5-4 are not to ea.se you into attempt-because 1 would like you to u.se them as starting 1 Part One. Sugges
ing your own modifications to the game discussed in the last
tions for modifications and the problems to consic
chapter.

Hi-Res Graphics and Animation Using Assembly Language

N o

N E X T S H A P E

~ r ~
A L L 7 S H A P E S ?

1 Yes
N E X T S C R E E N B Y T E

N o ^
E N D O F S C R E E N ?

T Y e s

E R A S E

P̂ROGRAM 5-4
: A S M ^

6000: 4C 27 6 0

1
2
3
4
5
6
7
8
9
10
11
1 2
1 3
1 4
1 5
1 6
1 7
1 8

1 SHAPE HORIZONTAL - DRAW-DRAW
*2 BYTES WIDE, 5 LINES DEEP

ORG $ 6 0 0 0
J M P PGM

L I N E DS 1
L I N E A DS 1
BYTE D S 1
DEPTH D S 1
XCOUNT D S 1
SHPNO D S 1
d e l a y DS 1
TEMP DS 1 5
g r a p h i c s = $ 0 0 5 0
MIXOFF $ 0 0 5 2
H I R E S $ 0 0 5 7
P A G E l = $ 0 0 5 4
H I G H = $ 1 8
LOW = $ 1 A

Horizontal Movement and Internal Animation

6 1
7 9
6 1
8 8
6 1
9 7
6 1
AD 50
AD 52
A D 5 7
A D 5 4
A 9 G O
8 5 l A
A 9 2 0
8 5 I B
AO 00
A 9 0 0
9 1 l A
C8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 6 0
8 D 0 9

2 0 7 C
A 9 0 0
8 0 0 8
2 0 8 E
2 0 A A
A D 0 9
2 0 A 8
E E 0 8
A D 0 8
C 9 0 7
9 0 E A
E E 0 5
AD 05
C 9 2 6
9 0 D B
4 C E E

A 9 0 0
8 D 0 5
8 0 0 3
8 0 0 4
1 8
6 9 0 5
8 0 0 6

1 9
2 0
2 1
2 2
2 3
2 4
2 5
26
2 7
2 8
2 9
3 0
3 1
3 2
3 3
34
35

C O 3 6
C O 3 7
C O 3 8
C O 3 9

4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3

6 0 5 4
5 5

6 0 5 6
5 7

6 0 5 8
6 0 5 9
6 0 6 0
6 0 6 1
F C 6 2
6 0 6 3
6 0 6 4

6 5
6 6

6 0 6 7
6 0 6 8

6 9
7 0

6 0 7 1
7 2
7 3

6 0 7 4
6 0 7 5
6 0 7 6

7 7
7 8

6 0 7 9

W A I T = $ F C A 8
*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIR!
*CONTINUE FOR ALL 7 SHAPES
SHPADR

[NUE FOR ALL 7 SHAPES
I D F B # < S H A P E 1

D F B # > S H A P E 1
D F B # < S H A P E 2
D F B # > S H A P E 2
D F B # < S H A P E 3
D F B # > S H A P E 3
D F B # < S H A P E 4
D F B # > S H A P E 4
D F B # < S H A P E 5
DFB #>SHAPE5
DFB #<SHAPE6
DFB #>SHAPE6
DFB #<SHAPE7
DFB #>SHAPE7
LDA GRAPHICS ;H
LDA MIXOFF
LDA HIRES
LDA PAGEl
L D A # $ 0 0
STA LOW
LDA #$20
STA HIGH
LDY #$00
LDA #$00
STA (LOW),Y

CLR
HIGH
HIGH
#$40
C L R l
#$60
DELAY

S T A R T J
S T A R T l L

S

S T A R T 2 J

* * * * * * * * * *

MAIN PROGRAM
j R I N I T I A L
) A # $ 0 0
TA SHPNO
)R LOADSHP
5R DRAW
)A DELAY
5R WAIT
C SHPNO
3A SHPNO
i p # $ 0 7
LT START2
v|C BYTE
3A BYTE
MP #$26
LT STARTl
MP ERASE
SUBROUTINES

DA #$00
TA BYTE
TA LINE
TA l i n e a
LC
,DC #$06
T A D E P T H

; H I R E S , P. l

;CLEAR SCREEN 1

;LOAD DELAY
n F P T H■SET INITIAL BYTE, LINE, DEPTH

•FIRST SHAPE NUMBER

•.load shape into temp
• draw

; DELAY

;NEXT shape number

îrSr̂oSTUiETT̂NEXT SNA,
:iF YES, NEXT BYTE
•end of screen?
!tf no, continue draw
ilE YES, ERASE S STAR

* * * * * * * * * *

start over

Hi-Hes Graphics and Animation Using Assembly Language

O i

6 0 8 E ; A D 0 8 6 0 8 2
6 0 9 1 : O A 8 3
6 0 9 2 : A A 8 4
6 0 9 3 : B D 1 9 6 0 8 5
6 0 9 6 : 8 5 l A 8 6
6 0 9 8 : B D l A 6 0 8 7
6 0 9 B : 8 5 I B 8 8
6 0 9 D : A O 0 0 8 9
6 0 9 F : B 1 l A 9 0
6 0 A 1 : 9 9 O A 6 0 9 1
6 0 A 4 : C 8 9 2
6 0 A 5 : C O O F 9 3
6 0 A 7 : 9 0 F 6 9 4
6 0 A 9 : 6 0 9 5

9 6
6 0 A A : A 9 0 0 9 7
60AC: 8D 07 60 98
60AF; AC 05 60 99
60B2: AE 03 60 100
60B5; BD A6 61 101
60B8: 85 IB 102
60BA: BD 66 62 10360BD: 85 lA lot
MBF: AE 07 60 105

si: 3 S " is
S i s S " 5
|: S i : iii1̂: 11 i is
WEt;
KncI' ® BO inb°OI5; g ̂0 ff3
M"; BO Ifs
BOF6; si ss'aS II SS

R T S
* *

60FC: BD A6 61
60FF; 85 IB
6101: BD 66 62
6104: 85 lA
6106: AE 07 60
6109: B1 lA
610B: 5D OA 60
610E: 91 lA
6 11 0 : C 8
6 1 1 1 : B 1 l A
6113: 5D OB 60

L O A D S H P I D A S H P N O ; L
A S L
T A X
I D A S H PA D R , X
S T A L O W
I D A S H PA D R + 1 , X
S T A H I G H
L D Y # $ 0 0

LOADSHPl LDA (LOW),Y
S T A T E M P , Y
I N Y
C R Y # $ 0 F
B L T L O A D S H P l
R T S

* *

D R A W L D A # $ 0 0
S T A X C O U N T

D R A W l L D Y B Y T E
L D X L I N E
L D A H I , X
S T A H I G H
L D A L O , X
S T A L O W
L D X X C O U N T
L D A T E M P, X
STA (LOW),Y
I N Y
LDA TEMP+1 ,X
STA (LOW),Y
I N Y
LDA TEMP+2,X
STA (LOW),Y
I N C X C O U N T
I N C X C O U N T
I N C X C O U N T
I N C L I N E
L D A L I N E
C M P D E P T H
B L T D R A W l
L D A L I N E A
S T A L I N E ; f
R T S

SHPADR,X
LOW
SHPADR+1
H I G H
$ 0 0
(LOW),Y
T E M P, Y

$ 0 F
LOADSHPl

DRAWl

;LOAD SHAPE INTO TEMP

;RESET LINE FOR NEXT CYCLE

ERASE

ERASEl

B Y T E
#$00
XCOUNT
BYTE
L I N E

H I , X
H I G H
L O . X
LOW
X C O U N T
(LOW),Y
TEMP,X
(LOW),Y

(LOW),Y
TEMP+1 ,X

Horizontal Movement and Internal Animation

9 1 l A
C 8
B 1 l A
5 D O C 6 0
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A D 0 3 6 0
C D 0 6 6 0
9 0 0 2
A D 0 4 6 0
8 0 0 3 6 0
4 0 5 1 6 0
0 2 0 0 0 0
0 6 0 0 0 0
7 E 3 7 0 0
7 E 7 F 0 0
0 4 0 0 0 0
0 0 0 0 0 0
7 0 6 F 0 0
7 0 7 F 0 1
0 8 0 0 0 0
1 8 0 0 0 0
7 8 5 F 0 1
7 8 7 F 0 3
1 0 0 0 0 0
3 0 0 0 0 0
7 0 3 F 0 3
7 0 7 F 0 7
2 0 0 0 0 0
6 0 0 0 0 0
6 0 7 F 0 6
6 0 7 F O F
4 0 0 0 0 0
4 0 0 1 0 0
4 0 7 F 0 0
4 0 7 F I F
0 0 0 1 0 0
0 0 0 3 0 0
0 0 7 F I B
0 0 7 F 3 F

1 4 1
1 4 2
1 4 3
1 4 4
1 4 5
1 4 6
1 4 7
1 4 8
149
1 5 0
1 5 1
1 5 2
1 5 3
1 5 4
1 5 5
156 SHAPEl

7E IF 00

158 SHAPE2
7 0 3 F 0 0

1 5 9

160 SHAPE3
7 8 7 F 0 0

161

162 SHAPE4
7 0 7 F 0 1

1 6 3

164 SHAPE5
6 0 7 F 0 3

1 6 5

166 SHAPE6
4 0 7 F 0 7

1 6 7

168 SHAPE7
0 0 7 F O F

1 6 9

STA (LOW),Y
I N Y
L D A (L O W) , Y
EOR TEMP+2,X
S TA (L O W) , Y
I N O X O O U N T
I N O X O O U N T
I NO XOOUNT
I N O L I N E
L D A L I N E
OMP DEPTH
B L T E R A S E l
L D A L I N E A
S TA L I N E
JMP START
HEX 0200000600007E1FOO ;SHAPE TABLES

HEX 7E37007E7F00

hex 0400000C0000703FOO
HEX 706F00707F01

hex O8OOOO18OOOO787FO0
HEX 785F01787F03

HEX 100000300000707F01
HEX 703F03707F07

HEX 200000600000607F03
hex 607F06607F0F

hex 400000400100407F07
hex 407F0D407F1F
hex 000100000300007F0F
HEX 007F1B007F3F

806 by tes

Symbo l t ab l e - numer i ca l o rde r :

L O W =$1A HIGH =$1B
BYTE =$6005 DEPTH =$6006
D E L A Y = $ 6 0 0 9 TEMP =$600A
O L R l = $ 6 0 3 B O L R =$603F
S T A R T 2 = $ 6 0 5 9 I N I T I A L =$6070
DRAW = $ 6 0 A A D R A W l =$60AF
S H A P E l = $ 6 1 3 0 S H A P E 2 =$6140
S H A P E 5 = $ 6 1 7 9 S H A P E 6 =$6188
L O = $ 6 2 6 6 G R A P H I C S =$0050
H I R E S = $ 0 0 5 7 W A I T =$F0A8

LINE
XOOUNT
SHPADR
START
LOADSHP
e r a s e
SHAPE3
SHAPE7
MIXOFF

=$6003
=$6007
=$6019
=$6051
=$608E
=$60EE
=$615B
-$6197
=$0052

Hi-Res Graphics and Animation Using Assembly Language

INTERNAL ANIMATION

82

Internal animation refers to movement of parts of a shape as the shape itself
moves (or doesn't move) around the screen. For example, if we're moving a
person shape around, we might want to move his (her) arms and legs to simu
late walking or running. This is exactly what we're going to do in the next
program (5-5).

The trick to internal animation is simply to have different shape tables dis
playing various parts of the shape in different positions. This can be done with
any type of general movement—vertical, horizontal, diagonal, or curved—or even
if the shape is standing still, but it is applied most naturally to horizontal move
ment, because such movement requires different shape tables anyway. Program
5-5 is virtually identical to Program 5-1 except that the shape is now a person
and the seven shape tables display arms and legs in different positions. When
these shapes are displayed sequentially, the illusion of walking is produced. The
only other change is that a line is drawn along the bottom of the screen (see
lines 55 to 65) at screen line #SB7 (decimal 183) so that the person has some
thing to walk on. You could omit the line and have the person walk on air (witha smile on his/her face?), but both the line and the shape tables are going to be
incorporated into the final game program, so let's leave it the way it is. Here arethe seven shapes for Program 5-5. (One minor note: one arm is shown pointing
up and not moving—this is the arm that carries the gun with which the person is
going to shoot at airplanes—who said game designs have to make sense?)

Shape Numhpr 1 2 4 8 1 2 4 1 2 4 8 1 2 4 1 2 4 8 1 2 4 Shape Tables
O E 0 1• • 0 0

• • 0 0 O E 0 1

• • 0 0 OE 0 1
• • 0 0 4 4 0 1

• • • • 0 0 7 F 0 0
• • • • 6 0 I F 0 0

• • • • 3 0 I F 0 0
• • • • 1 8 I F 0 0

• • 0 0 I F 0 0
• • 0 0 I F 0 0
• • 0 0 I B 0 0

• • • 4 0 31 0 0
• • • • 6 0 6 0 0 0

• • • • 0 0 1 C 0 2
• • • • 0 0 1 C 0 2
• • • • 0 0 1 C 0 2

• • • 0 0 0 8 0 3
• • • • • • • GO 7 E 0 1
• • • • • 0 0 3 E 0 0

• • • • • • 0 0 3 F 0 0
• • • • • • • 4 0 3 F 0 0

• • • • • 0 0 3 E 0 0
• • • • • 0 0 3 E 0 0
• • • • 0 0 3 6 0 0
• • • • 0 0 3 6 0 0
• • • 0 0 6 3 0 0

Horizontal Movement anil Internal Animation

• • 0 0 3 8 0 4
0 0 3 8 0 4

3 8 0 4
1 0 0 6

0 0 7 C 0 3
0 0 7 C 0 0
0 0 7 C 0 0
0 0 7 E 0 0
0 0 7 C 0 0
0 0 3 8 0 0
0 0 3 8 0 0
0 0 6 C 0 0
0 0 4 6 0 1

0 0
0 0

0 0
0 0

7 0 0 8
7 0 0 8

0 0 7 0 0 8
0 0 2 0 O C
0 0 7 8 0 7
0 0 7 8
0 0 7 8
0 0 7 8
0 0 7 8
0 0 7 0
0 0 7 0
0 0 7 0
0 0 7 0

0 1
0 1
0 1
0 1
0 0
0 0
0 0
0 0

■ ■ ■ fl fl ■ ■ ■ ■ ■ □ D D ■ ■ 1 a \ ■1
Q ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ n n ■ ■ L I H i

B ■ ■ H H ■ ■ ■ ■ H n n n ■ H ■ L I H i
m nm s ■ H ■ ■ ■ H ■ n ■ ■ H r i 1 1 H I

H ■ ■ ■ ■ n n n f 1 L I H H
m n ■ H H ■ H H ■ n r n n n H H H H
H I S B 21 ■ H 12 ■ n c n n n ■ H ■ H

n nH In mB H I ■ H o n n n g 1 ■ H H I I H
H i m B I HH B ■ H i : nc i n n i nH H I H I H
H I H B m ^ BH I■ H n t n n ! ■I HI Hi H I BB H iH H ■ i mH IC I D n I HI HI HI H 1̂2
m B H IB ■ h I D K m

■
I Q H I hI H I B

■ ■ B ■ B m H I HI Q□ I Ha I D D B B [B

G O 6 0 1 1
0 0 6 0 1 1
0 0 6 0 1 1
0 0 4 0 1 8
00 70 OF
0 0 7 0 0 3
0 0 7 0 0 3
00 78 03
0 0 7 0 0 3
00 60 01
00 60 01
00 30 03
00 18 06

0 0 4 0 2 3
00 40 23
00 40 23
00 00 31
00 60 IF
00 60 07
00 70 07
00 78 07
00 60 07
0 0 6 0 0 7
0 0 6 0 0 6
0 0 6 0 0 6
0 0 3 0 O C

*[• L - i - .

0 0 0 0 4 7
0 0 0 0 4 7
0 0 0 0 4 7
0 0 0 0 6 2
0 0

! •

0 0
0 0
0 0
0 0
0 0
0 0
0 0 6 0

4 0 3 F
7 0 O F

0 0

5 8 O F
4 0 O F
4 0 O F
4 0 O F
4 0 O D

I B
3 0 3 0

83

Hi-Res Graphics and Animation Using Assembly Language

At first glance, it might seem that these shape tables violate the rule of hav
ing an extra shape byte in the direction of movement. However, if the shape
extends only one bit into the last byte, this is okay because there is room for all
seven shapes in the last byte and an extra shape byte is not needed (see shape
). We could have drawn the shapes over to the left, thus presenting the moreusua type of shape tables, but the reason for not doing so is that drawing shapes

t IS way makes it easier to align the fired bullet with the upraised arm, as we'll
see in the next chapter.
. principle of internal animation is simple, but the application often is notgreater demands are placed on the artistic talents of the programmer.
Srawinô M f animation of Program 5-5 required much time drawing and re-
themseivpc fhc arms from flapping and keep the legs from placing
tlSX'Lke'rr'.̂ I™"""""'dispersed througho t h ̂ much easier than if the shape bytes were
some commer"̂ good reason, the type of internal animation found in
Ion, which diŝ l̂ programs. I'm thinking specifically of Olympic Decath-
pole vaultine athletes running, jumping hurdles, throwing the javelin, andfrom photogra"ĥ ^̂ "'̂ '̂ ^ silhouettes. These shapes almost surely were derived

talented artists m action and transferred to the computer screen
computers in A 'working with graphic utility programs on mainframetiniest artistic ̂ simulation mode. But don't despair. 1 myself, devoid of the
photographs by ̂ successfully transferred complicated shapes frommanaged, at oneT'*̂ "̂̂ shape onto graph paper and filling in the dots. 1 eventhe screen, comnl write a program displaying unicorns galloping acrossis hope for anyone*̂^ ̂ith heads bobbing and tails flapping. If I can do this, there

]PROGRAM 5-5
;ASM

6000: 4C 3F 60

1 *1 SHAPE HORIZONTAL
2
*3

*2 BYTES W I D E , 1 3 L I f
O

A ORG $ 6 0 0 0
OMR PGM5 l i n e DS 16 L I N E A DS 1

7 BYTE D S 1
8 d e p t h DS 1
9 XCOUNT DS 1
10 SHPNO DS 1
1 1 DELAY DS 1
1 2 TEMP D S 3 9
1 3 g r a p h i c s = $ 0 0 5 0
1 4 MIXOEE = $ 0 0 5 2
1 5 H I R E S = $ 0 0 5 7
1 6 PAGEl = $ 0 0 5 4
1 7 H I G H = $ 1 8
1 8 LOW = $ 1 A

I N T E R N A L
1 D E E P

A N I M A T I O N

Horizontal Movement and Internal Animation

A 9 0 0
8 5 l A
A 9 2 0
8 5 I B

W A I T = $ F C A 8
*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYl
* C O N T I N U E F O R A L L 7 S H A P E S

E F I R S T

S H PA D R # < S H A P E 1
> S H A P E 1
< S H A P E 2
> S H A P E 2
< S H A P E 3
> S H A P E 3
< S H A P E 4
#>SHAPE4
< S H A P E 5
#>SHAPE5
#<SHAPE6
#>SHAPE6
#<SHAPE7
#>SHAPE7
GRAPHICS
MIXOFF
HIRES
PAGEl
$ 0 0
LOW
#$20
HIGH
#$00
#$00

1 I R E S , P. 1

•CLEAR SCREEN

9 1 l A

C 8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 6 0
8 0 0 9
A 2 B 7
A O 0 0
B D 3 9
8 5 I B
B D F 9
8 5 l A
A 9 7 F
9 1 l A
C 8
C O 2 7
9 0 F 9

2 0 A E
A 9 0 0
8 0 0 8
2 0 C 2
2 0 O E
A O 0 9
2 0 A 8
2 0 D E
E E 0 8
A O 0 8
C 9 0 7
9 0 E 7
E E 0 5

* * * * * * * * * *

START vJ
S TA R T l L

START2 J

C L R
HIGH
HIGH
#$40
C L R l
#$60
DELAY
#$B7
#$00
H I , X
HIGH
L0 ,X
LOW
#$7F
(LOW),Y

'MAIN PROGRAM
5R INITIAL
DA #$00
TA SHPNO
SR LOAOSHP
SR DRAW
OA DELAY
SR WAIT
SR draw
NC SHPNO
da SHPNO
MP #$07
LT START2
NC BYTE

;load delay
•draw line

•SET INITIAL BYTE, LINE, DEI
[first SHAPE NUMBER
;L0AD SHAPE INTO TEMP
[draw
; DELAY

;ERASE
;NEXT SHAPE NUMBER

;FINISHED ALL 7 SHAPES?
•IF NO, CONTINUE WITH NEX^
;IF YES, NEXT BYTE

Hi-Res Graphics and Animation Using Assembly Language

6 0 A 4 : A D 0 5 6 0
6 0 A 7 : C 9 2 6

6 0 A 9 : 9 0 D 8
6 0 A B : 4 C 8 0 6 0

6 0 A E :
6 0 B 0 ;
6 0 B 3 ;
6 0 B 5 :

A 9 0 0
8 0 0 5 6 0
A 9 A A
8 0 0 3 6 0

6 0 B 8 ; 8 0 0 4 6 0
6 0 B B : 1 8
6 0 B C ; 6 9 0 0
6 0 B E : 8 0 0 6 6 0
6 0 C 1 ; 6 0

6 0 C 2 ;
6 0 C 5 :
6 0 C 6 ;
6 0 C 7 ;
6 0 C A ;
6 0 C C :
6 0 C F :
6 0 0 1 ;
6 0 0 3 :
6 0 0 5 :
6 0 0 8 :
6 0 0 9 :
60DB:
6000 :

600E:
60E0:
60E3:
60E6:
60E9:
60EC:
SOEE:
60F1:
60F3:
60F6:
60F8:
60FB:
6 0 F 0 :
6 0 F E :
6 1 0 0 :
6 1 0 3 :
6 1 0 5 :
6 1 0 6 :
6 1 0 8 :
6 1 0 8 :
6 1 0 D :
6 1 1 0 :
6 1 1 3 :
6 1 1 6 :
6 1 1 9 :
6 1 1 C :
6 1 1 F :
6 1 2 1 :
6 1 2 4 :
6 1 2 7 :
6 1 2 8 :

A O 0 8 6 0
OA
A A
B O 3 1 6 0
8 5 l A
BO 32 60
8 5 I B
AO 00
B 1 l A
99 OA 60
C 8
CO 27
90 F6
6 0

A9 00
80 07 60
AC 05 60
AE 03 60
BO 39 62
85 IB
BO F9 62
85 lA
AE 07 60
B1 lA
80 OA 60
91 lA
C 8
8 1 l A
50 OB 60
91 lA
C 8
B1 lA
50 OC 60
9 1 l A
EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
C D 0 6 6 0
9 0 C 2
A D 0 4 6 0
8 D 0 3 6 0
6 0
0 0 O E 0 1

8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9
11 0
111
11 2
11 3
11 4
11 5
11 6
11 7
1 1 8
11 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0
131
1 3 2
1 3 3
134
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 0

L O A B Y T E
C M P # $ 2 6
B I T S T A R T l
J M P S T A R T

* * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

I N I T I A L L O A # $ 0 0
S T A B Y T E
I D A # $ A A
S T A L I N E
S T A L I N E A
C L C
A D C # $ 0 0
S T A D E P T H
R T S

* *

LOADSHP LOA SHPNO
A S L
T A X
LOA SHPADR.X
S T A L O W
LOA SHPADR+1,X
S T A H I G H
L O Y # $ 0 0

LOADSHPl LDA (LOW) ,Y
STA TEMP.Y
I NY
C P Y # $ 2 7
B L T L O A D S H P l
RTS

E N D O F S C R E E N ?
IF NO, CONTINUE DRAW
IF YES, START OVER

;DEPTH OF SHAPE

;LOAD SHAPE INTO TEMP

d r a w

DRAWI

SHAPE I

L D A
S T A
L D Y
L D X
L D A
S T A
L D A
S T A
L D X
L D A
EOR
S T A
I N Y
L O A
EOR
S T A
I N Y
L D A
EOR
STA
INC
INC
INC
INC
L O A
CMP
B L T
L D A
S T A
R T S
H E X

#$00
X C O U N T
B Y T E
L I N E

H I , X
H I G H

LO,X
LOW
X C O U N T
(L0W),Y
T E M P . X
(L0W),Y

{L0W),Y
TEMP+1,X
(LOW),Y

(L0W),Y
TEMP+2.X
(L0W),Y
XCOUNT
XCOUNT
XCOUNT
L I N E
L I N E
D E P T H
D R A W I
L I N E A
L I N E ; R E S E T L I N E F O R N E X T C Y C L E

OOOEOIOOOEOIOOOEOI

Horizontal Movement and Internal Animation

0 0 O E
0 0 4 4
0 0 7 F
3 0 I F
1 8 I F
0 0 I F
0 0 I B
6 0 6 0
0 0 I C
0 0 I C
0 0 0 8
0 0 7 E
0 0 3 F
4 0 3 F
0 0 3 E
0 0 3 6
0 0 6 3
0 0 3 8
0 0 3 8
0 0 1 0
0 0 7 C
0 0 7 C
0 0 7 E
0 0 3 8
0 0 3 8
0 0 4 6
0 0 7 0
0 0 7 0
0 0 2 0
0 0 7 8
0 0 7 8
0 0 7 8
0 0 7 0
0 0 7 0
0 0 7 0
0 0 6 0
0 0 6 0
0 0 4 0
0 0 7 0
0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 1 8
0 0 4 0
0 0 4 0
0 0 0 0
0 0 6 0

; 0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 0
0 0 5 8
0 0 4 C
0 0 4 0
0 0 4 0

01 00 OE C
0 1 1 4 1
0 0 6 0 I F C
0 0 1 4 2
0 0 0 0 I F C
0 0 1 4 3
0 0 4 0 3 1 C
0 0 1 4 4
0 2 1 4 5 J
0 2 0 0 I C (
0 3 1 4 6
01 00 3E (
0 0 1 4 7
0 0 0 0 3 E (
0 0 1 4 8
0 0 0 0 3 6 (
0 0 1 4 9
0 4 1 5 0
0 4 0 0 3 8
0 6 1 5 1
0 3 0 0 7 0
0 0 1 5 2
0 0 0 0 7 0
0 0 1 5 3
0 0 0 0 6 0
0 1 1 5 4
0 8 1 5 5
0 8 0 0 7 0
0 0 1 5 6
0 7 0 0 7 8
0 1 1 5 7
0 1 0 0 7 8
0 0 1 5 8
0 0 0 0 7 0
0 0 1 5 9
1 1 1 6 0
11 G O 6 0
1 8 1 6 1
O F 0 0 7 0
0 3 1 6 2
0 3 0 0 7 0
0 1 1 6 3
0 1 0 0 3 0
0 6 1 6 4
2 3 1 6 5
2 3 0 0 4 0
3 1 1 6 6
I F 0 0 6 0
0 7 1 6 7
0 7 0 0 6 0
0 7 1 6 8
0 6 0 0 6 0

SHAPE2
0 2

SHAPE3
0 4

SHAPE4
0 8

SHAPES
11

SHAPE6
2 3

4 7 0 0 0 0
6 2 1 7 1
3 F 0 0 7 0
O F 1 7 2
O F 0 0 4 0
O F 1 7 3
0 0 0 0 6 0

SHAPE7
4 7

H E X 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F 0 0

H E X 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0

H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0

H E X 6 0 6 0 0 0
HEX 001002001002001002

H E X 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E O O

HEX 003F00403F00003EOO

HEX 003E00003600003600

HEX 006300
HEX 003804003804003804
HEX 001006007003007000
HEX 007000007E00007000
HEX 003800003800006000

HEX 007008007008007008
HEX 002000007807007801
HEX 007801007801007801
hex 007000007000007000
HEX 007000
HEX 006011006011006011
HEX 00401800700F007003
HEX 007003007803007003
HEX 006001006001003003

Jfx M««004023004023
HEX 00003100601F006007
hex 007007007807006007
hex 006007006006006006

"„fx M0M7000047000047
HEX 00006200403F00700F
hex 00580F00400F00400F
hex 00400F00400D006018

Hi-Res Graphics and Animation Using Assembiy Language

6 2 3 6 ; 0 0 3 0 3 0 1 7 4

9 5 3 b y t e s
S y m b o l t a b l e -

H E X 0 0 3 0 3 0
H I
L O

LOW
B Y T E
D E L A Y
C L R l
S T A R T l

= $ 1 A
= $ 6 0 0 5
= $ 6 0 0 9
= $ 6 0 5 3
= $ 6 0 8 3

L0ADSHP1=$60D3
SHAPE2 =$614F
SHAPE6 =$61EB
GRAPHICS=$C050
WAIT =$FCA8

i c a l o r d e r
H I G H =$18 L I N E = $ 6 0 0 3
DEPTH = $ 6 0 0 6 XOOUNT = $ 6 0 0 7
TEMP =$600A SHPADR = $ 6 0 3 1
OLR = $ 6 0 5 7 L N = $ 6 0 7 9
S TA R T 2 = $ 6 0 8 8 I N I T I A L =$60AE
DRAW =$60DE D R AW l = $ 6 0 E 3
SHAPE3 = $ 6 1 7 6 S H A P E 4 = $ 6 1 9 0
SHAPE7 = $ 6 2 1 2 H I = $ 6 2 3 9
M I X O F F =$0052 P A G E l = $ 0 0 5 4

L I N E A
SHPNO
PGM
START
LOADSHP
SHAPEl
SHAPES
LO
H I R E S

L N

before leaving this chapter. The line drawing routine in Fro-gram (ines 55-65) works okay, but there is a faster way to do it. Considerthe routine from the program:
LDA #$7FLN STA (LOW) Y
I N V

CPY #$27
BLT LN

following routine, which draws the same line:
LDY #$27
LDA #$7F
BTA (LOW) Y
D E Y
BPL LN

(B r a n c h o n P L u s ^ u'■ ôge of #soo to ̂ ^̂ r:utes a branch if the result of an operation is in the
In both cases branch is taken until Y is decremented to #$FF.
second case theT from screen byte positions #$00 to #$27, but in thedone within thê shorter by one instruction because no comparison is
the first for two routine, however, while faster, is not as versatile as
(or to #soi if 'I works only if we wish a register to go to zero
byte #$27 to #505"̂ ^ LN)—it cannot be used to draw the line from screenvalue greater than ̂ ̂ ^̂ "iple, and second, the loop cannot be initialized with a
IXTADSHP sub this routine for example would not work in the
it because it ̂ Ihe shape were larger than #$7F. Nevertheless, I mention
more versatile r" Ŝ d̂ programming technique and while I use the
be kept in mind̂ f"̂ '"'̂ programs in this book, the second routine shouldor program optimization where applicable.

and aniî tToa Whh learned the basic principles of hi res drawing
and move it ar knowledge you now should be able to draw any shapethe screen, even in complicated paths <by changing line' screen bytes at the same time instead of just one or the other).
IIS now e ge in itself provides you with a powerful tool for a wide variety of

app ications. Ihe remaining chapters in Part One will deal with aspects of game
esign and construction together with techniques of more general applicablity

sue 1 as animating multiple shapes discussed in Ohapter 6. The chapters in Part
I wo di.scuss other aspects of hi res animation applicable to both game programs
and any other type of program where hi res animation would be useful.

= $ 6 0 0 4
= $ 6 0 0 8
= $ 6 0 3 F
= $ 6 0 8 0
= $ 6 0 0 2
= $ 6 1 2 8
= $ 6 1 0 4
= $ 6 2 F 9
= $ 0 0 5 7

Paddle and Joystick
Controls and Multiple Shapes
/loir's this for a hit of tiraddfc—
I'ly moriny, a duck shape with a paddle.
If your hand is unsteady
The duck will, are you ready?
More with a c/uite pronounced waddle.

would a game be without a joystick or use
joystick or paddles. Take my keyboard, please -̂Hatê Jctions such as shootingthe keylx)ard to control shape movement and inmate actio
bullets, but joystick or paddle controls are muc easier „tiiize them. In
entertaining-that's why they exist and why most game control verti-this chapter we're going to see how to use these buttons. We're also
cal and horizontal movement and how to use b . different
going to discuss the not insignificant problem o |̂ jp,er will be usedmoving shapes at the same time. Most of the routines in this chapte
in the final game program.

PADDLE AND JOYSTICK CONTROLS
h h I c 0 ^ 'Paddles have rotary knobs and come in sets of paddles into a single

each with its own "firing" button. A joystick combines buttons. Thus,
instrument —the two joystick buttons are equivalent control is
joysticks and paddles can be used interchangea one can accessafforded by paddles. By choosing the |̂ _j.jpbt or forward-back) or
either paddle 0 or paddle 1 (equivalent to joysfic e ̂ ̂ jjfference which but-
either button. When using a joystick, it doesn t button appropriate to the
ton is chosen but with paddles, one should choose o would require a
paddle—using paddle 0 with button 1 or paddle 1 ĵ y ̂ be program's user,certain amount of dexterity certain not to be apprec ̂ ĝbion of the knob or

"Reading" a paddle or joystick (i.e., determining subroutine locatedstick) fortunately is made ea.sy by accessing a but t-m 1 programs. Hieat memory address «FB1F, which is labelled . jp the X register and a
number of the hand control you want to access is p '

I

Hi-Res Graphics and Animation Using Assembiy Language

JSR PREADthen returns a number fromO to255 (*̂ $00 to -SFF) in thcY regis
ter, the particular number depending on the hand control position. Thus.
LDX #$00 Read paddle 0 (stick left-right)
JSR PREAD Returns 0-255 in Y register

LDX #$01 Read paddle ! (slick forward-back)
JSR PREAD Returns 0.255 in Y register
The number in Y can fhf>r. k
movement or line fnr , "^^nipulated to select screen byte for horizontalTo test whether â^ "movement (more about this soon),
switches, $C06l for h t»^ pressed or not requires only reading soft
opcode BMI (Branch o Mi ®C062 for button 1. In conjunction with the
not taken if the the branch is taken if the button is pressed ande button is not pressed. Thus:

LDA $C061

RTS If button 0 is pressed, branch to CONT
JSR draw

LDA $C062
BMI CONT Tf K
RTS utton 1 is pressed, branch to CONT
JSR draw

m^ng shapes MoUVtU'screM^f'' routines to™ » both pad;fa:,d"~

The next program fP
(moving a spaceship verticaUyTexten/' identical to Program 4-2ship s vertical movement by going to control tL space

First, m the beginning of the nmor Program 6-1 in some detailthe MAIN PROGRAM, we go to the ?NiTlAr Then inwe do not set the line PoLion - ̂ he screen byte
paddle position and we do not set DEPTHTer determined by theUNE. The next instruction sends the program rthTroLp''
tnat we read paddle 1 and return a value of 0 255 in here
JSR PREAD), and we're going to use the valufin y ' ̂ «01,However, as there are only 192 screen lines (n.i9n " ""o position,
maximum value in Y to keep the shape on the screen r. "^hp the
However, as there are only 192 screen lines (n.i9n ® position,
maximum value in Y to keep the shape on the screen Beclusrm "
6 lines deep and is drawn from the top line down, the maximum î
we want in LINE is 186 (#$BA)-the shape will then be drawn from
191 ITie instructions in lines 63 to 67 accomplish the clippine. We mmvalue in Y to 187 (#$BB) and if it less than this, we store the value in Ŷ n̂ UNF
If it is equal to or greater than 187, we store the value 186 (*$BA) in Y and th
store Y in EINE (EDA ̂ $BA, TAY [Transfer A to Y], STY LINE). Thus, no matter

Paddle and Joystick Controls and Multiple Shapes

what the paddle position, LINE \%ill not contain a \'alue greater than 186 and this
keeps the shape on the screen.

We then go back to the MAIN PROGRAM and jump to the DEP subroutine
which stores LINE in LINEA and also sets DEPTH—remember that while the
shape depth is a constant, the olue in DEPTH depends on the N-alue in LINE.
Back in the MAIN PROGRAM, we draw the shape with JSR DRAW, delay, and
erase with JSR DRAW (we're using the DRAW-ERASE protocol) The next
instruction sends the program back to PADDLE for another paddle read and we
continue in this loop, continually updating LINE from the paddle position.

DISPLAY AND
CLEAR SCREEN

SET SCREEN
BYTE POSITION

R E A D P A D D L E - C L I P V A L U E T O
0 - 1 8 6 A N D S T O R E I N L I N E

SET LINEA
A N D D E P T H

D R A W

D E L AY

E R A S E

JPROGRAM 6-1
: A S M

6 0 0 0 : 4 C 0 9 6 0

6 0 0 9 : A D 5 0 C O
6 0 0 C : A D 5 2 C O

*ONE SHAPE VERTICAL CONTROLLED BY PADDLÊ
*SHAPE IS 1 BYTE WIDE BY 6 BYTES DE
* *

ORG $6000

XCOUNT
B Y T E
L I N E

L I N E A
DEPTH
DELAY
GRAPHICS
M I X O F F
H I R E S
P A G E l
H I G H
L O W
W A I T
P R E A D
PGM

$C050
$C052
$C057
$C054
$1B
$1A
$FCA8
$FB1E
graphics
m i x o f f

-.HIRES,P.1

ww-

Hi-Res Braphics and Animalion Using Assembly Language

6 0 1 2 : A D 5 4 C O
6 0 1 5 : A 9 0 0
6 0 1 7 : 8 5 l A
6 0 1 9 : A 9 2 0
6 0 1 B : 8 5 I B
6 0 1 D : A O 0 0
6 0 1 F : A 9 0 0
6 0 2 1 : 9 1 l A
6 0 2 3 : C 8
6 0 2 4 : D O F B
6 0 2 6 : E 6 I B
6 0 2 8 : A 5 I B
6 0 2 A : 0 9 4 0
6 0 2 C : 9 0 E F
6 0 2 E : A 9 4 0
6 0 3 0 : 8 0 0 8 6 0

6 0 3 3 : 2
6 0 3 6 : 2
6 0 3 9 ; 2
6 0 3 C : 2
6 0 3 F : /
6 0 4 2 : :
6 0 4 5 : :
6 0 4 8 : '

6 0 4 B : ,
6 0 4 D : ;
6 0 5 0 :

6 0 5 1 :
6 0 5 4 :
6 0 5 7 :
6 0 5 8 :
6 0 5 A :
6 0 5 0 :

6 0 5 E :
6 0 6 0 :
6 0 6 3 :
6 0 6 5 :
6 0 6 7 :
6 0 6 9 :
6 0 6 A :
6 0 6 0 :

6 0 6 E :

6 0 7 0 :
6 0 7 3 :
6 0 7 6 :
6 0 7 9 :
6 0 7 0 :
6 0 7 E :
6 0 8 1 :
6 0 8 3 :
6 0 8 6 :
6 0 8 8 :
6 0 8 B :
6 0 8 0 :
6 0 9 0 :

2 0 4 B 6 0
2 0 5 E 6 0
2 0 5 1 6 0
2 0 6 E 6 0
A O 0 8 6 0
2 0 A 8 F C
2 0 6 E 6 0
4 0 3 6 6 0

A 9 1 0
8 0 0 4 6 0

A O 0 5
8 0 0 6
1 8
6 9 0 6

0 7 6 0

A 2 0 1

9 0 0 3
A 9 B A
A 8
8 0 0 5

A 9 0 0
8 D 0 3 6 0
A O 0 4 6 0
A E 0 5 6 0
B D A 8 6 0
8 5 I B
B O 6 8 6 1
8 5 l A
A E 0 3 6 0
B 1 l A
5 0 A 2 6 0
9 1 l A
E E 0 3 6 0

I D A H I R E S
I D A P A G E l
L D A # $ 0 0
S T A L O W
L D A # $ 2 0
S T A H I G H
L O Y # $ 0 0
L D A # $ 0 0
STA (LOW),Y
I N Y
B N E O L R

-CLEAR SCREEN 1

I NO H I G H
L D A H I G H
OMP #$40
B L T O L R l
L D A # $ 4 0 ; LOAD T IME DELAY
S T A D E L A Y

* * * * * * * * * * M A I N P R O G R A M * * * * * * * * * *
J S R I N I T I A L ; S E T S C R E E N B Y T E

P A D D L E J S R P D L E ; R E A D P A D D L E 1
J S R DEP S E T D E P T H
J S R D R A W ; DRAW
L D A D E L AY
J S R W A I T D E L A Y
J S R DRAW E R A S E
J M P P A D D L E READ PADDLE AGAIN

* * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *
I N I T I A L L D A #$10

S TA B Y T E ;SET STARTING BYTE
R T S

* *

D E P L D A L I N E ;SET DEPTH
S T A L I N E A
O L O
ADO #$06
S T A D E P T H
R T S

P O L E L D X #$01 ;READ PADDLE 1
J S R PREAD ; 0 - 2 5 5 I N Y
O P Y #$BB ; 0 L 1 P T O 0 - 1 8 6
B L T OONT
L D A #$BA
T A Y

O O N T S T Y L I N E ; 0 - 1 8 6 I N L I N E
RT S

* *

DRAWl

#$00
XOOUNT
BYTE
L I N E
H1,X
H I G H

LO,X
LOW
XOOUNT

{LOW).Y
SHAPE.X
(LOW),Y
XOOUNT
L I N E

ZERO XOOUNT
LOAD BYTE
LOAD LINE
LOAD LINE ADDRESS INTO HIGH,LOW

LOAD X WITH XOOUNT
GET BYTE FROM SCREEN
EOR BYTE FROM SHAPE ADDRESS+X
PLOT BYTE

;NEXT LINE

!

Paddle and Joyslick Controls and Multiple Shapes

6 0 9 3 : A D 0 5 6 0 8 4
6 0 9 6 : C D 0 7 6 0 8 5
6 0 9 9 : 9 0 D 8 8 6
6 0 9 B : A D 0 6 6 0 8 7
609E: 8D 05 60 88
6 0 A 1 : 6 0 8 9
60A2: 08 IC 22 90 SHAPE
60A5: 3E 22 7F

L I N E
D E P T H
D R A W l
L I N E A
L I N E

;FINISH SHAPE?
;IF NO, DRAW NEXT LINE
;IF YES, RESET LINE AND

D R A W N E X T C Y C L E

081C223E227F ;SHAPE TABLE

5 5 2 b y t e s

Symbo 1 table - numerical order:
LOW

L I N E
PGM
I N I T I A L
DRAW
L O
H I R E S

= $1A
=$6005
= $ 6 0 0 9
= $ 6 0 4 B
= $ 6 0 6 E
=$6168
=$C057

HIGH
LINEA
CLR l
DEP
DRAWl

=$1B
=$6006
=$6010
=$6051
=$6073

GRAPHICS=$C050
PREAD =$FB1E

XCOUNT
depth
CLR
POLE
SHAPE
MIXOFF
WAIT

=$6003
=$6007
=$6021
=$605E
=$60A2
=$C052
=$FCA8

B Y T E
D E L A Y
PA D D L E
C O N T
H I
P A G E l

P A D D L E m o v e m e n t
In contrast to paddle control of ̂ lect the line position,

ticular screen byte position and use a pa ̂ ',ifvine a particular line posi-
paddle control of horizontal movement involve p position. However, astion and using the paddle read to simole with horizontal movement
you might suspect, things are not always « screen byte can contain one
Remember that in horizontal movement, ea screen byte position y
seven shapes. Therefore, we not only have to _ specifying shapes was re a
a paddle read, but also which shape is to e shape an t
tively easy in previous programs because "we s ar ̂ shape andacceLd\e'other shapes '^^fthe
byte selection is accomplished by the uSi. ̂ . î ^sed on Program 5 , ̂
done in the next program (Program 6-2), vv animation (Program
h o r i z o n t a l m o v e m e n t o f a p e r s o n s h a p e .
will be incorporated into the final game progra ̂ cables and the line orin PrngrTm 6-2, we're going to use "on.rol horizontal move
person to walk on as Program 5-5 ami ve ̂ ̂ ,□ ,he INITIAL ' jj.ment by paddle 0. In the MAIN PROGRAM, ppLE subroutine, w i
to set LINE and DEPTH. Then we jump to
paddle 0 and returns a value of 0-255 in the byte position. ̂ ̂ .We first want to convert the value in Y to a gyTETBL is a table
by the instruction LDA BYTETBL,Y (line 8 ̂ #$OTs, etc., up to 7 ̂
ing of 37 lines of 7 bytes each, 7 #$00 s, 7 # -' value in Y; i.e.,A screen byte from 0 to 36 is selected, depen mg

/]

Hi-Res Braphios and Animation Using Assembiy Language

Screen Byte

0 - 6
7 - 1 3

1 4 - 2 0
2 1 - 2 7

2 4 5 - 2 5 1
2 5 2 - 2 5 5

The screen byte obtained is then stored in HORI2 (line 86), which will be
used in the denote the screen byte position. Note that we are
accessing only 37 (0-36) screen bytes even though 40 (0-39) are availab<e This
is because Y can contain a maximum value of 255 and tr, J i.
bytes, a value of 280 would be needed (40 XShorter by storing, for example, 6 bytes per line for 40 lines hnt .h
for having 7 bytes per line as we'll soon see fif von ih- i' u ^ reason
shapes per screen byte, you're right). There are wa, e related to 7the end of the screen, but this would present an T
y o u w o u l d s e e b y r u n n i n g t h e o r o p r a m c o m p l i c a t i o n a sthe last few bytes at the end of tĥ sc'ee" h' to move into
"■"fa"?'''' "'■'""8 o®« to the bvte Dosî l *■ T'""'''®- l>ewouU be fleeted, but this Is not ne«C r ™P'<=- bytes 1.37

Now that we have the screen
accomplished IvT™

which I't" OFFSETYl a ® unotber look-up table. The
0 to b-"00 .o -Ob, Tbr̂LXTLtcra ŝĥ ê'̂uthhr̂

^alue in Y
Shape Number

Paddle and Joystick Controls and Multiple Shapes

The instruction LDA OFFSET,Y loads the Accumulator \\ith a shape number and
the rest of the PDLE subroutine loads the shape into TEMP using the same
instructions we've seen in Chapter 5. The program then draws the shape, delay's,
erases, and loops back to PADDLE to update the horizontal position continually.
The DRAW routine is the same as in pre\1ous programs except that Y is loaded
with the value in HORIZ instead of BYTE (B^TE is simply not used in this
program).

L O A D S H A P E A D D R E S S E S
I N T O S H P A D R

DISPLAY AND CLEAR SCREEN

S E T L I N E A N D D E P T H

READ PADDLE AND GET SCREEN
BYTE FROM BYTETBL AND SHAPE

N U M B E R F R O M O F F S E T

-OAD SHAPE INTO TEMP

D R A W

D E L A Y

E R A S E

]PROGRAM 6-2

1 *pADDLE OR JOYSTICK CONTROL OF HORIZONTAL MOVEMENT
2 *2 BYTES WIDE, 13 LINES DEEP
3 O R G $ 6 0 0 0

6 0 0 0 : 4 C 3 E 6 0 4 J M P P G M
5 L I N E D S 1
6 L I N E A D S 1
7 D E P T H D S 1
8 H O R I Z D S 1
9 X C O U N T D S 1
1 0 D E L A Y D S 1
1 1 T E M P D S 3 9
12 GRAPHICS = $C050
1 3 M I X O F F = $ C 0 5 2
1 4 H I R E S = $ C 0 5 7
1 5 P A G E l = $ 0 0 5 4
1 6 H I G H = $ 1 8
1 7 L O W = $ 1 A
1 8 W A I T = $ F C A 8

20 *LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
21 ^CONTINUE FOR ALL 7 SHAPES

95

Hi-Res Graphics and Animation Using Assembly Language

9 6

6 0 3 0 ; l A
6 0 3 1 ; 6 1
6 0 3 2 ; 3 B
6 0 3 3 ; 6 1
6 0 3 4 ; 6 2
6 0 3 5 ; 6 1
6 0 3 6 ; 8 9
6 0 3 7 ; 6 1
6 0 3 8 ; B O
6 0 3 9 ; 6 1
6 0 3 A ; 0 7
6 0 3 B ; 6 1
6 0 3 C ; F E
6 0 3 0 ; 6 1
603E; AO 50 CO
6041; AO 52 CO
6044; AO 57 CO
6047; AO 54 CO
6 0 4 A ; A 9 0 0

2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6

6 0 4 C ; 8 5 l A
6 0 4 E ; A 9 2 0
6 0 5 0 ; 8 5 I B
6 0 5 2 : A O 0 0
6 0 5 4 ; A 9 0 0
6 0 5 6 ; 9 1 l A
6 0 5 8 ; C 8
6 0 5 9 ; D O F B
6 0 5 B ; E 6 I B
6050: A5 IB
605F: 09 40
6061: 90 EF
6063: A9 60

6068: A2 B7
606A: AO 00
606C: BD 2B 64
606F: 85 IB

BD EB 64
6074: 85 lA
6076: A9 7F
6078: 91 lA
6 0 7 A : 0 8
6 0 7 8 : C O 2 7
6 0 7 0 : 9 0 F 9

6 0 7 F : 2 0 9 4 6 0
6 0 8 2 : 2 0 A 3 6 0
6 0 8 5 : 2 0 O A 6 0
6 0 8 8 : A D 0 8 6 0
6088: 20 A8 FC
608E: 20 CA 60
6091: 4C 82 60

6094: A9 AA
6096: 80 03 60
6099: 80 04 60
6 0 9 C : 1 8
6 0 9 0 : 6 9 0 0
6 0 9 F : 8 0 0 5 6 0
6 0 A 2 : 6 0

3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
50
51
52
53
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
71
72
73
74
75
76
77
78
79

8 0
81
8 2

P G M

C L R l

CLR

; h i r e s , p . i

;CLEAR SCREEN 1

SHPADR DFB #<SHAPE1
D F B # > S H A P E 1
D F B # < S H A P E 2
D F B # > S H A P E 2
D F B # < S H A P E 3
D F B # > S H A P E 3
D F B # < S H A P E 4
D F B # > S H A P E 4
D F B # < S H A P E 5
DFB #>SHAPE5
DFB #<SHAPE6
DFB #>SHAPE6
DFB #<SHAPE7
DFB #>SHAPE7
LDA GRAPHICS
LDA MIXOFF
l d a h i r e s
LDA PAGEl
LDA #$00
STA LOW
LDA #$20
STA HIGH
LDY #$00
LDA #$00
STA (L0W),Y
INY
BNE CLR
INC HIGH
LDA HIGH
OMP #$40
BLT CLRl
LDA #$60
STA DELAY
LDX #$B7
LDY #$00
LDA HI,x
pA HIGHLDA L0,X
STA LOW

L N # $ 7 F
(LOW),,

OPY #$27

;load delay

;draw line

JSR
JSR pole
JSR DRAW
lda delay
JSR WAIT
JSR draw 'P^LAY
JMP PADDLE 'BRAse

m"7sT"
STA L INE
STA L INEA
CLC
A D C # $ 0 D
S T A D E P T H
R T S

I N i r

•Paddle and Joystick Controls and Multiple Shapes

9 0
9 1
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9
11 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
11 7
1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2

00 OE
1 3 3

6 0 I F
1 3 4

0 0 I F
1 3 5

4 0 3 1
1 3 6
1 3 7

0 0 I C
1 3 8

* * * * * * * * * * * * *

DRAWl

SHAPEl
0 1

$ 0 0
P R E A D ; R E A D P A D D L E 0
BYTETBL,Y ;C0NVERT TO SCREEN BYTE (0
H O R I Z
OFFSET,Y ;GET SHAPE NUMBER

;LOAD SHAPE INTO TEMP

SHPADR.X
LOW
SHPADR+1,X
H I G H
#$00
(LOW),Y
TEMP.Y

* * * * * * * * * * *

#$00
XCOUNT
LINE
HORIZ
H I , X
HIGH
LO,X
LOW
XCOUNT
(LOW),Y
TEMP.X
(LOW),Y

S H A P E 2
0 2

(LOW),Y
TEMP+l.X
(LOW),Y

(LOW),Y
TEMP+2,X
(LOW),Y
XCOUNT
XCOUNT
XCOUNT
l i n e
l i n e
DEPTH
DRAWl .rFSET line
LINEA
l i n e

OOOEOIOOOEOIOOOEOI
004401007F00601F00
301F00181F00001F00
001F00001B00403100

0McS2001C02001C02
000803007E01003E00

•SHAPE TABLES

Hi-Res Graphics and Animation Using Assembiy Language

0 0 7 E 0 1
0 0 3 F 0 0
4 0 3 F 0 0
0 0 3 E 0 0
0 0 3 6 0 0
0 0 6 3 0 0
0 0 3 8 0 4
0 0 3 8 0 4
0 0 1 0 0 6
0 0 7 C 0 3
0 0 7 C 0 0
0 0 7 E 0 0
0 0 3 8 0 0
0 0 3 8 0 0
0 0 4 6 0 1
0 0 7 0 0 8
0 0 7 0 0 8
0 0 2 0 O C
0 0 7 8 0 7
0 0 7 8 0 1
0 0 7 8 0 1
0 0 7 0 0 0
0 0 7 0 0 0
0 0 7 0 0 0
0 0 6 0 1 1
0 0 6 0 1 1
0 0 4 0 1 8
0 0 7 0 O F
0 0 7 0 0 3
0 0 7 8 0 3
0 0 6 0 0 1
0 0 6 0 0 1
0 0 1 8 0 6
0 0 4 0 2 3
0 0 4 0 2 3
0 0 0 0 3 1
0 0 6 0 I F
0 0 7 0 0 7
0 0 7 8 0 7
0 0 6 0 0 7
0 0 6 0 0 6
0 0 3 0 O C
0 0 0 0 4 7
0 0 0 0 4 7
0 0 0 0 6 2
0 0 4 0 3 F
0 0 5 8 O F
0 0 4 0 O F
0 0 4 0 O F
0 0 4 0 O D
0 0 3 0 3 0
00 00 00
0 0 0 0 0 0
0 1 0 1 0 1
0 1 0 1 0 1
0 2 0 2 0 2
0 2 0 2 0 2
0 3 0 3 0 3
0 3 0 3 0 3
0 4 0 4 0 4
0 4 0 4 0 4

0 0 3 E
1 3 9

0 0 3 E
1 4 0

0 0 3 6
141
1 4 2

0 0 3 8
1 4 3

0 0 7 C
1 4 4

0 0 7 C
1 4 5

0 0 6 C
1 4 6
1 4 7

0 0 7 0
1 4 8

0 0 7 8
1 4 9

0 0 7 8
1 5 0

0 0 7 0
1 5 1
1 5 2

0 0 6 0
153

0 0 7 0
154

0 0 7 0
1 5 5

0 0 3 0
1 5 6
1 5 7

0 0 4 0
1 5 8

0 0 6 0
1 5 9

0 0 6 0
1 6 0

0 0 6 0
1 6 1
1 6 2

0 0 0 0
1 6 3

0 0 7 0
1 6 4

0 0 4 0
1 6 5

0 0 6 0
1 6 6
1 6 7

0 0
1 6 8

01

SHAPE3
0 4

SHAPE4
08

SHAPE5
11

SHAPE6
2 3

SHAPE7
4 7

BYTETBL

HEX 003F00403F00003E00

HEX 003E00003600003600

HEX 006300
HEX 003804003804003804

HEX 001006007C03007C00

HEX 007C00007E00007C00

HEX 003800003800006000

HEX 004601
HEX 007008007008007008

HEX 00200C007807007801

HEX 007801007801007801

HEX 007000007000007000

H E X 0 0 7 0 0 0
HEX 006011006011006011

HEX 00401800700F007003

HEX 007003007803007003

HEX 006001006001003003

H E X 0 0 1 8 0 6
HEX 004023004023004023

HEX 00003100601F006007

HEX 007007007807006007

HEX 006007006006006006

H E X 0 0 3 0 0 0
H E X 0 0 0 0 4 7 0 0 0 0 4 7 0 0 0 0 4 7

H E X 0 0 0 0 6 2 0 0 4 0 3 F 0 0 7 0 0 F

H E X 0 0 5 8 0 F 0 0 4 C 0 F 0 0 4 0 0 F

H E X 0 0 4 0 0 F 0 0 4 0 0 D 0 0 6 0 1 8

H E X 0 0 3 0 3 0
H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEX 01010101010101

H E X 0 2 0 2 0 2 0 2 0 2 0 2 0 2

H E X 0 3 0 3 0 3 0 3 0 3 0 3 0 3

H E X 0 4 0 4 0 4 0 4 0 4 0 4 0 4

Paddle and Joystick Controls and Multiple Shapes

Hi-Res Graphics and Animation Using Assembiy Language-

L O A D S H A P E A D D R E S S E S
I N T O S H P A D R

D I S P L A Y A N D C L E A R S C R E E N

R E A D P A D D L E 0 A N D G E T S C R E E N
B Y T E F R O M B Y T E T B L A N D S H A P E

N U M B E R F R O M O F F S E T

L O A D S H A P E I N T O T E M P

D E L A Y

R E A D P A D D L E 1 - C L I P V A L U E
T O 0 - 1 8 6 A N D S T O R E I N L I N E

S E T L I N E A A N D D E P T H

D R A W

D E L A Y

E R A S E

JPROGRAM 6-3
: A S M

6 0 0 0 : 4 C 2 6 6 0

6 0 1 8 : F 7
6 0 1 9 : 6 0

♦JOYSTICK CONTROL OF HORIZONTAL & VERTICAL MOVEMENT
BYTES WIDE

ORG

L I N E
L I N E A
D E P T H
HORIZ
XCOUNT
D E L AY
TEMP
GRAPHICS
MIXOFF
HIRES
PAGET
H I G H
LOW
W A I T
PREAD

, 13 LINES DEEP
$6000
PGM
1

1 5
$C050
$C052
$C057
SCO 54
$1B
$1A
SFCAS
SFBIE♦LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE

♦C O N T I N U E F O R A L L 7 S H A P E S
F I R S T

S H PA D R #<SHAPE1
#>SHAPE1

Paddle and Joystick Controls and Multiple Shapes

0 6
6 1
1 5
6 1
2 4
6 1
3 3
6 1
4 2
6 1
5 1
6 1
A D 5 0 C O
A D 5 2 C O
A D 5 7 C O
AD 54 CO
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F B
E 6 I B
A 5 I B
C9 40
9 0 E F
A 9 6 0
8 D 0 8 6 0

2 0 6 A 6 0
A 9 2 0
2 0 A 8 F C
2 0 9 1 6 0
2 0 A D 6 0
A D 0 8 6 0
2 0 A 8 F C

: 2 0 A D 6 0
: 4 C 5 0 6 0

A 2 0 0
2 0 I E F B
B 9 6 0 6 1
8 0 0 6 6 0
B 9 6 3 6 2

B D 1 8 6 0 7 3
8 5 l A 7 4
B D 1 9 6 0 7 5
8 5 I B 7 6
A O 0 0 7 7
B 1 l A 7 8
9 9 0 9 6 0 7 9
C 8 8 0
C O O F 8 1
9 0 F 6 8 2
6 0 8 3
A 2 0 1 8 4

D F B # < S H A P E 2
D F B # > S H A P E 2
D F B # < S H A P E 3
D F B # > S H A P E 3
D F B # < S H A P E 4
D F B # > S H A P E 4
D F B # < S H A P E 5
D F B # > S H A P E 5
D F B # < S H A P E 6
D F B # > S H A P E 6
D F B # < S H A P E 7
D F B # > S H A P E 7

P G M L D A G R A P H I C S ; H I R E S , P . l
L D A M I X O F F
L D A H I R E S
L D A P A G E l
L D A # $ 0 0 ; C L E A R S C R E E N 1
S TA L O W
L D A # $ 2 0
S T A H I G H

C L R l L D Y # $ 0 0
L D A # $ 0 0

C L R S T A (L O W) , Y
I N Y
B N E C L R
I N C H I G H
L D A H I G H
CMP #$40
B L T C L R l
L D A # $ 6 0 ; L 0 A D D E L A Y
S T A D E L A Y

* * * * * * * * * * m a i n p r o g r a m * * * * * * * * * *
P A D D L E J S R P D L E O

L D A # $ 2 0
J S R W A I T
J S R P D L E l
J S R D R AW
L D A D E L AY
J S R W A I T
J S R D R AW
J M P PA D D L E

* * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *
P D L E O L D X # $ 0 0

J S R P R E A D ; R E A D P A D D L E 0
LDA BYTETBL.Y ;CONVERT TO SCREEN BYTE (0
S T A H O R I Z
LDA OFFSET,Y ;GET SHAPE NUMBER
A S L i L O A D S H A P E I N T O T E M P

;L0AD DELAY

P D L E l

LDA OFFSET,Y
A S L
T A X
LDA SHPADR,X
S TA L O W
LDA SHPADR+1,X
S T A H I G H
L D Y # $ 0 0
LDA (LOW),Y
S TA T E M P, Y
I N Y
C P Y # $ 0 F
B L T L O A D
RT S
L D X # $ 0 1

Hi-Res Braphlcs and Animation Using Assembiy Language

pressed. Also, the program is designed so that only one bullet can be fired at a
time; i.e., a bullet on the screen must go off before the next one can be drawn
(the program doesn't have to have this feature but what the heck, why not). We
accomplish this by reserving a memory location labelled BULON and loading it
with #$00 when a bullet is not on the screen and with #$01 when one is. Thus
testing BULON for #$00 or #$01 will tell us the bullet status.

The bullet shape itself is just a single dot, both for convenience and also
because it looks fine that way. This simplifies the BTEMP (B for Bullet) loading
and also the draw routine. For example, a bullet shape is loaded by retrieving the
shape address and loading its contents directly into BTEMP without the need for
any counters (see the LOADBUL subroutine). Also, because the bullet shape has
a depth of one, the draw routine has no need for XCOUNT, BLINEA, or CMP
DEPTH; drawing (and erasing) is accomplished simply by LDA (LOW),Y, EOR
BTEMP, STA (LOW),Y (see the BDRAW subroutine). In addition, because the
first bullet shape occupies only the first or leftmost bit, the BSHAPE table need
only consist of one screen byte—there is no need for an extra byte in the direc
t i o n o f m o v e m e n t .

The bullet is drawn moving up eight lines at a time. The reason for this is not
apparent in Program 6-3 but will be when we incorporate the routine into the
final game program. The reason is speed. In the game program, we want the
bullet to move much faster than a plane moving across the screen. The plane and
bullet move once per drawing cycle and the plane moves in 1-bit increments.

jgg Moving the bullet up one line at a time, for example, would slow it down so
■ much relative to the plane as to detract seriously from whatever simulation ofrealism we hope to achieve. Although eight line moves may not be appropriate

for most shapes, it works fine with a single dot and the animation simulates a
fired bullet quite well.

Finally, we have to test for the bullet reaching the top of the screen, at which
point it is erased in preparation for the next firing. The bullet starts its screen
traversal at line #$A4, just above the raised arm of the man. If we keep subtract
ing 8 from this value to get to a line position near the top of the screen, the
nearest line to the top turns out to be 4. Thus, we do a CMP #$05 (line 112); if
the line position is less than this, we've reached the top; if more, we continue
drawing the bullet.

So much for the easy part, now for the mind-bender. Designing a compli
cated program, such as one that integrates multiple moving shapes, is best done,
at least in my experience, by paying particular attention to the program flow
chart, long before getting into extensive program details (this is always a good
idea but is especially important for difficult programs). We'll be examining the
flowchart for Program 6-4 in detail shortly. A further point regarding multiple
shape programs, and one alluded to briefly in the bullet section above, is that
each shape has essentially its own program within a program. For example, in
Program 6-4, the bullet shape employs BINITIAL, BDRAW, BSHPADR, BHORIZ,
etc., while the person shape uses its own set of labels and routines such as
MINITIAL, MDRAW, MHORIZ, etc. (M stands for Man; let's face it, a man is more
likely to be firing bullets at passing planes than a woman [a sad commentary?], in
any case, P for Person is not used because it is used for Plane in later programs.)
The use of these separate routines and labels is a necessity, but a welcome one,
because they make the program much easier to write and read.

Paddle and Joyslick Controls and MuHiple Shapes

Remember the principles of animation discussed in previous chapters; i.e.

M O V E

D R A W

D E L A Y

E R A S E

We can modify this for paddle control as follows:

P A D D L E R E A D

D R A W

D E L A Y

E R A S E

When drawing multiple shapes whose movement is cd.itrolled by a paddle,
the diagram looks like this (without paddle control, substitute Move for Paddle):

P A D D L E R E A D

D R A W M A N D R A W B U L L E T

D E L A Y D E L A Y

E R A S E M A N E R A S E B O T H

Let's now examine in detail the flowchart for Program 6-4.

Hi-Res Graphics and Animation Using Assembiy Language

Courage, we're almost done. Because we've seen ail the routines before,
there is no need to discuss the details of Program 6-4 except for one point. The
following diagram illustrates the position of the man shape when screen byte 0
and shape 0 are selected by the paddle read.

Screen Byte

+ - 4 - 4 -

Assuming the bullet is ready to be fired, i.e., it is not already on the screen,
the same paddle read also selects screen byte 0 and shape 0 for the bullet shape.
B shape 0 is a single dot drawn at the leftmost bit position (shape byte #$01)
and, if drawn in screen byte 0, will appear to be fired from a position remote
from the upraised arm that holds the gun. To align the bullet exactly with the
upraised arm, in the LOADBUL subroutine we add 2 to the bullet screen byte
position (lines 192 and 193) before drawing. Thus, in this example, bullet shape
0 will be drawn in the leftmost bit position of screen byte 2 and will appear to
emerge from the proper position. This relationship holds true throughout the
screen range regardless of screen byte or shape number. This is the reason the
man shape is drawn the way it is—remember the discussion in Chapter 5 regard
ing positioning the upraised arm in the leftmost bit position of the third screen
byte of the shape table.

]PROGRAM 6-4
: A S M

6 0 0 0 : 4 C 5 2 6 0

'̂ PADDLE CONTROL OF HORIZONTAL MOVEMENT AND SHOOTING BULLETS

M L I N E
MLINEA
B L I N E
DEPTH
MHORIZ
BHORIZ
HORIZB
HORIZM
BULON
XCOUNT
D E L AY

$6000
PGM
1
1
1
1
1
1
1
1

M T E M P O S 3 9

i

1 7 G R A P H I C S $C050
1 8 M I X O F F = $C052
1 9 H I R E S = $ C 0 5 7
2 0 P A G E l = $ C 0 5 4
2 1 H I G H = $1B
2 2 LOW = $1A
23 W A I T = $FCA8
2 4 PREAO = $FB1E
2 5 B U T T O N = $C061 ; BUTTON 0
2 6 *LOAO SHAPE ADDRESSES IN TO SHPAOR, LOW BYTE FIRST
2 7 ♦C O N T I N U E F O R ALL 7 SHAPES

6 0 3 6 : B E 2 8 M S H PA O R OFB # < M S H A P E 1
6 0 3 7 : 6 1 2 9 O F B # > M S H A P E 1
6 0 3 8 : E 5 3 0 OFB #<MSHAPE2
6 0 3 9 : 6 1 3 1 O F B #>MSHAPE2
6 0 3 A : O C 32 O F B #<MSHAPE3
6 0 3 B : 6 2 33 O F B #>MSHAPE3
6 0 3 C : 3 3 3 4 O F B #<MSHAPE4
6 0 3 0 : 6 2 3 5 O F B # > M S H A P E 4
6 0 3 E : 5 A 3 6 O F B # < M S H A P E 5
6 0 3 F : 6 2 3 7 O F B #>MSHAPE5
6 0 4 0 : 8 1 3 8 O F B # < M S H A P E 6
6 0 4 1 : 6 2 3 9 O F B #>MSHAPE6
6 0 4 2 : A 8 4 0 OFB # < M S H A P E 7
6 0 4 3 : 6 2 4 1 O F B #>MSHAPE7
6 0 4 4 : C F 4 2 BSHPADR OFB #<BSHAPE1
6 0 4 5 : 6 2 4 3 O F B #>BSHAPE1 111
6 0 4 6 : D O 4 4 OFB #<BSHAPE2
6 0 4 7 : 6 2 45 O F B #>BSHAPE2 ■
6 0 4 8 : D 1 4 6 OFB #<BSHAPE3
6 0 4 9 : 6 2 4 7 O F B #>BSHAPE3
6 0 4 A : D 2 4 8 OFB #<BSHAPE4
6 0 4 B : 6 2 4 9 O F B #>BSHAPE4
6 0 4 C : 0 3 5 0 OFB #<BSHAPE5
6 0 4 0 : 6 2 5 1 O F B #>BSHAPE5
6 0 4 E : 0 4 5 2 OFB #<BSHAPE6
6 0 4 F : 6 2 53 OFB #>BSHAPE6
6 0 5 0 : 0 5 54 O F B #<BSHAPE7
6 0 5 1 : 6 2 5 5 O F B #>BSHAPE7
6 0 5 2 : A O 5 0 CO 56 PGM L O A GRAPHICS ; H I R E S , P. l
6 0 5 5 : A O 5 2 CO 57 L O A M I X O F F
6 0 5 8 : A O 5 7 CO 5 8 L O A H I R E S
6 0 5 B : A O 5 4 CO 59 L O A P A G E l
6 0 5 E : A 9 0 0 6 0 L O A #$00 ;CLEAR SCREEN 1
6 0 6 0 : 8 5 l A 6 1 S TA LOW
6 0 6 2 : A 9 2 0 62 L O A #$20
6 0 6 4 : 8 5 I B 6 3 S T A H I G H
6 0 6 6 : A O 0 0 6 4 C L R l L O Y #$00
6 0 6 8 : A 9 00 6 5 L O A #$00
6 0 6 A : 9 1 l A 6 6 CLR STA (LOW).Y
6 0 6 C : C 8 6 7 I N Y
6 0 6 0 : D O FB 6 8 BNE CLR
6 0 6 F : E 6 I B 6 9 INC HIGH
6 0 7 1 : A 5 I B 70 LOA HIGH
6 0 7 3 : C 9 40 7 1 CMP #$40
6 0 7 5 : 9 0 E F 72 B LT C L R l
6 0 7 7 : A 9 5 0 73 L O A #$50 ;LOAO DELAY
6 0 7 9 : 8 0 0 0 6 0 7 4 S T A D E L AY
6 0 7 C : A 2 8 7 7 5 L O X #$B7 ;ORAW LINE
6 0 7 E : A O 0 0 7 6 L O Y #$00
6 0 8 0 : B O OC 6 4 7 7 L O A H I , X

Hi-Res Braphlcs and Animation Using Assembiy Language ■ •

6 1 9 9 : B D 4 5 6 0 2 0 0 L O A BSHPA0R+1,X
6 1 9 C : 8 5 I B 2 0 1 S T A H I G H
6 1 9 E : A O 0 0 2 0 2 L O Y # $ 0 0
6 1 A 0 : 8 1 l A 2 0 3 L O A (LOW).Y
6 1 A 2 : 8 0 OE 6 0 2 0 4 S TA BTEMP

6 1 A 5 : 6 0 2 0 5 R T S
2 0 6 *

6 1 A 6 : A E 0 5 6 0 2 0 7 BORAW L O X B L I N E
6 1 A 9 : A C 0 9 6 0 2 0 8 L O Y H O R I Z B
6 1 A C : B D DC 6 4 2 0 9 L O A H I , X
6 1 A F : 8 5 I B 2 1 0 S T A H I G H
6 1 B 1 : B D 9 C 6 5 2 1 1 L O A L O , X
6 1 B 4 : 8 5 l A 2 1 2 S T A LOW
6 1 B 6 : B 1 l A 2 1 3 L O A (LOW).Y
6 1 B 8 : 4 0 OE 6 0 2 1 4 EOR B T E M P
6 1 B B : 9 1 l A 2 1 5 S T A (LOW),Y
6 1 B D : 6 0 2 1 6 R T S
6 1 B E : 0 0 OE 0 1 2 1 7 MSHAPEl H E X OOOEOIOOOEOIOOOEOI ;MAN SHAPE TABLES
6 1 C 1 : 0 0 OE 0 1 0 0 O E 0 1
6 1 C 7 : 0 0 4 4 0 1 2 1 8 H E X 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F 0 0
6 1 C A : 0 0 7 F 0 0 6 0 I F 0 0
6 1 0 0 : 3 0 I F 0 0 2 1 9 H E X 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0
6 1 0 3 : 1 8 I F 0 0 0 0 I F 0 0
6 1 0 9 : 0 0 I F 0 0 2 2 0 H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0
6 1 0 C : 0 0 I B 0 0 4 0 3 1 0 0
6 1 E 2 : 6 0 6 0 0 0 2 2 1 HEX 6 0 6 0 0 0

114 6 1 E 5 : 0 0 I C 0 2 2 2 2 MSHAPE2 HEX 0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 C 0 2
6 1 E 8 : 0 0 I C 0 2 0 0 I C 0 2

■ 6 1 E E : 0 0 0 8 03 2 2 3 HEX 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0
6 1 F 1 : 0 0 7 E 0 1 0 0 3 E 0 0
6 1 F 7 : 0 0 3 F 0 0 2 2 4 H E X 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0
6 1 F A : 4 0 3 F 0 0 0 0 3 E 0 0
6 2 0 0 : 0 0 3 E 0 0 2 2 5 H E X 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0
6 2 0 3 : 0 0 3 6 0 0 0 0 3 6 0 0
6 2 0 9 : 0 0 6 3 0 0 2 2 6 H E X 0 0 6 3 0 0
6 2 0 C : 0 0 3 8 0 4 2 2 7 MSHAPE3 H E X 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4
6 2 0 F : 0 0 3 8 0 4 0 0 3 8 0 4
6 2 1 5 : 0 0 10 0 6 2 2 8 HEX 001006007C03007C00
6 2 1 8 : 0 0 7C 0 3 0 0 7 C 0 0
6 2 1 E : 0 0 7C 0 0 2 2 9 HEX 007C00007E00007C00
6 2 2 1 : 0 0 7 E 0 0 o o o 0 0
6 2 2 7 : 0 0 3 8 0 0 2 3 0 HEX 003800003800006C00
6 2 2 A : 0 0 3 8 0 0 00 6C 0 0
6 2 3 0 : 0 0 4 6 0 1 2 3 1 H E X 0 0 4 6 0 1
6 2 3 3 : 0 0 7 0 0 8 2 3 2 M S H A P E 4 HEX 007008007008007008
6 2 3 6 : 0 0 7 0 0 8 0 0 7 0 0 8
6 2 3 C : 0 0 2 0 OC 2 3 3 H E X 00200C007807007801
6 2 3 F : 0 0 7 8 0 7 0 0 7 8 0 1
6 2 4 5 : 0 0 7 8 0 1 2 3 4 HEX 007801007801007801
6 2 4 8 : 0 0 7 8 0 1 0 0 7 8 0 1
6 2 4 E : 0 0 70 0 0 2 3 5 HEX 007000007000007000
6 2 5 1 : 0 0 7 0 0 0 0 0 7 0 0 0
6 2 5 7 : 0 0 70 0 0 2 3 6 HEX 0 0 7 0 0 0
6 2 5 A : 0 0 6 0 11 2 3 7 MSHAPE5 HEX 006011006011006011
6 2 5 0 : 0 0 6 0 1 1 0 0 6 0 11
6 2 6 3 : 0 0 4 0 18 2 3 8 H E X 00401800700F007003
6 2 6 6 : 0 0 7 0 OF 0 0 7 0 03
6 2 6 C : 0 0 7 0 0 3 2 3 9 HEX 0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3
6 2 6 F : 0 0 7 8 0 3 0 0 7 0 0 3
6 2 7 5 : 0 0 6 0 0 1 2 4 0 HEX 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3
6 2 7 8 : 0 0 6 0 01 0 0 3 0 0 3

Paddle and Joystick Controls and Multiple Shapes

6 2 7 E :
6 2 8 1 :
6 2 8 4 :
6 2 8 A :
6 2 8 D :
6 2 9 3 :
6 2 9 6 :
6 2 9 C :
6 2 9 F :
6 2 A 5 :
6 2 A 8 :
6 2 A B :
6 2 B 1 :
6 2 B 4 :
6 2 B A :
62BD:
6 2 C 3 :
6 2 C 6 :
62CC:
6 2 C F :
6 2 D 0 :
6 2 D 1 :
6 2 D 2 :
6 2 D 3 :
6 2 D 4 :
6 2 D 5 :

0 0 1 8 0 6
0 0 4 0 2 3
0 0 4 0 2 3
0 0 0 0 3 1
0 0 6 0 I F
0 0 7 0 0 7
0 0 7 8 0 7
0 0 6 0 0 7
0 0 6 0 0 6
0 0 3 0 O C
0 0 0 0 4 7
0 0 0 0 4 7
0 0 0 0 6 2
0 0 4 0 3 F
0 0 5 8 O F
00 4C OF
0 0 4 0 O F
00 40 OD
0 0 3 0 3 0

2 4 1
2 4 2

0 0 4 0
2 4 3

0 0 6 0
2 4 4

0 0 6 0
2 4 5

0 0 6 0
2 4 6
2 4 7

0 0 0 0
2 4 8

0 0 7 0
2 4 9

0 0 4 0
2 5 0

0 0 6 0
2 5 1
2 5 2
2 5 3
2 5 4
2 5 5
2 5 6
2 5 7
2 5 8

HEX
M S H A P E 6 H E X
2 3

0 6
H E X

M S H A P E 7 H E X
4 7

0 0 1 8 0 6
0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3

0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7

0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7

0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6

0 0 3 0 0 C
0 0 0 0 4 7 0 0 0 0 4 7 0 0 0 0 4 7

0 0 0 0 6 2 0 0 4 0 3 F 0 0 7 0 0 F

0 0 5 8 0 F 0 0 4 C 0 F 0 0 4 0 0 F

0 0 4 0 0 F 0 0 4 0 0 D 0 0 6 0 1 8

H E X
B S H A P E l H E X
B S H A P E 2 H E X
B S H A P E 3 H E X
B S H A P E 4 H E X
B S H A P E 5 H E X
B S H A P E 6 H E X
B S H A P E 7 H E X
B Y T E T B L
O F F S E T
H I
L O

0 0 3 0 3 0
0 1
0 2
0 4
0 8
1 0
2 0
4 0

:BULLET SHAPES

1628 by tes

S y m b o l t a b l e - n u m e r i c a l o r d e r :

L O W = $ 1 A H I G H = $ 1 B M L I N E =$6003 M L I N E A =$6004
B L I N E = $ 6 0 0 5 D E P T H =$6006 MHORIZ =$6007 BHORIZ =$6008
HORIZB =$6009 HORIZM =$600A BULON =$600B XOOUNT =$6000
D E L AY = $ 6 0 0 0 BTEMP =$600E MTEMP =$600F M S H PA O R =$6036
BSHPADR =$6044 PGM = $ 6 0 5 2 O L R l =$6066 OLR =$606A
L N = $ 6 0 8 0 PADDLE =$6099 B U L L E T l =$60B7 B U L L E T =$6080
T O P = $ 6 0 D E M I N I T I A L= $ 6 0 E 4 B I N I T I A L =$60F3 P O L E =$60FE
P D L E l = $ 6 1 1 4 L O A D = $ 6 1 2 E MORAW =$6139 M O R AW l = $ 6 1 3 E
LOADBUL =$6183 BDRAW = $ 6 1 A 6 M S H A P E l =$61BE M S H A P E 2 =$61E5
MSHAPE3 =$6200 M S H A P E 4 =$6233 M S H A P E 5 =$625A M S H A P E 6 =$6281
MSi lAPE7 =$62A8 B S H A P E l = $ 6 2 0 F B S H A P E 2 =$6200 B S H A P E 3 =$6201
BSHAPE4 =$6202 B S H A P E 5 =$6203 B S H A P E 6 =$6204 B S H A P E 7 =$6205
BYTETBL =$6206 OFFSET =$6309 H I =$6400 LO =$6590
GRAPHI0S=$0050 MIXOFF =$0052 PA G E l =$0054 H I R E S =$0057
BUTTON =$0061 PREAD =$FB1E WAIT =$F0A8

We've now gotten through the most difficult part of our discussion of game
design. The next few chapters will discuss collisions and explosions, scoring,
sound, and in Chapter 10, assembling the final game which involves more or less
the same technique developed in this chapter, i.e., a detailed examination of the
flowchart, except on a larger scale.

Collisions and Explosions
A scientist from the war games division
Designed a game with the ultimate collision.
Out of mutual fear
Missiles went flying in air,
And then, a final nuclear fission.

^̂ollision detection is an integral part of almost every game program and
can be used for almost any purpose because once a collision is detected, the
program can be instructed to do a multitude of things. For example, a shape can
be constricted to the lanes of a maze by not allowing movement past lane bound
aries if a collision with these boundaries is detected. In our game program, we're
going to detect a collision of a bullet with a passing plane and this will be fol
lowed by drawing explosion shapes at the area of impact. In later chapters we
will see how to integrate sound and scoring with these collision events.

C O L U S I O N D E T E C T I O N

The heart of collision detection is the AND instruction. AND compares each
bit of the Accumulator with the corresponding bit of a byte, either a direct value
or the contents of a memory location, and returns a value of 1 if both bits are 1;
otherwise, the result will be 0. The result is stored in the Accumulator.

E x a m p l e

A c c u m u l a t o r 0 0 1 1 0 0 1 1
A N D b y t e 0 1 0 1 0 1 0 1

Result in Accumulator 0 0 0 1 0 0 0 1

Ixrt's see how we can use this instruction to detect collisions. Suppose we
have a bullet shape, a single dot, moving up the screen. We want to ask; does the
corresponding bit position of the next screen byte position the bullet is going to
move into contain a 1 (i.e., a shape) or a 0 (i.e., no shape)? If the screen bit

Collisions and Explosions

contains a 0, ANDing the screen byte with the bullet shape byte will return a 0; if
it contains a 1, ANDing will return some number greater than 0.

E x a m p l e

N o c o l l i s i o n
Screen byte in Accumulator (#$7E)
AND with bullet shape (#$01)

R e s u l t i n A c c u m u l a t o r (z e r o)

C o l l i s i o n
Screen byte in Accumulator (#$7E)
AND with bullet shape (#$02)

Result in Accumulator (non-zero)

0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

Shape on Screen
0 1 1 1 1 1 1
1 0 0 0 0 0 0

Shape on Screen
0 1 1 1 1 1 1
0 1 0 0 0 0 0

Note that the screen byte itself does not have to be entirely empty for there
to be no collision; only the corresponding bit position must be empty. This is
exactly what we want. Suppose the screen byte #S7E corresponds to the bottom
line of a plane shape moving left to right. If a bullet is to move into this screen
byte and if the bullet shape byte, by virtue of its horizontal positioning, is #$01,
the AND instruction will return a value of 0, i.e., no collision, which describes
the situation perfectly; the bullet will pass just to the left of the plane (see Shape
on Screen column above). On the other hand, if the bullet shape byte, by virtue
of its horizontal positioning, is #$02, the bullet will appear to hit the plane and
the AND instruction will return a value greater than 0, i.e., a collision. (There is
an obvious problem here if the high or leftmost bit is set to 1 for either the
screen or shape byte as it is for selecting some colors but we'll get to this prob
lem in the chapter on drawing in color—for now, and for all the programs in
Part One, the high bit is set to 0).

Now that these principles have collided with your brain cells, we can de
scribe a general routine for collision detection as follows:

LDA Screen Byte
AND Shape Byte
CMP #$00
B E Q N O H I T

J M P C O L L I S I O N

. R E S U LT I S Z E R O I F N O C O L L I S I O N

; B R A N C H T O N O H I T I F N O C O L L I S I O N
: G O T O C O L L I S I O N I F C O L L I S I O N

The CMP #$00 is not really needed here, as BEQ will branch when the result of
the previous operation is zero, but it is included to make the program easier to
r e a d .

This general routine presents a problem when we want to detect a collision
with shapes moving non-vertically using a DRAW-DRAW protocol. Vertical
movement with DRAW-DRAW is okay—the screen byte to be AND'ed is one or
more lines above or below the shape and is either empty or not. However, non-
vertical movement always contains a horizontal vector and in horizontal move
ment, the same screen byte is repeatedly accessed for each of the seven shapes.
Thus, i f we use DRAW-DRAW and the AND test for horizontal movement, the
first time we draw a shape we're okay. But when we want to draw the next
shape, the same screen byte is accessed (except at the screen byte boundaries)
and AND'ed with the shape byte. The screen byte still contains the first shape
byte because there is no erase cycle and thus a collision will be detected. In

Hi-Res Graphics and Animaiion Using Assembiy Language

other words, the shape will continually "collide" with itself. Therefore if a shape
with horizontal movement is itself to be used for collision detection, it must use
the DRAW-ERASE protocol. DRAW-ERASE works because the shape byte is
erased before the collision test. Note that with DRAW-ERASE, the shape byte and
not the screen byte is erased. Thus, if the screen byte contains an "on" bit from
another shape, this bit will not be erased by EOR Shape Byte because with EOR,
0 + 1 = 1 . T h u s :

Shape 1 Shape 2
L D A S c r e e n B y t e 1 1 1 0 0 0 1 # $ 0 7 # $ 4 0
EOR Shape 1 Byte 1 1 1 0 0 0 0

Resu l t i n Accumula to r 0 0 0 0 0 0 1 Shape 2 s t i l l i n sc reen by te

As the first shape is both drawn and erased with EOR, the bit from the second
shape is always present for the AND test and a collision will result when the first
shape enters this bit position.

Let's put all this to work in an actual program. The next program (Program
7-1) is essentially the same as Program 6-3 except now we've drawn a line in the
left half of the screen near the top—if a fired bullet hits this line, a long delay
will ensue as a collision marker. Shooting the bullet in the right half of the
screen will, of course, result in no collision, as there's no line there.

118 Now to the details of Program 7-1. First, we draw a line in the left half of the
^ screen at screen line position #IOC (12). There's a good reason for drawing theline at that particular line position as we'll soon see. Next, the program con

tinues in the same way as Program 6-3 until we get to the point where the
answer to the questions, "Is the Bullet On?" or "Is the Button Pressed?" is yes.

Now, instead of just drawing the bullet, we first test for a collision; i.e., is
there something in the screen bit position where the bullet is to be drawn? The
BDRAW routine specifies the line and screen byte where the bullet is to be
drawn from BLINE and HORIZB. The instruction LDA (LOW),Y (line 224) loads
the Accumulator with the screen byte contents and the next instruction, AND
BTEMP, AND's the Accumulator with the bullet shape byte (remember that the
value in BTEMP is determined by the horizontal position of the man when the
bullet is fired). If the AND result is zero, there will be no collision, the program
branches to NOHIT where the bullet is drawn, and the program continues just as
in Program 6-3. If the AND result is non-zero, this indicates a collision and the
program jumps to COLLISION, which produces a long delay simply as a collision
marker, and then initializes the bullet, erases the man, and jumps back for
another paddle read. (The BPL instruction [line 238] in the long-delay loop in
the COLLISION subroutine continues the delay loop until Y = #$FF; because Y
initially contains #$10, the LDA #$FF, JSR 'WAIT delay will loop 17 times before
going to JSR BINITIAL.)

There are a few other details of Program 7-1 we have to consider before
going on. First, you might have noticed from the flowchart that the bullet seems
not to have been erased after the collision. In fact, it has, because the collision
test occurs before the bullet is drawn, not after. In other words, the sequence is
draw-erase-test, draw-erase-test, etc. This seems to present another problem,
because the bullet is moved up eight lines at a time and thus the last bullet on
the screen is eight lines below the collision site. In actuality, however, the bullet
is moving so fast that the illusion of a direct hit is preserved. In any event, this is
a special situation that arises only when a shape to be tested for a collision is

Collisions and Explosions

moved large distances between each test. With the more usual smaller moves,
say one or two lines or bits at a time, the direct hit illusion is preserved even
with slow-moving shapes—the eye can hardly discern whether a collision is on
target or one or two bits or lines away. In any case, if this bothers you, you could
incorporate the following routine, which uses a test-draw-erase cycle. The shape
is drawn in its next position whether or not a collision has been detected—if
detected, COLL is set to 1 and this branches the program to COLLISION, which
erases the shape before continuing:

L D A (L O W) . Y
A N D B T E M P

CMP #$00
B E G N O H I T

L D A # $ 0 1 : L O A D C O L L W I T H O N E I F C O L L I S I O N
S T A C O L L

N O H I T L D A (L O W) , Y ; D R A W B U L L E T
E O R B T E M P

S TA (L O W) , Y
L D A C O L L

CMP #$01
BEO COLLISION :JUMP TO COLLISION IF COLLISION
R T S ; E L S E R E T U R N T O M A I N P R O G R A M

C O L L I S I O N J S R B X D R A W j E R A S E B U L L E T
e t c .

Next, you will notice that when the bullet is erased after no collision, we
a c c e s s a r o u t i n e c a l l e d B X D R A W i n s t e a d o f B D R A W . T h i s i s b e c a u s e B D R A W
contains the collision test instructions. If we access BDRAW for the bullet erase,
LDA (LOW),Y would load the Accumulator with the content of the screen byte,
which is in fact the bullet shape byte because the bullet is already on the screen
at that location. Thus, if we then do an AND BTEMP, a collision will always be
detected even though the bullet isn't hitting anything (except itself!). Therefore
w e u s e B X D R A W t o e r a s e — B X D R A W i s t h e s a m e a s B D R A W b u t w i t h o u t t h e
c o l l i s i o n t e s t i n s t r u c t i o n s .

Finally, we have to discuss how to ensure that the shapes to collide will
occupy the same bit positions at the apparent point of collision, a not inconse
quential problem. If a shape to be tested for a collision is moved one bit or line
at a time, there is no problem, but if the shape moves in larger increments, the
collision test may fail even though a collision appears to take place on the
screen. For example, the bullet shape in Program 7-1 is tested for a collision at
only every eighth line (because it moves up eight lines at a time) starting from
line 164 (#$A4). Thus, a collision will be detected only with shapes that occupy
a screen line some multiple of 8 from the starting line—this is why the top line is
drawn at line 12 (#IOC).

Try this for yourself. Draw the top line at screen line 11 or 13 and run the
program—the bullet will appear to go right through the line with no collision.
However, this appears to be much more of a problem than it is. First, in most
cases, shapes are moved only one line or bit at a time and in this situation, every
screen line or bit position will be collision-tested. Second, in the case of larger
movements, such as the bullet move, all we need do is ensure that the shape to
be collided with is in the proper position. In the final game program, for exam
ple, bullets are fired at passing planes and all we have to do is draw the planes or

Hi-Res Graphics and Animation Using Assembiy Language

some part of the planes at screen lines some multiple of 8 from the bullet start
ing line. Remember, we are now expert assembly language programmers and so
we can draw shapes anywhere we want!

Suppose, however, we can't predict the screen position of a shape to be
collided with. For example, suppose we modify the game program so that the
planes drop bombs and we want to detect collisions of the bullet with the
bombs as well as the planes. The bombs drop in a parabolic curve and at the
point of apparent collision with the bullet, may or may not be at one of the
multiple of 8 line positions. To get around this, we can use the follov^ng
BDRAW routine which collision-tests every line position from the last bullet
drawn, not just the eighth position up;

B D R A W L D A B L I N E

S T A B L

S E C

SBC #$07
S T A C T R

;BL IS LOADED WITH BLINE AND
:CTR WITH BLINE + UP 7 LINES

C O L 1

L D X B L

L D Y H O R I Z B

L D A H I , X
S T A H I G H

L D A L O , X
S T A L O W

LDA (LOW),Y
A N D B T E M P

CMP #$00
B E Q C 0 L 1

J M P C O L L I S K

D E C B L

L D A B L

C M P C T R

B G E C O L

L D X B L I N E

L D Y H O R I Z B

L D A H I , X
S T A H I G H

L D A L O . X
S T A L O W

LDA (LOW),Y
E O R B T E M P

STA (LOW),Y
R T S

TEST COLLISION FROM BL TO CTR *'

■T E S T C O L L I S I O N F O R L I N E B L

;IF NO COLLISION, GO TO COL1 TO TEST NEXT LINE

;IF COLLISION, JUMP TO COLLISION
TEST NEXT LINE UP

;STOP TEST WHEN LINE REACHES CTR
■\F NO COLLISION, DRAW BULLET

Try this routine in Program 7-1. You will find that the bullet will collide with any
shape regardless of its screen line position.

One final word about shape positions and collisions. If the shape to be col
lided with is larger than the movement of the collision test shape, the above type
of routine would not be necessary. For example, if we want to test for the colli
sion of a bullet with a shape that at every point is at least 8 lines deep, then
obviously some part of the shape will always be at a line position that is some
multiple of 8 from the bullet starting line.

Collisions and Explosions

L O A D S H A P E A D D R E S S E S
I N T O S H PA D R

D I S P L AY A N D
C L E A R S C R E E N

D R A W T O P A N D
B O T T O M L I N E S

M I N I T I A L — S E T
L I N E A N D D E P T H

B I N I T I A L - S E T L I N E
A N D B U L L E T O F F

(BULON - 0)

R E A D P A D D L E

B U L L E T O N ?

^ Yes
D R A W M A N

S E T B H O R I Z = M H O R I Z

BULLET ON? J-
I No

B U T T O N P R E S S E D ?

I No
D E L A Y

E R A S E M A N

S E T B U L L E T O N

(BULON = 1)

A N D B T E M P W I T H
S C R E E N B Y T E

C O L L I S I O N ?

^ No
D R A W B U L L E T

L O N G D E L A Y A S
C O L L I S I O N M A R K E R

B I N I T I A L

Hi-Res Graphics and Animation Using Assembly Language

]PROGRAM 7-1
: A S M

1 ♦T E S T I N G F O R C O L L I S I O N ^
2 ORG $ 6 0 0 0

6 0 0 0 : 4 C 5 2 6 0 3 J M P PGM
4 M L I N E D S 1
5 M L I N E A D S 1
6 B L I N E D S
7 D E P T H D S 1
8 M H O R I Z D S 1
9 B H O R I Z D S 1
1 0 H O R I Z B D S 1
1 1 H O R I Z M D S 1
1 2 BULON D S 1
1 3 XCOUNT D S 1
1 4 DELAY D S 1

1 5 B T E M P D S 1
1 6 MTEMP D S 3 9

1 7 G R A P H I C S = $C050
1 8 MIXOFF = $C052
1 9 H I R E S = $C057
2 0 P A G E l = $C054
2 1 H I G H = $1B
2 2 LOW = $ 1 A
2 3 W A I T = $FCA8
2 4 PREAD = $FB1E
2 5 BUTTON = $ C 0 6 1 ; B U T T O N 0
2 6 ♦LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
2 7 ♦CONTINUE FOR ALL 7 SHAPES

6 0 3 6 : OC 2 8 MSHPADR DFB #<MSHAPE1
6 0 3 7 : 6 2 2 9 D F B #>MSHAPE1
6 0 3 8 : 3 3 3 0 D F B #<MSHAPE2
6 0 3 9 : 6 2 3 1 D F B #>MSHAPE2
6 0 3 A : 5 A 3 2 DFB #<MSHAPE3
6 0 3 B : 6 2 3 3 D F B #>MSHAPE3
6 0 3 C : 8 1 3 4 D F B #<MSHAPE4
6 0 3 D : 6 2 3 5 D F B #>MSHAPE4
6 0 3 E : A 8 36 DFB #<MSHAPE5
6 0 3 F : 62 37 DFB #>MSHAPE5
6 0 4 0 : C F 3 8 DFB #<MSHAPE6
6 0 4 1 : 6 2 3 9 DFB #>MSHAPE6
6 0 4 2 : F 6 4 0 DFB #<MSHAPE7
6 0 4 3 : 6 2 4 1 DFB #>MSHAPE7
6 0 4 4 : I D 4 2 B S H PA D R D F B #<BSHAPE1
6 0 4 5 : 6 3 4 3 D F B #>BSHAPE1
6 0 4 6 : I E 4 4 D F B #<BSHAPE2
6 0 4 7 : 6 3 4 5 D F B #>BSHAPE2
6 0 4 8 : I F 4 6 D F B #<BSHAPE3
6 0 4 9 : 6 3 4 7 D F B #>BSHAPE3
6 0 4 A : 2 0 4 8 D F B #<BSHAPE4
6 0 4 B : 6 3 4 9 DFB #>BSHAPE4
6 0 4 C : 2 1 5 0 DFB #<BSHAPE5
6 0 4 D : 6 3 5 1 DFB #>BSHAPE5
6 0 4 E : 22 52 DFB #<BSHAPE6
6 0 4 F : 6 3 5 3 D F B #>BSHAPE6
6 0 5 0 : 2 3 5 4 D F B #<BSHAPE7
6 0 5 1 : 6 3 5 5 D F B #>BSHAPE7
6 0 5 2 : A D 5 0 C O 5 6 P G M I D A G R A P H I C S ; H I R E S , P. l
6 0 5 5 : A D 5 2 C O 5 7 L D A M I X O F F
6 0 5 8 : A D 5 7 C O 5 8 L D A H I R E S
6 0 5 B : A D 5 4 C O 5 9 L D A P A G E l

Collisions and Explosions

Hi-nes Graphics and Animalion Using Assembly Language

6 0 E 9 : E9 0 8 1 2 1 S B C # $ 0 8 ;MOVE BLINE UP 8 LINES
6 0 E B : 8 0 0 5 6 0 1 2 2 S T A B L I N E
6 0 E E : C 9 0 5 1 2 3 CMP #S05 ;LESS THAN 5 LINES FROM T O P ?
6 0 F 0 : 9 0 0 3 1 2 4 B L T TOP : IF YES TAKE BRANCH
6 0 F 2 : 4 C BO 6 0 1 2 5 J M P PAOOLE : IF NO, READ PAOOLE AGAIN
6 0 F 5 : 2 0 O A 6 1 1 2 6 TOP J S R B I N I T I A L ; INITIALIZE BULLET LINE
6 0 F 8 : 4C BO 6 0 1 2 7 J M P PAOOLE ;REAO PAOOLE

1 2 8 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *
6 0 F B : A 9 A A 1 2 9 M I N I T I A L L O A #$AA
6 0 F D : 8 0 0 3 6 0 1 3 0 S T A M L I N E
6 1 0 0 : 8 0 0 4 6 0 1 3 1 S T A M L I N E A
6 1 0 3 : 1 8 1 3 2 C L C
6 1 0 4 : 6 9 0 0 1 3 3 AOC # $ 0 0
6 1 0 6 : 8 0 0 6 6 0 1 3 4 S T A D E P T H
6 1 0 9 : 6 0 1 3 5 R T S

1 3 6 *

6 1 0 A : A9 0 0 1 3 7 B I N I T I A L L O A #$00 ;BULON = 0 IF
6 1 0 C : 80 OB 6 0 1 3 8 STA BULON BULLET NOT ON SCREEN
6 1 0 F : A 9 A 4 1 3 9 LOA #$A4
6 1 1 1 : 8 0 0 5 6 0 1 4 0 S T A B L I N E
6 1 1 4 : 6 0 1 4 1 R T S

1 4 2 *

6 1 1 5 : A 2 0 0 1 4 3 P O L E L O X # $ 0 0
6 1 1 7 : 2 0 I E F B 1 4 4 J S R PREAO ;REAO PAOOLE 0
6 1 1 A : 9 8 1 4 5 T Y A
6 1 1 B : 8 0 0 7 6 0 1 4 6 STA M H O R I Z ;0-255 IN MHORIZ

124 6 11 E : AO OB 6 0 1 4 7 LOA BULON
6 1 2 1 : C9 0 1 1 4 8 CMP #$01 ;IS BULLET ON?■ 6 1 2 3 : F O 0 6 1 4 9 BEQ P D L E l •,IF YES, TAKE BRANCH
6 1 2 5 : AO 0 7 6 0 1 5 0 L O A M H O R I Z ;IF NO, SET BHORIZ EQUAL
6 1 2 8 : 8 0 0 8 6 0 1 5 1 STA BHORIZ TO MHORIZ
6 1 2 B : A C 0 7 6 0 1 5 2 P O L E l L O Y MHORIZ
6 1 2 E : B 9 2 4 6 3 1 5 3 LOA BYTETBL .Y ;CONVERT 0-255 TO 0-36 (BYTE)
6 1 3 1 : 80 OA 6 0 1 5 4 STA HORIZM ;MAN BYTE POSITION
6 1 3 4 : B 9 2 7 6 4 1 5 5 L O A OFFSET,Y ;GET SHAPE NUMBER
6 1 3 7 : OA 1 5 6 A S L ;LOAO SHAPE INTO MTEMP
6 1 3 8 : A A 1 5 7 TA X
6 1 3 9 : BO 36 60 1 5 8 LOA MSHPAOR.X
6 1 3 C : 8 5 l A 1 5 9 STA LOW
6 1 3 E : BO 3 7 6 0 1 6 0 L O A MSHPAOR+1, X
6 1 4 1 : 8 5 I B 1 6 1 STA HIGH
6 1 4 3 : AO 0 0 1 6 2 L O Y # $ 0 0
6 1 4 5 : B 1 l A 1 6 3 L O A D L O A (LOW),Y
6 1 4 7 : 9 9 O F 6 0 1 6 4 S T A MTEMP.Y
6 1 4 A : 0 8 1 6 5 I N Y
6 1 4 B : CO 2 7 1 6 6 CPY #$27
6 1 4 D : 9 0 F 6 1 6 7 B L T L O A D
6 1 4 F : 6 0 1 6 8 RT S

1 6 9 *

6 1 5 0 : A 9 0 0 1 7 0 MORAW L O A # $ 0 0
6 1 5 2 : 80 DC 6 0 171 STA XCOUNT
6 1 5 5 : AE 03 6 0 1 7 2 MDRAWl LOX MLINE
6 1 5 8 : AC OA 6 0 1 7 3 L O Y HORIZM
6 1 5 B : BD 2A 6 5 1 7 4 LOA H I , X
6 1 5 E : 8 5 I B 1 7 5 STA H I G H
6 1 6 0 : B D EA 6 5 1 7 6 LOA LO,X
6 1 6 3 : 8 5 l A 1 7 7 S TA LOW
6 1 6 5 : A E OC 6 0 1 7 8 L O X XCOUNT
6 1 6 8 : B 1 l A 1 7 9 L O A (LOW),Y
6 1 6 A : 5 0 O F 6 0 1 8 0 EOR MTEMP.X
6 1 6 D : 9 1 l A 1 8 1 S T A {LOW),Y

Collisions and Explosions

Hi-Res Braphics and Animation Using Assembiy Language

6 1 F 4 : A E 0 5 6 0 2 4 3 B X D R A W L O X B L I N E ; B O R A W W I T H O U T C O L L I S I O N T E S T
6 1 F 7 : A C 0 9 6 0 2 4 4 L O Y H O R I Z B
6 1 F A : B D 2 A 6 5 2 4 5 L O A H1,X
6 1 F D : 8 5 I B 2 4 6 S TA H I G H
6 1 F F : B D E A 6 5 2 4 7 L O A LO,X
6 2 0 2 : 8 5 l A 2 4 8 STA LOW

6 2 0 4 : 8 1 l A 2 4 9 L O A (LOW).Y
6 2 0 6 : 4 0 O E 6 0 2 5 0 EOR BTEMP
6 2 0 9 : 9 1 l A 2 5 1 S TA (L0W),Y
6 2 0 B : 6 0 2 5 2 R T S

2 5 3 *
6 2 0 C : 0 0 O E 0 1 2 5 4 M S H A P E l HEX OOOEOIOOOEOIOOOEOI ;MAN S H A P E T A B L E S
6 2 0 F : 0 0 O E 0 1 0 0 O E 0 1
6 2 1 5 : 0 0 4 4 0 1 2 5 5 HEX 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F O O
6 2 1 8 : 0 0 7 F 0 0 6 0 I F 0 0
6 2 1 E : 3 0 I F 0 0 2 5 6 HEX 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0
6 2 2 1 : 1 8 I F 0 0 0 0 I F 0 0
6 2 2 7 : 0 0 I F 0 0 2 5 7 H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0
6 2 2 A : 0 0 I B 0 0 4 0 3 1 0 0
6 2 3 0 : 6 0 6 0 0 0 2 5 8 H E X 6 0 6 0 0 0
6 2 3 3 : 0 0 I C 0 2 2 5 9 M S H A P E 2 H E X 0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 C 0 2
6 2 3 6 : 0 0 I C 0 2 0 0 I C 0 2
6 2 3 C : 0 0 0 8 0 3 2 6 0 HEX 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0

6 2 3 F : 0 0 7 E 0 1 0 0 3 E 0 0
6 2 4 5 : 0 0 3 F 0 0 2 6 1 HEX 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0
6 2 4 8 : 4 0 3 F 0 0 0 0 3 E 0 0

126 6 2 4 E : 0 0 3 E 0 0 2 6 2 HEX 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0
6 2 5 1 : 0 0 3 6 0 0 0 0 3 6 0 0■ 6 2 5 7 : 0 0 6 3 0 0 2 6 3 HEX 0 0 6 3 0 0
6 2 5 A : 0 0 3 8 0 4 2 6 4 M S H A P E 3 HEX 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4
6 2 5 D : 0 0 3 8 0 4 0 0 3 8 0 4
6 2 6 3 : 0 0 1 0 0 6 2 6 5 HEX 0 0 1 0 0 6 0 0 7 C 0 3 0 0 7 C 0 0
6 2 6 6 : 0 0 7 C 0 3 0 0 7 C 0 0
6 2 6 C : 0 0 7 C 0 0 2 6 6 H E X 007C00007E00007C00
6 2 6 F : 0 0 7 E 0 0 0 0 7 C 0 0
6 2 7 5 : 0 0 3 8 0 0 2 6 7 HEX 0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 C O O
6 2 7 8 : 0 0 3 8 0 0 0 0 6 C 0 0
6 2 7 E : 0 0 4 6 0 1 2 6 8 HEX 0 0 4 6 0 1
6 2 8 1 : 0 0 7 0 0 8 2 6 9 M S H A P E 4 HEX 007008007008007008
6 2 8 4 : 0 0 7 0 0 8 0 0 7 0 0 8
6 2 8 A : 0 0 2 0 O C 2 7 0 H E X 00200C007807007801
6 2 8 D : 0 0 7 8 0 7 0 0 7 8 0 1
6 2 9 3 : 0 0 7 8 0 1 2 7 1 H E X 007801007801007801
6 2 9 6 : 0 0 7 8 0 1 0 0 7 8 0 1
6 2 9 C : 0 0 7 0 0 0 2 7 2 HEX 007000007000007000
6 2 9 F : 0 0 7 0 0 0 0 0 7 0 0 0
6 2 A 5 : 0 0 7 0 0 0 2 7 3 H E X 0 0 7 0 0 0
6 2 A 8 : 0 0 6 0 1 1 2 7 4 M S H A P E 5 HEX 006011006011006011
6 2 A B : 0 0 6 0 1 1 0 0 6 0 1 1
6 2 B 1 : 0 0 4 0 1 8 2 7 5 HEX 00401800700F007003
6 2 8 4 : 0 0 7 0 O F 0 0 7 0 0 3
6 2 B A : 0 0 7 0 0 3 2 7 6 HEX 007003007803007003
6 2 B D : 0 0 7 8 0 3 0 0 7 0 0 3
6 2 C 3 : 0 0 6 0 0 1 2 7 7 HEX 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3
6 2 C 6 : 0 0 6 0 0 1 0 0 3 0 0 3
6 2 C C : 0 0 1 8 0 6 2 7 8 HEX 0 0 1 8 0 6
6 2 C F : 0 0 4 0 2 3 2 7 9 M S H A P E 6 HEX 0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3
6 2 0 2 : 0 0 4 0 2 3 0 0 4 0 2 3
6 2 0 8 : 0 0 0 0 3 1 2 8 0 H E X 0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7
6 2 0 B : 0 0 6 0 I F 0 0 6 0 0 7
6 2 E 1 : 0 0 7 0 0 7 2 8 1 H E X 0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7

Collisions and Explosions

00 78
00 60
00 60
00 30
00 00
00 00
00 00
00 40
00 58
00 4C
0 0 4 0
00 40
00 30

0 7 0 0 6 0
0 7 2 8 2
0 6 0 0 6 0
O C 2 8 3
4 7 2 8 4
4 7 0 0 0 0
6 2 2 8 5
3 F 0 0 7 0
O F 2 8 6
O F 0 0 4 0
O F 2 8 7
0 0 0 0 6 0
3 0 2 8 8

2 8 9
2 9 0
2 9 1
2 9 2
2 9 3
2 9 4
2 9 5

MSHAPE7
4 7

BSHAPEl
BSHAPE2
BSHAPE3
BSHAPE4
BSHAPE5
BSHAPE6
BSHAPE7
B Y T E T B L
O F F S E T
H I
L O

006007006006006006

0 0 3 0 0 C
000047000047000047

00006200403F00700F

00580F004C0F00400F

00400F00400D006018

0 0 3 0 3 0
0 1
0 2
0 4
0 8
1 0
2 0
4 0

;BULLET SHAPES

1706 bytes

Symbol table - numerical order:

LOW =$1A H I G H =$1B M L I N E = $ 6 0 0 3 MLINEA =$6004
BLINE =$6005 DEPTH = $ 6 0 0 6 M H O R I Z = $ 6 0 0 7 BHORIZ =$6008
HORIZB =$6009 H O R I Z M =$600A BULON =$600B XCOUNT =$6000
DELAY =$6000 BTEMP = $ 6 0 0 E MTEMP =$600F MSHPADR =$6036
BSHPADR =$6044 PGM =$6052 O L R l = $ 6 0 6 6 O L R = $ 6 0 6 A
LN =$6080 L N l =$60A3 PADDLE =$60B0 BULLETl =$600E
BULLET =$6003 TOP =$60F5 MINITIAL=$60FB BINIT IAL=$610A
POLE =$6115 POLEl =$6123 L O A D = $ 6 1 4 5 MDRAW =$6150
MDRAWl =$6155 LOAOBUL =$619A BDRAW =$61BD N O H I T = $ 6 1 0 9
C0LLISI0N=$61E1 OOL l =$61E3 BXDRAW =$61F4 MSHAPEl =$6200
MSHAPE2 =$6233 MSHAPE3 =$625A MSHAPE4 =$6281 MSHAPE5 =$62A8
MSHAPE6 =$62CF M S H A P E 7 =$62F6 BSHAPEl =$6310 BSHAPE2 =$631E
BSHAPE3 =$631F BSHAPE4 =$6320 BSHAPE5 =$6321 BSHAPE6 =$6322
BSHAPE7 = $ 6 3 2 3 B Y T E T B L = $ 6 3 2 4 OFFSET =$6427 H I = $ 6 5 2 A
LO =$65EA G R A P H I O S =$0050 MIXOFF =$0052 P A G E l = $ 0 0 5 4
H I R E S =$0057 BUTTON =$0061 PREAD =$FB1E W A I T = $ F 0 A 8

E X P L O S I O N S

Collisions don't always result in explosions but they often do (and they will
in our final game program), so let's see how we can modify Program 7-1 to
display an explosion when a bullet hits the top line (see Program 7-2).

There are two problems associated with explosion routines. One, how do
we draw the explosion and two, where do we draw it? Let's tackle the second
problem first.

Obviously we want to draw the explosion at the point of impact. How do we
determine where this is? Easy. The horizontal position of the explosion is

Hi-Res Braphles and Animation Using Assembly Language

obtained from HORIZB, the horizontal position of the bullet at the time of
impact, i.e., when the AND test returns non-zero. The vertical position can be
determined from BLINE, the screen line position used for the collision test.
Actually, in Program 7-2 and in the final game program, the shape that's hit is
always at the same line position. In this case, the vertical position of the impact is
known beforehand and we simply can specify this line position in our explosion
draw routines. Keep in mind, however, that this is not always the case and so in
other situations, BLINE or its equivalent must be used.

For example, suppose we modify the game program so that planes appear at
several different line positions—to know where to draw the explosion we would
use HORIZB and BLINE. In programs involving collisions with multiple shapes,
it's also important to know which shape is hit, because (as we'll see in the game
program, although not in the programs in this chapter) the first thing we do
after detecting a collision is to erase the target shape. Consider a program where
a plane is dropping bombs and we want to detect collisions with both. We know
the line position of the plane and so if BLINE tells us we're at that line, we know
we've hit the plane. If BLINE tells us the collision is below the plane line, we
know we've hit a bomb. Now consider a more complicated example. Suppose
we have planes appearing at different lines, each dropping bombs. It's conceiv
able that a bullet may hit a bomb just at the line position of one of the planes. In
this case if we rely just on BLINE, we won't know which shape we've hit. To
solve this problem we would use both the bomb and bullet shapes as collision
testers. If the bomb and bullet hit something, we know we've hit a bomb. If only
the bullet hits something, we know we've hit a plane. Let's take this one step

ESHAPE 4

1 8 0 6
7 0 O F
7 0 3 F
7 E 3 F
7 0 7 F
7 0 3 F
7 E 3 F
7 F I F
7 E O F
7 0 1 F
7 0 O F
4 0 0 3

Collisions and Explosions

Suppose the bomb bits something but the bullet doesn t. This means theom nas bit either the bottom line or the man and we can distinguish between
ese two alternatives by determining at what line the collision took place.

iNow let's get to the explosion draw routines. There are many ways to display
explosion shapes, from starbursts to splaying of fragments to fireballs, etc. For
rogram 7-2 and for the game program, we're going to use the fireball type of

display. To simulate an explosion, we draw (and erase), at the point of impact,the tour shapes (shown on opposite page) in succession—the first two shapes
^e just random dots, the third is a filled-in "fireball," and the fourth is a largern r e b a l l . "

7-2, when a collision is detected, the program jumps to theCOLLISION subroutine, which then accesses the EXPLOSION subroutine (line
237). Here each of the four shapes in turn is initialized, drawn, delayed, and
erased. The program then returns to the COLLISION routine to initialize the
bullet, erase the man, and go back for another paddle read.

Each explosion shape has its own initialization routine, labelled INITEl,
INITE2, etc., which sets the starting line (ELINE and ELINEA), depth of shape
(EDEFTH), and XCOUNT. XCOUNT is specified for each shape because the
ESHAPE shape table is accessed in a way that doesn't involve an ESHPADR table,
both because it's convenient and because it serves to illustrate that we should
not be a slave to any particular type of routine if other routines are equally
feasible. In the explosion draw routines, the shape byte is retrieved by EOR
ESHAPE,X where X is specified by XCOUNT. Thus, to draw the first shape, we ^£9
set XCOUNT to zero (lines 323 and 324). Because the first shape contains five _
bytes, the second shape begins at the sixth position of ESHAPE. Therefore, we set ■
XCOUNT to #$05 for the second shape (ESHAPE + 5 = sixth byte of table).
Similarly, we set XCOUNT to #$0A for the third shape ^d to #$12 for the fourth
shape. This type of routine works well if we're dealing with small numbers of
shapes and if the shape table is not overly large (we discussed the problem of
using this protocol with large shape tables in Chapter 5).

The value for ELINE can be determined from BLINE, the line position of the
bullet when the AND test indicates a collision, but as we know where the target
is (at screen line #$0C), this becomes unnecessary in this case. However, the
particular values we choose for ELINE depend to some extent on how the shape
table is constructed and how we want the shapes to be displayed. This is done
more or less by trial and error—we simply try different lines to see what looks
right. Explosion shapes 1 and 2 are started at line #$09 and because a hot fireball
always moves up, shape 3 is started at line #$05 and shape 4 at line #$0I, i.e., at
higher screen positions.

The explosion draw routines are the usual DRAW-ERASE type except that
we have to use two routines, one for the first three shapes (DRAWEI) and
another for the fourth shape (DRAWE2), as the fourth shape is 2 bytes wide but
the others only 1. For the erase cycle, we first delay and then reinitialize to reset
the appropriate parameters—we then go to the draw routine again to erase. The
delay times for each shape are also set by trial and error—the ones I've chosen
seem to work best. Finally, as mentioned above, the horizontal position of the
explosion is determined by HORIZB (see lines 279 and 298).

Hi-Bes Braphlcs and Animation Using Assembiy Language

L O A D S H A P E A D D R E S S E S
I N T O S H P A D R

D I S P L AY A N D
C L E A R S C R E E N

D R AW TO P A N D
B O T T O M L I N E S

M I N I T I A L — S E T
L I N E A N D D E P T H

BINITIAL — SET LINE
A N D B U L L E T O F F

(BULON = 0)

R E A D P A D D L E

B U L L E T O N ?

D R A W M A N

B U L L E T O N ?

B U T T O N P R E S S E D ?

D E L A Y

E R A S E M A N

S E T B H O R I Z = M H O R I Z

S E T B U L L E T O N
(BULON = 1)

A N D B T E M P W I T H
S C R E E N B Y T E

C O L L I S I O N ?

D R A W B U L L E l

D E L A Y

E R A S E M A N
A N D B U L L E T

D R AW A N D E R A S E
E X P L O S I O N S H A P E S

B I N I T I A L

E R A S E M A N

I
M O V E B L I N E
UP 8 LINES

< 5 LINES I No
F R O M T O P ?

Collisions and Explosions

]PROGRAM 7-2
: A S M

6 0 0 0 : 4 C 5 5 6 0 3

^COLLISION AND EXPLOSION*
ORG $6000
OMP PGM

4 M L I N E D S 1
5 MLINEA DS 1
6 B L I N E D S 1
7 DEPTH D S 1
8 MHORIZ D S 1
9 B H O R I Z D S 1
1 0 H O R I Z B D S 1
1 1 HORIZM DS 1
1 2 BULON DS 1
1 3 XCOUNT D S 1
1 4 DELAY DS 1
1 5 BTEMP DS 1
1 6 MTEMP DS 3 9
17 E L I N E DS 1
1 8 E L I N E A D S 1
1 9 E D E P T H D S 1
2 0 GRAPHICS = $ C 0 5 0
2 1 M I X O F F = $ C 0 5 2
2 2 H I R E S = $C057
2 3 PA G E l = $C054
2 4 HIGH = $1B
2 5 LOW = $1A
2 6 WAIT = $FCA8
27 P R E A D = $FB1E
2 8 B U T T O N = $C061.B U I I U N = $ C 0 6 1 . . ; B U T T O N 0

*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
♦CONTINUE FOR ALL 7 SHAPES

6 0 3 9 : 0 9 3 1 MSHPADR D F B #<MSHAPE1
6 0 3 A : 6 3 3 2 D F B #>MSHAPE1
6 0 3 B : 3 0 3 3 D F B #<MSHAPE2
6 0 3 C : 6 3 3 4 D F B #>MSHAPE2
6 0 3 D : 5 7 3 5 D F B # < m c : : a p e 3
6 0 3 E : 6 3 3 6 D F B #>MSHAPE3
6 0 3 F : 7E 3 7 D F B #<MSHAPE4
6 0 4 0 : 6 3 3 8 D F B #>MSHAPE4
6 0 4 1 : A 5 3 9 D F B #<MSHAPE5
6 0 4 2 : 6 3 4 0 D F B #>MSHAPE5
6 0 4 3 : CC 4 1 D F B #<MSHAPE6
6 0 4 4 : 6 3 4 2 D F B #>MSHAPE6
6 0 4 5 : F 3 4 3 D F B # < M S H A P E 7
6 0 4 6 : 6 3 4 4 D F B # > M S H A P E 7
6 0 4 7 : l A 4 5 B S H PA D R D F B # < B S H A P E 1
6 0 4 8 : 6 4 4 6 D F B # > B S H A P E 1
6 0 4 9 : I B 4 7 D F B #<BSHAPE2
6 0 4 A : 64 48 DFB #>BSHAPE2
6 0 4 B : IC 49 DFB #<BSHAPE3
6 0 4 C : 6 4 50 D F B #>BSHAPE3
6 0 4 D : I D 5 1 DFB #<BSHAPE4
6 0 4 E : 64 52 D F B #>BSHAPE4
6 0 4 F : I E 53 D F B #<BSHAPE5
6 0 5 0 : 6 4 54 D F B #>BSHAPE5
6 0 5 1 : I F 5 5 D F B #<BSHAPE6
6 0 5 2 : 6 4 5 6 D F B #>BSHAPE6
6 0 5 3 : 2 0 5 7 D F B #<BSHAPE7
6 0 5 4 : 6 4 5 8 D F B #>BSHAPE7
6 0 5 5 : A D 5 0 C O 5 9 PGM L D A G R A P H I C S ; H I R E S , P. l

Hi-Res Braphlcs and Animation Using Assembiy Language

6 0 5 8 : A D 5 2 CO 6 0 L D A M I X O F F
6 0 5 B : A D 5 7 CO 6 1 L D A H I R E S
6 0 5 E : A D 5 4 CO 6 2 L D A P A G E l

6 0 6 1 : A 9 0 0 6 3 L D A # $ 0 0
6 0 6 3 : 8 5 l A 6 4 S TA LOW
6 0 6 5 : A 9 2 0 6 5 L D A #$20
6 0 6 7 : 8 5 I B 66 STA HIGH
6 0 6 9 : A O 0 0 6 7 C L R l L D Y #$00
6 0 6 B : A 9 0 0 6 8 L D A # $ 0 0
6 0 6 D : 9 1 l A 6 9 C L R S T A (LOW),Y
6 0 6 F : C 8 7 0 I N Y
6 0 7 0 : D O F B 7 1 BNE C L R
6 0 7 2 : E 6 I B 7 2 I N C H I G H
6 0 7 4 : A 5 I B 7 3 L D A H I G H
6 0 7 6 : C 9 4 0 7 4 CMP #$40
6 0 7 8 : 9 0 E F 7 5 B L T C L R l
6 0 7 A : A 9 5 0 76 LDA #$50
6 0 7 C : 8 D OD 60 77 STA DELAY
6 0 7 F : A 2 B 7 78 LDX #$B7
6 0 8 1 : A O 0 0 7 9 L D Y #$00
6 0 8 3 : B D 5 1 6 6 8 0 LDA H I , X
6 0 8 6 : 8 5 I B 8 1 S T A H I G H

6 0 8 8 : B D 1 1 6 7 8 2 L D A LO,X
6 0 8 B : 8 5 l A 8 3 S T A LOW
6 0 8 D : A 9 7 F 8 4 L D A # $ 7 F
6 0 8 F : 9 1 l A 8 5 L N S T A (LOW),Y
6 0 9 1 : C 8 8 6 I N Y
6 0 9 2 : C O 2 7 87 CPY #$27
6 0 9 4 : 9 0 F 9 88 B LT L N

6 0 9 6 : A 2 OC 89 LDX #$oc
6 0 9 8 : A O 0 0 9 0 LDY #$00
6 0 9 A : B D 5 1 6 6 9 1 LDA H I , X
6 0 9 D : 8 5 I B 9 2 STA H I G H

6 0 9 F : B D 1 1 6 7 9 3 L D A LO,X
6 0 A 2 : 8 5 l A 9 4 S T A LOW
6 0 A 4 : A 9 7 F 95 LDA #$7F
6 0 A 6 : 9 1 l A 9 6 L N l S T A (LOW),Y
6 0 A 8 : C 8 9 7 I N Y
6 0 A 9 : C O 1 4 9 8 CPY #$14
6 0 A B : 9 0 F9 9 9 B L T L N l

1 0 0 * * * * * * * * * * m a i n p r o g r a m

6 0 A D : 2 0 F E 60 1 0 1 j s r M I N I T I A L
6 0 B 0 : 2 0 OD 6 1 1 0 2 J S R B I N I T I A L
6 0 B 3 : 2 0 1 8 6 1 1 0 3 PA D D L E J S R P O L E
6 0 B 6 : 2 0 5 3 6 1 1 0 4 J S R MDRAW
6 0 B 9 : A D OB 6 0 1 0 5 L D A B U L O N
6 0 B C : C 9 0 1 1 0 6 CMP #$01
6 0 B E : F O 1 6 1 0 7 BEQ B U L L E T
6 0 C 0 : A D 6 1 CO 1 0 8 L D A B U T TO N
6 0 C 3 : 3 0 OC 1 0 9 B M I B U L L E T l
6 0 C 5 : A D OD 6 0 1 1 0 L D A DELAY
6 0 C 8 : 2 0 A 8 F C 1 1 1 JSR WAIT
6 0 C B : 2 0 53 61 11 2 JSR MDRAW
6 0 C E : 4 C B 3 60 11 3 JMP PADDLE
6 0 0 1 : A 9 01 11 4 B U L L E T l LDA #$01
6 0 D 3 : 8 D OB 60 11 5 STA BULON
6 0 D 6 : 2 0 9 D 6 1 1 1 6 B U L L E T JSR LOADBUL
6 0 D 9 : 2 0 CO 6 1 1 1 7 J S R BDRAW
6 0 D C : A D OD 6 0 1 1 8 L D A D E L AY
6 0 D F : 2 0 A 8 F C 1 1 9 J S R W A I T
6 0 E 2 : 2 0 FO 6 1 1 2 0 J S R BXDRAW

;CLEAR SCREEN 1

;LOAD DELAY

;DRAW BOTTOM LINE

;DRAW TOP LINE

* * * * * * * * * *

;SET LINE & DEPTH OF MAN
;SET LINE FOR BULLET
;READ PADDLE
;DRAW MAN

;IS BULLET ON?
;IF YES, CONTINUE BULLET DRAW
;IF NO, IS BUTTON PRESSED?
;IF YES, DRAW BULLET
;IF NO,

DELAY AND
ERASE MAN AND
READ PADDLE AGAIN

;SET BULLET ON

;LOAD BULLET SHAPE INTO BTEMP
;DRAW BULLET & TEST FOR COLLISION

;DELAY
;ERASE BULLET

Collisions and Expiosions

6 0 E 5 : 2 0 5 3 6 1 1 2 1 J S R M D R A W ; ERASE MAN
6 0 E 8 : AO 0 5 6 0 1 2 2 L D A B L I N E
6 0 E B : 3 8 1 2 3 SEC
6 0 E C : E 9 0 8 1 2 4 SBC # $ 0 8 ; MOVE BLINE UP 8 LINES
6 0 E E : 8 0 0 5 6 0 1 2 5 S T A B L I N E
6 0 F 1 : C9 0 5 1 2 6 CMP #$05 LESS THAN 5 LINES FROM TOP'
6 0 F 3 : 9 0 0 3 1 2 7 B LT TOP IF YES TAKE BRANCH
6 0 F 5 : 4 C B 3 6 0 1 2 8 J M P PA D D L E IF NO, READ PADDLE AGAIN
6 0 F 8 : 2 0 0 0 6 1 1 2 9 TOP J S R B I N I T I A L INITIALIZE BULLET LINE
6 0 F B ; 4 C B 3 6 0 1 3 0 J M P PA D D L E READ PADDLE

1 3 1 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

6 0 F E : A 9 A A 1 3 2 M T N I T I A L L D A #$AA
6 1 0 0 : 8 0 0 3 6 0 1 3 3 S T A M L I N E
6 1 0 3 : 8 0 0 4 6 0 1 3 4 S T A M L I N E A
6 1 0 6 : 1 8 1 3 5 C L C
6 1 0 7 : 69 0 0 136 A D C #$0D
6 1 0 9 : 80 0 6 6 0 137 STA D E P T H
6 1 0 C : 60 1 3 8 R T S

139 *

6 1 0 D : A 9 0 0 1 4 0 B I N I T I A L L D A #$00 ,BULON = 0 IF
6 1 0 F : 8 0 OB 6 0 1 4 1 S T A BULON BULLET NOT ON SCREEN
6 1 1 2 : A 9 A 4 1 4 2 L D A #$A4
6 1 1 4 : 8 0 0 5 6 0 1 4 3 S T A B L I N E
6 1 1 7 : 6 0 1 4 4 R T S

1 4 5 *

6 1 1 8 : A2 00 1 4 6 POLE L D X #$00
6 11 A : 2 0 I E F B 147 JSR PREAD ;READ PADDLE 0

1336 1 1 0 : 9 8 1 4 8 T Y A
6 11 E : 8 0 07 6 0 1 4 9 STA M H O R I Z ;0-255 IN MHORIZ ■
6 1 2 1 : AO OB 6 0 1 5 0 L D A BULON '
6 1 2 4 : C9 0 1 1 5 1 CMP # $ 0 1 I S B U L L E T O N ?

6 1 2 6 : FO 0 6 1 5 2 BEQ P D L E l IF YES, TAKE BRANCH
6 1 2 8 : AO 0 7 6 0 153 L D A M H O R I Z IF NO, SET BHORIZ EQUAL
6 1 2 B : 8 0 0 8 6 0 1 5 4 S TA BHORIZ TO MHORIZ
6 1 2 E : A C 0 7 6 0 1 5 5 P D L E l L D Y M H O R I Z
6 1 3 1 : B 9 4 B 6 4 1 5 6 L D A BYTETBL.Y CONVERT 0-255 TO 0-36 (BYTE)
6 1 3 4 : 80 OA 6 0 1 5 7 STA HORIZM MAN BYTE POSITION
6 1 3 7 : B 9 4E 6 5 1 5 8 LDA OFFSET,Y GET SHAPE NUMBER
6 1 3 A : OA 1 5 9 ASL LOAD SHAPE INTO MTEMP
6 1 3 B : A A 1 6 0 TA X

6 1 3 C : BO 3 9 6 0 1 6 1 LDA MSHPADR,X
6 1 3 F : 8 5 l A 1 6 2 S TA LOW
6 1 4 1 : BO 3 A 6 0 1 6 3 L D A MSHPADR+1,X
6 1 4 4 : 8 5 I B 1 6 4 S TA H I G H
6 1 4 6 : AO 0 0 1 6 5 L D Y #$00
6 1 4 8 : B 1 l A 1 6 6 L O A D L D A (LOW),Y
6 1 4 A : 9 9 O F 6 0 1 6 7 S TA MTEMP.Y
6 1 4 0 : 0 8 1 6 8 I N Y
6 1 4 E : CO 2 7 1 6 9 CPY #$27
6 1 5 0 : 90 F6 1 7 0 BLT LOAD
6 1 5 2 ; 6 0 171 RTS

1 7 2 *

6 1 5 3 : A 9 0 0 1 7 3 MDRAW LDA #$00
6 1 5 5 : 8 0 OC 6 0 1 7 4 STA XCOUNT
6 1 5 8 : A E 03 6 0 1 7 5 MDRAWl L D X M L I N E
6 1 5 B : AC OA 6 0 1 7 6 L D Y H O R I Z M

6 1 5 E : BO 51 6 6 1 7 7 L D A H I , X
6 1 6 1 : 8 5 I B 1 7 8 STA H I G H

6 1 6 3 : BO 1 1 6 7 1 7 9 L D A LO,X
6 1 6 6 : 8 5 l A 1 8 0 STA LOW
6 1 6 8 : A E OC 6 0 1 8 1 L D X XCOUNT

Hi-Res Braphlcs and Animation Using Assembiy Language

B 1 l A
5D OF 60
9 1 l A
C 8
B 1 l A
5 0 1 0 6 0
9 1 l A
C8
8 1 l A
5 0 1 1 6 0
9 1 l A
E E O C 6 0
E E O C 6 0
E E O C 6 0
E E 0 3 6 0
A O 0 3 6 0
CD 06 60
90 C2
AO 04 60
8 0 0 3 6 0
6 0

A C 0 8 6 0
B 9 4 B 6 4
1 8
6 9 0 2
8 0 0 9 6 0
B9 4E 65
OA
A A
BO 47 60
8 5 l A
B O 4 8 6 0
8 5 I B
A O 0 0
B 1 l A
80 OE 60
6 0

A E 0 5 6 0
A C 0 9 6 0
BO 51 66
8 5 I B
B O 11 6 7
8 5 l A
B 1 l A
20 OE 60
C 9 0 0
F O 0 3
4 C E 4 6 1
B 1 l A
40 OE 60
9 1 l A

LOA (LOW),Y
EOR MTEMP.X
STA (LOW),Y
I NY
LOA (LOW),Y
EOR MTEMP+1,X
STA (LOW),Y
I NY
LOA (LOW),Y
EOR MTEMP+2,X
STA (LOW),Y
I N C X C O U N T
I N C X C O U N T
I N C X C O U N T
I N C M L I N E
L O A M L I N E
C M P D E P T H
B LT M O R A W l
L O A M L I N E A
S T A M L I N E
R T S

* *

L O A O B U L B H O R I Z
BYTETBL.Y

#$02
HORIZB
OFFSET,Y

;RESET LINE

;CONVERTS 0-255 TO
SCREEN BYTE (0-36)

;A00 2 TO ALIGN BULLET
WITH GUN

;BULLET BYTE POSITION
;GET BULLET SHAPE NUMBER
;LOAO BULLET SHAPE INTO BTEMP

BSHPAOR.X
LOW
BSHPA0R+1 ,X
HIGH
#$00
(LOW),Y

S TA B T E M P

BORAW

NOHIT

B L I N E
HORIZB
H I , X
H I G H

LO,X
LOW
(LOW),Y
B T E M P
#$00
N O H I T
C O L L I S I O N
(LOW),Y
BTEMP

(LOW),Y

;RESULT IS 0 IF NO COLLISION

;DRAW BULLET

61E4: 20 08 62
6 1 E 7 : 2 0 0 0 6 1
6 1 E A : 2 0 5 3 6 1
6 1 E 0 : 4 C B 3 6 0

6 1 F 0 : A F 0 5 6 0

* *

COLLISION JSR EXPLODE
J S R B I N I T I A L
OSR MORAW
J M P P A O O L E

* *

B X O R A W L O X B L I N E

;ERASE MAN

;BORAW WITHOUT COLLISION TEST

6 1 F 3 : A C 0 9 6 0 2 4 3 L O Y HORIZB
6 1 F 6 : B D 5 1 6 6 2 4 4 L O A H I , X
6 1 F 9 : 8 5 I B 2 4 5 S T A H I G H
6 1 F B : B D 1 1 6 7 2 4 6 L O A LO,X
6 1 F E : 8 5 l A 2 4 7 STA LOW
6 2 0 0 : 8 1 l A 2 4 8 LOA (L0W),Y
6 2 0 2 : 4 0 OE 6 0 2 4 9 EOR BTEMP
6 2 0 5 : 9 1 l A 2 5 0 S T A (L0W),Y
6 2 0 7 : 6 0 2 5 1 R T S

2 5 2 *

6 2 0 8 : 2 0 B 9 6 2 2 5 3 E X P L O D E J S R I N I T E l
6 2 0 B : 2 0 4 0 6 2 2 5 4 J S R D R AW E l ;ORAW
6 2 0 E : A 9 6 0 2 5 5 L O A #$60
6 2 1 0 : 2 0 A 8 F O 2 5 6 J S R W A I T
6 2 1 3 : 2 0 B 9 6 2 2 5 7 J S R I N I T E l
6 2 1 6 : 2 0 4 0 62 2 5 8 JSR DRAWEl ; ERASE
6 2 1 9 : 2 0 CO 62 2 5 9 J S R I N I T E 2
6 2 1 0 : 2 0 4 0 62 2 6 0 J S R DRAWEl ;ORAW
6 2 1 F : A 9 B B 2 6 1 L O A #$BB
6 2 2 1 : 2 0 A 8 F O 2 6 2 J S R W A I T
6 2 2 4 : 2 0 0 0 6 2 2 6 3 J S R I N I T E 2
6 2 2 7 : 2 0 4 0 6 2 2 6 4 J S R D R AW E l ;ERASE
6 2 2 A : 2 0 E l 6 2 2 6 5 J S R I N I T E 3
6 2 2 0 : 2 0 4 0 6 2 2 6 6 J S R D R AW E l ;ORAW
6 2 3 0 : A 9 B B 2 6 7 L O A #$BB
6 2 3 2 : 2 0 A 8 FC 2 6 8 JSR WAIT
6 2 3 5 : 2 0 E l 6 2 2 6 9 J S R I N I T E 3

4 fi F

6 2 3 8 : 2 0 4 0 6 2 2 7 0 J S R DRAWEl ;ERASE 135
6 2 3 B : 2 0 F 5 6 2 2 7 1 J S R I N I T E 4 ■
6 2 3 E : 2 0 70 6 2 2 7 2 J S R 0 R AW E 2 ;ORAW
6 2 4 1 : A 9 F F 2 7 3 L O A #$.FF
6 2 4 3 : 2 0 A 8 FO 2 7 4 J S R W A I T
6 2 4 6 : 2 0 F 5 6 2 2 7 5 J S R I N I T E 4
6 2 4 9 : 2 0 70 6 2 2 7 6 J S R 0 R AW E 2 ;ERASE
6 2 4 0 : 6 0 2 7 7 R T S

2 7 8 *

6 2 4 0 : A O 0 9 6 0 2 7 9 D R A W E l L D Y HORIZB ;ROUTINE FOR FIRST 3
6 2 5 0 : A E 3 6 60 2 8 0 LDX El INE EXPLOSION SHAPES
6 2 5 3 : B O 5 1 6 6 2 8 1 L O A H I , X
6 2 5 6 : 8 5 I B 2 8 2 S T A H I G H

6 2 5 8 : B O 1 1 6 7 2 8 3 L U A LO,X
6 2 5 B : 8 5 l A 2 8 4 S T A LOW

6 2 5 0 : A E 00 6 0 2 8 5 L O X XOOUNT
6 2 6 0 : B 1 l A 2 8 6 L O A (L0W),Y
6 2 6 2 : 5 0 2 1 6 4 2 8 7 EOR ESHAPE.X
6 2 6 5 : 9 1 l A 2 8 8 S T A (LOW).Y
6 2 6 7 : E E 0 0 6 0 2 8 9 I NO XOOUNT

6 2 6 A : E E 3 6 6 0 2 9 0 I NO E L I N E

6 2 6 0 : A O 36 6 0 2 9 1 L O A E L I N E

6 2 7 0 : C D 38 6 0 2 9 2 CMP EDEPTH
6 2 7 3 : 9 0 08 2 9 3 B LT DRAWEl
6 2 7 5 : A D 37 6 0 2 9 4 LOA EL INEA
6 2 7 8 : 8 0 36 6 0 2 9 5 S TA E L I N E

6 2 7 B : 6 0 2 9 6 RTS
2 9 7 *

6 2 7 0 : A O 0 9 6 0 2 9 8 0 R A W E 2 L O Y H O R I Z B ;ROUTINE FOR FOURTH
6 2 7 F : A E 3 6 6 0 2 9 9 L O X E L I N E EXPLOSION SHAPE
6 2 8 2 : B O 5 1 6 6 3 0 0 L O A H I , X
6 2 8 5 : 8 5 I B 3 0 1 S TA H I G H

6 2 8 7 : B O 1 1 6 7 3 0 2 L O A LO,X
6 2 8 A : 8 5 l A 3 0 3 S TA LOW

Hi-Res Braphics and Animation Using Assembly Language

Collisions and Explosions

1 8 I F
0 0 I F
0 0 I B
6 0 6 0
0 0 I C
0 0 I C
0 0 0 8
0 0 7 E
0 0 3 F
4 0 3 F
0 0 3 E
0 0 3 6
0 0 6 3
0 0 3 8
0 0 3 8
0 0 1 0
00 7C
0 0 7 C
0 0 7 E
0 0 3 8
0 0 3 8
0 0 4 6
0 0 7 0
0 0 7 0
0 0 2 0
0 0 7 8
0 0 7 8
0 0 7 8
0 0 7 0
0 0 7 0
0 0 7 0
0 0 6 0
0 0 6 0
0 0 4 0
0 0 7 0
0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 1 8
0 0 4 0
0 0 4 0
0 0 0 0
0 0 6 0
0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 0
0 0 5 8
00 4C
0 0 4 0
0 0 4 0
0 0 3 0
0 1
0 2
0 4

0 0 4 0 3 1

0 2 0 0 I C
0 3 3 6 6
0 1 0 0 3 E
0 0 3 6 7
0 0 0 0 3 E
0 0 3 6 8
0 0 0 0 3 6
0 0 3 6 9
0 4 3 7 0
0 4 0 0 3 8
0 6 3 7 1
0 3 0 0 7 0
0 0 3 7 2
0 0 0 0 7 0
0 0 3 7 3
0 0 0 0 6 0
0 1 3 7 4
0 8 3 7 5
0 8 0 0 7 0
0 0 3 7 6
0 7 0 0 7 8
0 1 3 7 7
0 1 0 0 7 8
0 0 3 7 8
0 0 0 0 7 0
0 0 3 7 9
1 1 3 8 0
1 1 0 0 6 0
1 8 3 8 1
O F 0 0 7 0
0 3 3 8 2
0 3 0 0 7 0
0 1 3 8 3
0 1 0 0 3 0
0 6 3 8 4
2 3 3 8 5
2 3 0 0 4 0
3 1 3 8 6
I F 0 0 6 0
0 7 3 8 7
0 7 0 0 6 0
0 7 3 8 8
0 6 0 0 6 0
0 0 3 8 9
4 7 3 9 0
4 7 0 0 0 0
6 2 3 9 1
3 F 0 0 7 0
O F 3 9 2
O F 0 0 4 0
O F 3 9 3
0 0 0 0 6 0

I 3 0 3 9 4
3 9 5
3 9 6
3 9 7

M S H A P E 2
0 2

M S H A P E 3
0 4

MSHAPE4
0 8

M S H A P E 5
1 1

MSHAPE6
2 3

MSHAPE7
4 7

0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0

6 0 6 0 0 0
0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2

0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0

0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0

0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0

0 0 6 3 0 0
003804003804003804

001006007003007000

007000007E00007000

0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 0 0 0

0 0 4 6 0 1
0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8

0 0 2 0 0 0 0 0 7 8 0 7 0 0 7 8 0 1

007801007801007801

0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0

0 0 7 0 0 0
0 0 6 0 11 0 0 6 0 11 0 0 6 0 11

0 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3

007003007803007003

006001006001003003

0 0 1 8 0 6
0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3

0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7

0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7

0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6

0 0 3 0 0 0
000047000047000047

00006200403F00700F

0 0 5 8 0 F 0 0 4 0 0 F 0 0 4 0 0 F

00400F00400D006018

BSHAPEl
BSHAPE2
BSHAPE3

0 0 3 0 3 0
0 1
0 2
0 4

jBULLET SHAPES

/

Hi-Res Braphlcs and Animation Using Assembiy Language

6 4 1 D : 0 8 3 9 8 B S H A P E 4 H E X 0 8
6 4 1 E : 1 0 3 9 9 B S H A P E 5 H E X 1 0
6 4 1 F : 2 0 4 0 0 B S H A P E 6 H E X 2 0
6 4 2 0 : 4 0 4 0 1 B S H A P E 7 H E X 4 0
6421: 28 22 lA 402 ESHAPE HEX 28221A2514 ;EXPLOSION SHAPES - NO. 1
6 4 2 4 : 2 5 1 4
6 4 2 6 : 2 C 5 2 4 4 4 0 3 H E X 2 C 5 2 4 4 3 2 0 C ; N 0 . 2
6 4 2 9 : 3 2 O C
642B: 38 3E 7F 404 HEX 383E7F7E7E3F3F1C ;N0 . 3
6 4 2 E : 7 E 7 E 3 F 3 F I C
6433 : 18 06 7C 405 HEX 18067C0F7C3F7E3F ;N0 . 4
6 4 3 6 : O F 7 C 3 F 7 E 3 F
6 4 3 B : 7 C 7 F 7 C 4 0 6 H E X 7 C 7 F 7 C 3 F 7 E 3 F 7 F 1 F
6 4 3 E : 3 F 7 E 3 F 7 F I F
6 4 4 3 : 7 E O F 7 C 4 0 7 H E X 7 E 0 F 7 C 1 F 7 0 0 F 4 0 0 3
6 4 4 6 : I F 7 0 O F 4 0 0 3

B Y T E T B L
O F F S E T
H I
L O

2 0 0 1 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :
138 L O W = $ 1 A H I G H = $ 1 B M L I N E = $ 6 0 0 3 M L I N E A = $ 6 0 0 4
■ B L I N E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 M H O R I Z = $ 6 0 0 7 B H O R I Z = $ 6 0 0 8

HORIZB =$6009 HORIZM =$600A BULON =$600B XCOUNT =$6000
D E L A Y = $ 6 0 0 D B T E M P = $ 6 0 0 E M T E M P = $ 6 0 0 F E L I N E = $ 6 0 3 6
E L I N E A = $ 6 0 3 7 E D E P T H = $ 6 0 3 8 M S H PA D R = $ 6 0 3 9 B S H PA D R = $ 6 0 4 7
P G M = $ 6 0 5 5 C L R l = $ 6 0 6 9 C L R = $ 6 0 6 0 L N = $ 6 0 8 F
L N l = $ 6 0 A 6 PA D D L E = $ 6 0 8 3 B U L L E T l = $ 6 0 0 1 B U L L E T = $ 6 0 0 6
T O P = $ 6 0 F 8 M I N I T I A L = $ 6 0 F E B I N I T I A L = $ 6 1 0 D P O L E = $ 6 1 1 8
P D L E l = $ 6 1 2 E L O A D = $ 6 1 4 8 M D R A W = $ 6 1 5 3 M D R A W l = $ 6 1 5 8
L O A D B U L = $ 6 1 9 0 B D R A W = $ 6 1 0 0 N O H I T = $ 6 1 0 0 0 0 L L I S I 0 N = $ 6 1 E 4
BXDRAW =$61F0 EXPLODE =$6208 DRAWEl =$6240 DRAWE2 =$6270
I N I T E l = $ 6 2 B 9 I N I T E 2 = $ 6 2 0 0 I N I T E 3 = $ 6 2 E 1 I N I T E 4 = $ 6 2 F 5
MSHAPEl =$6309 MSHAPE2 =$6330 MSHAPE3 =$6357 MSHAPE4 =$637E
MSHAPE5 =$63A5 MSHAPE6 =$6300 MSHAPE7 =$63F3 BSHAPEl =$641A
BSHAPE2 =$6418 BSHAPE3 =$6410 BSHAPE4 =$6410 BSHAPE5 =$641E
BSHAPE6 =$641F BSHAPE7 =$6420 ESHAPE =$6421 BYTETBL =$6448
O F F S E T = $ 6 5 4 E H I = $ 6 6 5 1 L O = $ 6 7 1 1 G R A P H I 0 S = $ 0 0 5 0
M I X O F F = $ 0 0 5 2 PA G E l = $ 0 0 5 4 H I R E S = $ 0 0 5 7 B U T T O N = $ 0 0 6 1
P R E A O = $ F B 1 E W A I T = $ F 0 A 8

One last point. Run Program 7-2 and pay particular attention to the paddle
control of the man movement while the explosion shapes are being drawn. You
will see, if you look carefully enough, that the man becomes unresponsive to the
paddle control until the explosion shapes are finished. An examination of the
Program 7-2 flowchart will tell you why this is happening. The entire explosion
routine is run before the program branches back for another paddle read.
Because the explosion routine uses up some amount of time caused by all the
delays between shapes, the program is interrupted momentarily. In many cases,
however, including this one and the game program, such an interruption is
acceptable because it is of fairly short duration and the man is not moving at
some constant speed and thus doesn't appear to "freeze" during the delay. In
fact, the user's attention would probably be riveted on the explosion rather than

J

Collisions and Explosions

on trying to move the man and so would hardly notice the unresponsiveness of
the paddle (it's hardly noticeable even when you're paying attention).

Suppose, however, we have two plane shapes moving across the screen at
the same time. When one is hit, the other will freeze in position until the explo
sion shapes have all been drawn and erased. This would be noticeable and
should be avoided. We can solve this problem in the following way. In the
EXPLODE subroutine, instead of inserting a delay between each draw and erase,
we branch to a routine that will erase the man and read the paddle for another
man draw and then return to the explosion. In other words, a program loop will
replace the delays. The protocol \yould then be draw-loop-erase-draw-loop-
erase, etc. The loop cannot use the same paddle read routine that's already in the
program because we don't want to go through another bullet draw and collision
test, and so we would have another routine that would consist of just erase man-
paddle read—draw man. The time for the loop will almost assuredly not be as
long as the delays already in the explosion routine and so. we would probably
have to introduce some time delay between the draw and erase cycles. The exact
delays to insert would again be a matter of trial and error—we would just try
different values until that second plane moved properly.

This discussion emphasizes an important point about game design (or for
that matter any program that is doing more than one thing at a time on the
screen) and that is the time delays that are necessary to reduce shape flicker
(and sometimes to slow the program down) are exactly the points where one
can introduce program loops when one is expanding the program to do more
things. We will see, for example, when we get to the game program, that an
explosion sound routine is inserted in place of the delay between drawing and
erasing the first explosion shape. The sound routine itself provides the necessary
delay, and we end up with a program where the explosion looks the same as
before, but now with an extra feature.

Scoring Stopping
and Restarting
A salesman with motives deplorable
Showed an Apple game to a customer adorable.
He said, "This game we'll now play
Scores every which way,
But scoring with you is preferable."

k^coring in game programs is almost a law of nature. I can't think of one
game program I've tried over the years that didn't have some type of score rou
tine. Of course now that we're experts in hi res graphics, we can devise any type
of scoring display we desire. We can choose our own number shapes, put them
anywhere on the screen we want, enclose them in a scoring box with a title,
even count in Roman numerals! But let's not get too ambitious. The first pro
gram in this chapter discusses a simple scoring routine that's used in the game
program. The second program presents a routine of more general utility. We're
also going to discuss how to stop a program at a predetermined score and how
to start it again from the keyboard.

COUNTING BY ONES

In the following program (Program 8-1), we're going to modify Program 7-2
so that a score display, initially set to 000, increments by 1 each time the top line
is hit by a bullet. When the score reaches 100, the program stops and can be
restarted by pressing any key. The scoring routine in this program will be incor
porated into the game program.

The numbers we'll be using to display the score are simply hi res shapes
depicting digits 0 to 9 (big surprise, eh?). Each number shape is I byte wide by
8 lines deep and the 10 shapes are stored in a table labeled NSHAPE. These
shapes are accessed and printed in a way we haven't seen before, just for variety's
sake and to show off our assembly language dexterity. In the PRINT subroutine,
the beginning of each number shape is accessed by LDA NSHAPE,X. Because
each number contains 8 bytes, when X = 0, the beginning of the first shape
(digit 0) is accessed, when X = 8, the second shape (digit I) is accessed, when
X = 16, the third shape (digit 2 is accessed), etc. Once X is specified, PRINT

Scoring, Stopping, and Restarting

then accesses each byte of the designated shape in turn by LDA NSHAPE+1,X,
LDA NSHAPE+2,X LDA NSHAPE+7,X. As each byte of the number shape is
retrieved, it is printed on a separate line, starting from line 184 to line 191, i.e.,
just below the bottom line the man is walking on.

The lines where the shapes are to be drawm are specified as direct addresses
from the hi-res screen memory' map instead of from the line address tables—this
saves execution time and program space and is easy to do when dealing \sith
small routines such as PRINT. (In fact, in some programs, if they're large and
complicated enough, the use of direct addresses may be called for just to get the
program to run fast enough, as a table look-up is a time-consuming process.) The
draw instruction has the form STA S23DO,Y (this is for line 184)—S23D0 speci
fies the line, whereas Y specifies the horizontal position where the byte is to be
d r a w n .

To summarize—X specifies the number shape from 0 to 9, the line positions
are specified directly in PRINT, and Y specifies the horizontal position.

To see how all this works, let's look at the SINITIAL subroutine that prints
000 just below the bottom line at the center of the screen. This is done at the
beginning of the program (line 105) to zero the counter. First, the Accumulator
is loaded with #S00 (line l49). Memory locations labelled SUM and COUNTER
are also zeroed (we'll get to these later). Tlie next instruction, TAX (line 152),
transfers the contents of the Accumulator, ^<^^$00, to the X register. Because X =
0, when we go to the PRINT subroutine the first number shape (digit 0) will be
printed. Line 153 loads Y with #$11, the horizontal position of the first or left
most digit in the counter display. JSR PRINT then prints 0 at that position. Y is
then incremented and another 0 is printed at position #$12. Finally, a third 0 is
printed at #$13—the loop stops when Y = #$14. The relationship of Y then to
the counter digits is as follows:

$ I 1 # $ 1 2 # $ 1 3

0 0 0

Now that we've zeroed the counter, let's see how we count collision events.
Every time a collision is detected, we do a INC SUM and JSR SCORE (lines 252
and 253) in the COLLISION subroutine. In the SCORE subroutine, we load the
Accumulator with SUM and compare the value to 10 (#$0A). If it's not equal to
10, we skip the branch in line 378 and multiply the number by 8. (Remember
ASL multiplies by 2 and so three ASLs gives 2X2X2 = 8; if you don't under
stand this, return this book for an immediate refund.) We multiply by 8 to access
the proper number shape. Thus, when SUM = 1, X = 8 and digit 1 is accessed;
when SUM = 2, X = 16 and digit 2 is accessed, and so on. We then transfer the
number to X, load Y with #$I3, and print with a JSR PRINT. The number is
printed in the rightmost counter position so the counter will now display 001,
002, etc.

Suppose now the number in SUM has been incremented to 10. The branch
at line 378 is taken and we go to CIO to increment COLINTER and load the
Accumulator with COUNTER (lines 386 and 387). If the number in COUNTER
is not equal to 10, the branch in line 389 is not taken and the number in
COUNTER is multiplied by 8, transferred to X, and printed at position #$12 (Y =
#$12, line 394). The middle counter digit will then be 1. We then zero SUM and
jump back to SCORE to print a zero in the rightmost position, llie counter now

Hi-Res Braphles and Animation Using Assembiy Language

displays 010, which is what we want because SUM = 10. Now when we incre
ment again, SUM will contain 1 and a 1 will be printed at Y = *S13. Because
SUM is again less than 10, the branch to CIO is not taken and COUNTER retains
its value of 1. Thus, the counter will display Oil. The counting then continues.
Each time SUM gets to 10, COUNTER is incremented by 1 and SUM is zeroed;
COUNTER is printed in Y = #S12 and SUM in Y = #$13.

With this routine we can count to essentially any number simply by specify
ing other counters, such as COUNTERl for the 100s column, COUNTER2 for the
1000s column, etc., and modifying the routine to access these counters at the
appropriate times; e.g., when COUNTER reaches 10, COUNTERl is incremented
by 1 and printed in #$11, and so on. Also, we're not limited by the fact that a
memory location can hold a maximum value of #$FF, as SUM and COUNTER
never contain values greater than 10.

STOPPING AT A PREDETERMINED SCORE
AND RESTARTING WITH A KEYPRESS

SUM is the counter for the I's column and COUNTER for the lO's column.
Thus, when COUNTER gets to 10, it means the score has reached 100. The
branch at line 389 is then taken and the program jumps to STOPl. Here 100 is
printed in the counter display and the program then goes to STOP. At this rou
tine, the instruction BIT $C000 accesses a soft switch that says watch for any
keypress. BIT—Compare Accumulator BITS with contents of memory—is an
instruction whose main functions 1 simply do not want to get into and you
wouldn't want to either if you saw what it does. Maybe in some future book on
advanced techniques (Volume DCMXlll?) I'll discuss it, but for now 1 use it only
to illustrate one of its more arcane but useful features — it can replace LDA or
STA to access a soft switch, and it does so without damaging the contents of the
A c c u m u l a t o r .

To get back to line 407, BIT $C000 says watch for any keypress and the next
line (BPL STOP) says if no key is pressed, go back and watch again. This loop
continues until any key is pressed, at which point the program continues to BIT
$C010, which accesses a soft switch to clear the keyboard strobe (the keyboard
holds the last key pressed until either another key is pressed or until the strobe
is cleared), and then finally to JMP PGM which starts the program over. Note
that we don't have to go back to the program starting line at $6000 for a restart
because everything from $6000 to PGM has already been done and is in memory.
(See flowchart on pages 142 and 143.)

]PR0GRAM 8-1
: A S M

1
2

6 0 0 0 : 4 C 5 7 6 0 3
4
5
6
7
8
9
1 0
1 1
1 2
1 3

♦COLLISION AND EXPLOSION WITH SCORING*
ORG $6000
J M P P G M

M L I N E O S 1
M L I N E A D S 1
B L I N E D S 1
D E P T H D S 1
M H O R I Z D S 1
B H O R I Z D S 1
H O R I Z B D S 1
H O R I Z M D S 1
B U L O N D S I
X C O u N T D S I

•Scoring, Stopping, and Restarting

14 D E L AY D S 1
1 5 BTEMP D S 1
1 6 MTEMP DS 3 9
1 7 E L I N E D S 1
1 8 EL INEA DS 1
19 EDEPTH DS 1
20 SUM D S 1
2 1 COUNTER DS 1
22 G R A P H I C S = $C050
2 3 M I X O F F = $C052
2 4 H I R E S = $C057
2 5 P A G E l = $C054
2 6 H I G H = $1B
2 7 LOW = $1A
2 8 W A I T = $FCA8
2 9 PREAD = $FB1E
3 0 BUTTON = $C061 ;BUTTON 0
31 *LOAD SHAPE ADDRESSES INTO SHPADR. LOW BYTE F IRST
3 2 ♦C O N T I N U E F O R ALL 7 SHAPES

6 0 3 B : F 3 3 3 M S H PA D R D F B #<MSHAPE1
6 0 3 C : 6 3 3 4 D F B #>MSHAPE1
6 0 3 D : l A 3 5 D F B #<MSHAPE2
6 0 3 E : 6 4 3 6 D F B #>MSHAPE2
6 0 3 F : 4 1 3 7 D F B #<MSHAPE3
6 0 4 0 : 6 4 3 8 D F B #>MSHAPE3
6 0 4 1 : 6 8 3 9 DFB #<MSHAPE4
6 0 4 2 : 6 4 4 0 D F B #>MSHAPE4

1456 0 4 3 : 8 F 41 D F B #<MSHAPE5
6 0 4 4 : 6 4 4 2 D F B #>MSHAPE5 ■
6 0 4 5 : B 6 4 3 D F B #<MSHAPE6
6 0 4 6 : 6 4 4 4 D F B #>MSHAPE6
6 0 4 7 : D D 4 5 D F B #<MSHAPE7
6 0 4 8 : 6 4 4 6 D F B #>MSHAPE7
6 0 4 9 : 0 4 4 7 B S H PA D R D F B #^BSHAPE1
6 0 4 A : 6 5 4 8 D F B #>BSHAPE1
6 0 4 B : 0 5 4 9 D F B #<BSHAPE2
6 0 4 C : 6 5 5 0 DFB #>BSHAPE2
6 0 4 D : 0 6 5 1 DFB #<BSHAPE3
6 0 4 E : 6 5 5 2 D F B #>BSHAPE3
6 0 4 F : 0 7 53 D F B #<BSHAPE4
6 0 5 0 : 6 5 54 D F B #>BSHAPE4
6 0 5 1 : 0 8 5 5 D F B #<BSHAPE5
6 0 5 2 : 6 5 5 6 D F B #>BSHAPE5
6 0 5 3 : 0 9 5 7 D F B #<BSHAPE6
6 0 5 4 : 6 5 5 8 D F B # > B S H A P E 6
6 0 5 5 : O A 5 9 D F B #<BSHAPE7
6 0 5 6 : 6 5 6 0 D F B #>BSHAPE7
6 0 5 7 : A D 5 0 CO 6 1 PGM L D A GRAPHICS ;HIRES,P.l
6 0 5 A : A D 5 2 CO 6 2 L D A M I X O F F
6 0 5 D : A D 5 7 CO 63 LDA HIRES
6 0 6 0 : A D 5 4 CO 64 LDA PAGEl
6 0 6 3 : A 9 00 6 5 L D A # $ 0 0 ; C L E A R S C R E E N 1
6 0 6 5 : 8 5 l A 66 STA LOW
6 0 6 7 : A 9 20 6 7 LDA #$20
6 0 6 9 : 8 5 I B 6 8 S T A H I G H
6 0 6 B : A O 0 0 6 9 C L R l L D Y #$00
6 0 6 D : A 9 0 0 7 0 L D A #$00
6 0 6 F : 9 1 l A 7 1 C L R S T A (L0W),Y
6 0 7 1 : C 8 7 2 I N Y
6 0 7 2 : D O F B 7 3 BNE C L R
6 0 7 4 : E 6 I B 7 4 I N C H I G H

Hi-Res Braphlcs ami Animation Using Assembly Language •••■

6 0 7 6 : A 5 I B 7 5 LOA H I G H

1

6 0 7 8 : C 9 4 0 7 6 OMP # $ 4 0
6 0 7 A : 9 0 E F 7 7 8 L T O L R l i

6 0 7 C : A 9 5 0 7 8 L O A #$50 ;LOAO DELAY
6 0 7 E : 8 0 0 0 6 0 7 9 S TA D E L AY
6 0 8 1 : A 2 8 7 8 0 L O X #$87 ;ORAW BOTTOM LINE
6 0 8 3 : A O 0 0 81 L O Y #$00
6 0 8 5 : 8 0 3 8 6 7 8 2 L O A H I , X 1

6 0 8 8 : 8 5 1 8 8 3 S T A H I G H
6 0 8 A : 8 0 F 8 6 7 8 4 LOA LO,X 1

6 0 8 0 : 8 5 l A 8 5 S T A LOW
6 0 8 F : A 9 7 F 8 6 L O A # $ 7 F i

6 0 9 1 : 9 1 l A 8 7 L N S T A (LOW).Y 1
6 0 9 3 : C 8 8 8 I N Y
6 0 9 4 : C O 2 7 8 9 OPY #$27
6 0 9 6 : 9 0 F 9 9 0 8 L T L N
6 0 9 8 : A 2 0 0 91 LOX # $ 0 0 ;;ORAW TOP LINE
6 0 9 A : A O 0 0 92 LOY #$00 J

6 0 9 0 : 8 0 3 8 6 7 9 3 LOA H I , X !

6 0 9 F : 8 5 1 8 9 4 STA HIGH j

6 0 A 1 : 8 0 F B 6 7 9 5 L O A LO,X i

6 0 A 4 : 8 5 l A 9 6 S TA LOW
i

1

6 0 A 6 : A 9 7 F 9 7 L O A #$7F
6 0 A 8 : 9 1 l A 9 8 L N l S TA (L0W),Y
6 0 A A : 0 8 9 9 I N Y 1

6 0 A 8 : 0 0 1 4 1 0 0 O P Y #$14
1

146 6 0 A 0 : 9 0 F 9 101 8 L T L N l j

102 * * * * * * * * * * M A I N P R O G R A M * * * * * * * * * * '

■ 6 0 A F : 2 0 0 3 6 1 1 0 3 J S R M I N I T I A L S E T L I N E & D E P T H O F M A N i
6 0 8 2 : 2 0 1 2 6 1 1 0 4 J S R 8 I N I T I A L SET L INE FOR BULLET
6 0 8 5 : 2 0 1 0 6 1 1 0 5 J S R S I N I T I A L ZERO SCORE COUNTER
6 0 8 8 : 2 0 3 1 6 1 1 0 6 PA O O L E J S R P O L E R E A D PA O O L E
6 0 8 8 : 2 0 6 0 6 1 1 0 7 J S R MORAW DRAW MAN
6 0 8 E : A O 0 8 6 0 1 0 8 L O A 8UL0N
6 0 0 1 : 0 9 0 1 1 0 9 OMP #$01 I S B U L L E T O N ? i
6 0 0 3 : F O 1 6 1 1 0 8EQ BULLET I F Y E S , C O N T I N U E B U L L E T D R A W j
6 0 0 5 : A D 6 1 0 0 1 1 1 LOA BUTTON I F N O , I S B U T T O N P R E S S E D ? 1
6 0 0 8 : 3 0 0 0 1 1 2 8 M I 8ULLET1 I F Y E S , D R A W B U L L E T !
6 0 C A : A O 0 0 6 0 11 3 LOA DELAY IF NO,
6 0 0 0 : 2 0 A 8 F O 11 4 JSR WAIT DELAY AND
6 0 0 0 : 2 0 6 0 6 1 11 5 JSR MORAW ERASE MAN AND
6 0 0 3 : 4 0 8 8 6 0 1 1 6 JMP PADDLE READ PAOOLE AGAIN
6 0 0 6 : A 9 0 1 1 1 7 8 U L L E T 1 L O A # $ 0 1 ; SET BULLET ON
6 0 0 8 : 8 0 0 8 6 0 1 1 8 S T A 8UL0N
6 0 0 8 : 2 0 8 6 6 1 1 1 9 B U L L E T J S R L 0 A 0 8 U L ,LOAO BULLET SHAPE INTO 8TEMP
6 0 0 E : 2 0 0 9 6 1 1 2 0 J S R 8 0 R A W ;lORAW BULLET & TEST FOR COLLISION
6 0 E 1 : A O 0 0 6 0 1 2 1 L O A D E L AY
6 0 E 4 : 2 0 A 8 F O 1 2 2 J S R W A I T DELAY
6 0 E 7 : 2 0 O F 6 2 1 2 3 J S R 8 X D R A W ERASE BULLET
6 0 E A : 2 0 6 0 6 1 1 2 4 J S R MORAW ERASE MAN
6 0 E 0 : A O 0 5 6 0 1 2 5 LOA B L I N E
6 0 F 0 : 3 8 1 2 6 SEC
6 0 F 1 : E 9 0 8 1 2 7 SBC #$08 :MOVE BLINE UP 8 LINES
6 0 F 3 : 8 0 0 5 6 0 1 2 8 S TA B L I N E
6 0 F 6 : 0 9 0 5 1 2 9 OMP #$05 LESS THAN 5 LINES EROM TOP?
6 0 F 8 : 9 0 0 3 1 3 0 B L T T O P IF YES TAKE BRANCH
6 0 F A : 4 0 8 8 6 0 1 3 1 J M P PA O O L E IF NO, READ PADDLE AGAIN
6 0 F 0 : 2 0 1 2 6 1 1 3 2 T O P J S R B I N I T I A L I N I T I A L I Z E B U L L E T L I N E
6 1 0 0 : 4 0 8 8 6 0 1 3 3 J M P PA O O L E R E A D PA O O L E

1 3 4
6 1 0 3 : A 9 A A 1 3 5 M I N I T I A L L O A #$AA

Scoring, Stopping, and Restarting

Hi-Res BraphiCs and Animation Using Assembly Language

6 1 8 6 : 5 D OF 6 0 197 EOR MTEMP.X
6 1 8 9 : 9 1 l A 1 9 8 S T A {LOW),Y
6 1 8 8 : C 8 1 9 9 I N Y

6 1 8 C : 3 1 l A 2 0 0 L D A (LOW),Y
6 1 8 E : 5 D 1 0 6 0 2 0 1 EOR MTEMP+1,X
6 1 9 1 : 9 1 l A 2 0 2 S T A (L0W),Y
6 1 9 3 : C 8 2 0 3 I N Y

6 1 9 4 : 8 1 l A 204 LOA (L0W),Y
6 1 9 6 : 5 D 1 1 6 0 2 0 5 EOR MTEMP+2,X
6 1 9 9 : 9 1 l A 2 0 6 S TA (L0W),Y
6 1 9 8 : E E OC 6 0 2 0 7 I N C XCOUNT

6 1 9 E : E E OC 6 0 2 0 8 I N C XCOUNT

6 1 A 1 : E E OC 6 0 2 0 9 I N C XCOUNT

6 1 A 4 : E E 0 3 6 0 2 1 0 I N C M L I N E

6 1 A 7 : A D 0 3 6 0 2 1 1 L O A M L I N E

6 1 A A : C D 0 6 6 0 2 1 2 CMP D E P T H

6 1 A D : 9 0 C2 2 1 3 B LT MDRAWl
6 1 A F : A D 04 6 0 2 1 4 LDA MLINEA ;RESET LINE
6 1 8 2 : 8 D 03 6 0 2 1 5 STA M L I N E

6 1 8 5 : 6 0 2 1 6 RTS
2 1 7

6 1 8 6 : A C 0 8 6 0 2 1 8 L 0 A 0 8 U L L O Y 8 H 0 R I Z ;CONVERTS 0-255 TO
6 1 8 9 : 8 9 3 5 6 5 2 1 9 L O A 8YTET8L,Y SCREEN BYTE (0-36)
6 1 8 C : 1 8 2 2 0 C L C ;A00 2 TO ALIGN BULLET
6 1 8 D : 6 9 0 2 2 2 1 ADC # $ 0 2 W I T H G U N

6 1 8 F : 8 D 0 9 6 0 2 2 2 S TA H 0 R I Z 8 ;8ULLET BYTE POSITION
148 6 1 C 2 : 8 9 38 6 6 2 2 3 L D A OFFSET,Y ;GET BULLET SHAPE NUMBER
T V

6 1 C 5 : O A 2 2 4 ASL ;LOAD BULLET SHAPE INTO BTEMP■ 6 1 C 6 : A A 2 2 5 T A X

6 1 C 7 : B D 4 9 6 0 2 2 6 L D A 8SHPA0R,X
6 1 C A : 8 5 l A 2 2 7 STA LOW
61CC: 8D 4 A 6 0 2 2 8 LDA 8SHPADR+1,X
6 1 C F : 8 5 1 8 2 2 9 S TA H I G H
6 1 0 1 : A O 0 0 2 3 0 L O Y #$00
6 1 D 3 : 8 1 l A 2 3 1 L O A (LOW),Y
6 1 D 5 : 8 0 OE 6 0 2 3 2 S T A 8 T E M P
6 1 0 8 : 6 0 2 3 3 R T S

2 3 4 *

6 1 0 9 : A E 0 5 6 0 2 3 5 8DRAW L D X 8 L I N E
6 1 D C : A C 0 9 6 0 2 3 6 L O Y H 0 R I Z 8
6 1 0 F : 8 0 3 8 67 2 3 7 LOA H I , X
6 1 E 2 : 8 5 I B 2 3 8 S TA H I G H
6 1 E 4 : 8 0 F 8 6 7 2 3 9 L D A LO,X
6 1 E 7 : 8 5 l A 2 4 0 S T A LOW
6 1 E 9 : 8 1 l A 2 4 1 L O A {LOW),Y
6 1 E 8 : 2 0 OE 6 0 2 4 2 A N D 8 T E M P ;RESULT IS 0 IF NO COLLISION
6 1 E E : C 9 0 0 2 4 3 CMP #$00
6 1 F 0 : F O 0 3 2 4 4 8EQ N O H I T
6 1 F 2 : 4 C FO 6 1 2 4 5 J M P C O L L I S I O N
6 1 F 5 : 8 1 l A 2 4 6 NOHIT L D A (LOW),Y ;DRAW BULLET
6 1 F 7 : 4 0 OE 6 0 2 4 7 EOR BTEMP
6 1 F A : 9 1 l A 2 4 8 STA (LOW),Y
6 1 F C : 6 0 2 4 9 RTS

2 5 0 *

6 1 F D : 2 0 27 62 2 5 1 C O L L I S I O N J S R EXPLODE
6 2 0 0 : E E 39 6 0 2 5 2 INC SUM ;ADD 1 TO SCORE
6 2 0 3 : 2 0 2 8 6 3 2 5 3 J S R SCORE ;DISPLAY SCORE
6 2 0 6 : 2 0 1 2 6 1 2 5 4 J S R B I N I T I A L
6 2 0 9 : 2 0 6 C 6 1 2 5 5 J S R MORAW •.ERASE MAN
6 2 0 C : 4 C 8 8 6 0 2 5 6 J M P PA D D L E

2 5 7 * * * * * * * * * * * * *

6 2 0 F : A E 0 5 6 0 2 5 8 BXORAW L O X B L I N E ;BORAW WITHOUT COLLISION TEST
6 2 1 2 : A C 0 9 6 0 2 5 9 L O Y HORIZB
6 2 1 5 : B D 3 B 6 7 2 6 0 L O A H I , X
6 2 1 8 : 8 5 I B 2 6 1 S T A H I G H
6 2 1 A : B D F B 6 7 2 6 2 L O A LO,X
6 2 1 D : 8 5 l A 2 6 3 STA LOW
6 2 1 F : B 1 l A 2 6 4 LOA (L0W),Y
6 2 2 1 : 4 D O E 6 0 2 6 5 EOR BTEMP
6 2 2 4 : 9 1 l A 2 6 6 S T A (LOW),Y
6 2 2 6 : 6 0 2 6 7 RT S

2 6 8 *

6 2 2 7 : 2 0 0 8 6 2 2 6 9 E X P L O D E J S R I N I T E l
6 2 2 A : 2 0 6 C 6 2 2 7 0 J S R O R A W E l ;OR,AW
6 2 2 0 : A 9 6 0 2 7 1 L O A # $ 6 0
6 2 2 F : 2 0 A8 FC 2 7 2 J S R WAIT
6 2 3 2 : 2 0 0 8 6 2 2 7 3 JSR I N I T E l
6 2 3 5 : 2 0 6C 62 2 7 4 JSR ORAWEl ;ERASE
6 2 3 8 : 2 0 EC 62 2 7 5 J S R I N I T E 2
6 2 3 B : 2 0 6C 62 2 7 6 JSR ORAWEl ;ORAW
6 2 3 E : A 9 B B 2 7 7 L O A #$BB
6 2 4 0 : 2 0 A8 FC 2 7 8 J S R W A I T
6 2 4 3 : 2 0 E C 6 2 2 7 9 J S R I N I T E 2
6 2 4 6 : 2 0 6C 62 2 8 0 J S R O R AW E l ; ERASE
6 2 4 9 : 2 0 0 0 6 3 2 8 1 J S R I N I T E 3
6 2 4 C : 2 0 6C 62 2 8 2 J S R ORAWEl ;ORAW
6 2 4 F : A 9 B B 2 8 3 LOA #$BB
6 2 5 1 : 2 0 A8 FC 2 8 4 JSR WAIT

1496 2 5 4 : 2 0 0 0 6 3 2 8 5 J S R I N I T E 3
6 2 5 7 : 2 0 6C 62 2 8 6 J S R ORAWEl ;ERASE ■
6 2 5 A : 2 0 1 4 6 3 2 8 7 J S R I N I T E 4
6 2 5 0 : 2 0 9 B 6 2 2 8 8 J S R 0RAWE2 ;ORAW
6 2 6 0 : A 9 F F 2 8 9 L O A #$FF
6 2 6 2 : 2 0 A8 FC 2 9 0 J S R WAIT
6 2 6 5 : 2 0 1 4 6 3 291 J S R I N I T E 4
6 2 6 8 : 2 0 9 B 6 2 2 9 2 J S R 0 R AW E 2 ;ERASE
6 2 6 B : 6 0 2 9 3 RTS

2 9 4 *

6 2 6 C : A C 0 9 6 0 2 9 5 ORAWEl LOY HORIZB ;ROUTINE FOR FIRST 3
6 2 6 F : A E 3 6 6 0 2 9 6 L O X E L I N E EXPLOSION SHAPES
6 2 7 2 : B O 3 B 6 7 2 9 7 LOA H I , X
6 2 7 5 : 8 5 I B 2 9 8 S T A H I G H
6 2 7 7 : B O F B 6 7 2 9 9 L O A LO,X
6 2 7 A : 8 5 l A 3 0 0 S T A LOW
6 2 7 C : A E O C 6 0 3 0 1 L O X XCOUNT
6 2 7 F : B 1 l A 3 0 2 L O A {LOW),Y
6 2 8 1 : 5 0 O B 6 5 3 0 3 EOR ESHAPE.X
6 2 8 4 : 9 1 l A 3 0 4 S TA (LOW),Y
6 2 8 6 : E E OC 60 3 0 5 I N C XCOUNT
6 2 8 9 : E E 3 6 6 0 3 0 6 I N C E L I N E
6 2 8 C : A O 3 6 6 0 307 LOA E L I N E
6 2 8 F : C D 3 8 6 0 3 0 8 CMP EDEPTH
6 2 9 2 : 9 0 0 8 3 0 9 B LT ORAWEl
6 2 9 4 : A O 3 7 6 0 3 1 0 LOA EL INEA
6 2 9 7 : 8 0 3 6 6 0 3 11 STA E L I N E
6 2 9 A : 6 0 3 1 2 RTS

313 *

6 2 9 B : A C 0 9 6 0 3 1 4 0RAWE2 L O Y HORIZB ;ROUTINE FOR FOURTH
6 2 9 E : A E 3 6 6 0 3 1 5 L O X E L I N E E X P L O S I O N S H A P E
6 2 A 1 : B O 3 B 6 7 3 1 6 L O A H I , X
6 2 A 4 : 8 5 I B 3 1 7 S T A H I G H
6 2 A 6 : B O F B 6 7 3 1 8 L O A L O , X

Hi-Res Braphlcs and Animation Using Assembiy Language

6 2 A 9 : 8 5 l A 3 1 9 STA LOW
6 2 A B : A E OC 6 0 3 2 0 L D X XCOUNT
6 2 A E : B 1 l A 3 2 1 L D A (L0W),Y
6 2 B 0 : 5 D OB 6 5 3 2 2 EOR ESHAPE.X
6 2 B 3 : 9 1 l A 3 2 3 S T A (LOW),Y
6 2 B 5 : E E OC 6 0 3 2 4 I N C XCOUNT
6 2 B 8 : C 8 3 2 5 I N Y
6 2 B 9 : A E OC 6 0 3 2 6 LDX XCOUNT
6 2 B C : B 1 l A 3 2 7 L D A (LOW).Y
6 2 B E : 5 D OB 6 5 3 2 8 EOR ESHAPE.X
6 2 C 1 : 9 1 l A 3 2 9 S T A (LOW).Y
6 2 C 3 : E E OC 6 0 3 3 0 I N C XCOUNT
6 2 C 6 : E E 3 6 6 0 3 3 1 I N C E L I N E
6 2 C 9 : A D 3 6 6 0 3 3 2 L D A E L I N E
6 2 C C : C D 3 8 6 0 3 3 3 CMP E D E P T H
6 2 C F : 9 0 C A 3 3 4 B L T DRAWE2
6 2 D 1 : A D 37 60 3 3 5 LDA EL INEA
6 2 D 4 : 8 D 36 6 0 3 3 6 STA E L I N E
6 2 D 7 : 6 0 3 3 7 RTS

3 3 8
6 2 D 8 : A 9 0 0 3 3 9 I N I T E l L D A #$00
6 2 D A : 8 D OC 6 0 3 4 0 S T A XCOUNT
6 2 D D : A 9 0 9 3 4 1 L D A #$09
6 2 D F : 8 D 3 7 6 0 3 4 2 S TA E L I N E A
6 2 E 2 : 8 D 3 6 6 0 3 4 3 S T A E L I N E
6 2 E 5 : 1 8 3 4 4 C L C

6 2 E 6 : 6 9 0 5 3 4 5 ADC #$05
6 2 E 8 : 8 0 3 8 6 0 3 4 6 STA E D E P T H
6 2 E B : 6 0 3 4 7 R T S

6 2 E C : A 9 0 5 3 4 8 I N I T E 2 L D A #$05
6 2 E E : 8 D OC 6 0 3 4 9 STA XCOUNT
6 2 F 1 : A 9 0 9 3 5 0 L D A #$09
6 2 F 3 : 8 D 3 7 6 0 3 5 1 S TA E L I N E A
6 2 F 6 : 8 D 3 6 6 0 3 5 2 S TA E L I N E
6 2 F 9 : 1 8 3 5 3 C L C
6 2 F A : 6 9 0 5 3 5 4 A D C #$05
6 2 F C : 8 D 3 8 6 0 3 5 5 STA EDEPTH
6 2 F F : 6 0 3 5 6 RTS
6 3 0 0 : A 9 OA 3 5 7 I N I T E 3 LDA #$0A
6 3 0 2 : 8 D OC 60 3 5 8 STA XCOUNT
6 3 0 5 : A 9 0 5 3 5 9 LDA #$05
6 3 0 7 : 8 D 37 60 3 6 0 STA EL INEA
6 3 0 A : 8 D 36 6 0 3 6 1 STA E L I N E
6 3 0 D : 1 8 3 6 2 CLC
6 3 0 E : 6 9 0 8 3 6 3 A D C #$08
6 3 1 0 : 8 D 3 8 6 0 3 6 4 S T A E D E P T H
6 3 1 3 : 6 0 3 6 5 R T S
6 3 1 4 : A 9 1 2 3 6 6 I N I T E 4 L D A #$12
6 3 1 6 : 8 D OC 6 0 3 6 7 S TA XCOUNT
6 3 1 9 : A 9 01 3 6 8 L D A #$01
6 3 1 B : 8 D 37 6 0 3 6 9 STA EL INEA
6 3 1 E : 8 D 3 6 60 3 7 0 STA E L I N E
6 3 2 1 : 1 8 3 7 1 CLC
6 3 2 2 : 6 9 OC 3 7 2 ADC #$oc
6 3 2 4 : 8 D 38 60 3 7 3 STA EDEPTH
6 3 2 7 : 6 0 3 7 4 RTS

3 7 5 *

6 3 2 8 : A D 39 60 3 7 6 SCORE L D A SUM
6 3 2 B : C 9 OA 3 7 7 CMP #$0A
6 3 2 D : F O OA 3 7 8 BEQ C I O
6 3 2 F : O A 3 7 9 A S L

;INITIALIZE FIRST EXPLOSION

;INITIALIZE SECOND EXPLOSION

;INITIALIZE THIRD EXPLOSION

•.INITIALIZE FOURTH EXPLOSION

GET SCORE (0-9)
EQUAL TO 10?
IF YES, BRANCH
IF NO, MULTIPLY BY 8

Scoring, Slopping, and Restarting

$ 1 3
PRINT

COUNTER
COUNTER
#$0A
S TO P l

;BYTE POSITION FOR FIRST DIGIT
;PRINT DIGIT

;INC COUNTER (INITIALLY 0)

;EQUAL TO 10?
;IF YES, PRINT 100 AND STOP GAME
;IF NO. MULTIPLY BY 8

4 2 3
4 2 4
4 2 5
4 2 6
4 2 7
4 2 8
4 2 9
4 3 0

2 2 I C
4 3 1

0 8 I C
4 3 2

0 4 3 E
4 3 3

2 2 I C
4 3 4

1 0 1 0
4 3 5

LDY #$12
J S R P R I N T
L D A # $ 0 0
S TA S U M
JMP SCORE

S T O P l L D X # $ 0 8
L D Y # $ 11
J S R P R I N T
L D X # $ 0 0
L D Y # $ 1 2
J S R P R I N T
LDY #$13
J S R P R I N T

S T O P B I T $ C 0 0 0 ,
B P L S T O P
B I T $ C 0 1 0
J M P P G M

BYTE POSITION OF MIDDLE DIGIT
PRINT DIGIT
ZERO SUM AND

RETURN TO PRINT 0
IN FIRST DIGIT POSITION

ACCESSES DIGIT "1"
BYTE POSITION OF LEFTMOST DIGIT
PRINT DIGIT
ACCESSES DIGIT "0"
BYTE POSITION OF MIDDLE DIGIT
PRINT DIGIT
BYTE POSITION OF FIRST DIGIT
PRINT DIGIT
ANY KEY PRESSED?
IF NO, BRANCH BACK & WAIT
IF YES, CLEAR KEYBOARD STROBE AND

START PROGRAM OVER

PRINT LDA NSHAPE.X ;RETRIEVE NUMBER SHAPE
STA $23D0,Y ;LINE #$B8 (184)
LDA NSHAPE+1,X
STA $27D0,Y ;LINE #$B9 (185)
LDA NSHAPE+2,X
STA $2BD0,Y ;LINE #$BA (186)
LDA NSHAPE+3,X
STA $2FD0,Y ;LINE #$BB (187)
LDA NSHAPE+4,X
STA $33D0,Y ;LINE #$BC (188)
LDA NSHAPE+5,X
STA $37D0,Y ;LINE #$BD (189)
LDA NSHAPE+6,X
STA $3BD0,Y ;L INE #$BE (190)
LDA NSHAPE+7,X
STA $3FD0,Y ;LINE #$BF (191)
RTS

NSHAPE HEX 001C22222222221C -.NUMBER SHAPES

H E X 0 0 0 8 0 C 0 8 0 8 0 8 0 8 1 C

H E X 0 0 1 C 2 2 2 0 1 0 0 8 0 4 3 E

H E X 0 0 1 C 2 2 2 0 1 C 2 0 2 2 1 C

H E X 0 0 1 0 1 8 1 4 1 2 3 E 1 0 1 0

H E X 0 0 3 E 0 2 1 E 2 0 2 0 2 0 1 E

Hi-Res Graphics and Animation Using Assembiy Language

6 3 C E : I E 2 0 2 0 2 0 I E
6 3 0 3 : 0 0 I C 2 2 4 3 6
6 3 0 6 : 0 2 I E 2 2 2 2 I C
6 3 0 B : 0 0 3 E 2 0 4 3 7
6 3 0 E : 1 0 0 8 0 4 0 4 0 4
6 3 E 3 : 0 0 I C 2 2 4 3 8
6 3 E 6 : 2 2 I C 2 2 2 2 I C
6 3 E B : 0 0 I C 2 2 4 3 9
6 3 E E : 2 2 3 C 2 0 2 2 I C
6 3 F 3 : 0 0 O E 0 1 4 4 0 M S H A P E l
6 3 F 6 : 0 0 O E 0 1 0 0 O E 0 1
6 3 F C : 0 0 4 4 0 1 4 4 1
6 3 F F : 0 0 7 F 0 0 6 0 I F 0 0
6 4 0 5 : 3 0 I F 0 0 4 4 2
6 4 0 8 : 1 8 I F 0 0 0 0 I F 0 0
6 4 0 E : 0 0 I F 0 0 4 4 3
6 4 1 1 : 0 0 I B 0 0 4 0 3 1 0 0
6 4 1 7 : 6 0 6 0 0 0 4 4 4
6 4 1 A : 0 0 I C 0 2 4 4 5 M S H A P E 2
6 4 1 0 : 0 0 I C 0 2 0 0 I C 0 2
6 4 2 3 : 0 0 0 8 0 3 4 4 6
6 4 2 6 : 0 0 7 E 0 1 0 0 3 E 0 0
6 4 2 C : 0 0 3 F 0 0 4 4 7
6 4 2 F : 4 0 3 F 0 0 0 0 3 E 0 0
6 4 3 5 : 0 0 3 E 0 0 4 4 8
6 4 3 8 : 0 0 3 6 0 0 0 0 3 6 0 0

i c p 6 4 3 E : 0 0 6 3 0 0 4 4 9
6 4 4 1 : 0 0 3 8 0 4 4 5 0 M S H A P E 3

■ 6444: 00 38 04 00 38 04
6 4 4 A : 0 0 1 0 0 6 4 5 1
6 4 4 D : 0 0 7 C 0 3 0 0 7 C 0 0
6 4 5 3 : 0 0 7 C 0 0 4 5 2
6 4 5 6 : 0 0 7 E 0 0 0 0 7 C 0 0
6 4 5 C : 0 0 3 8 0 0 4 5 3
6 4 5 F : 0 0 3 8 0 0 0 0 6 C 0 0
6 4 6 5 : 0 0 4 6 0 1 4 5 4
6 4 6 8 : 0 0 7 0 0 8 4 5 5 M S H A P E 4
6 4 6 B : 0 0 7 0 0 8 0 0 7 0 0 8
6 4 7 1 : 0 0 2 0 O C 4 5 6
6 4 7 4 : 0 0 7 8 0 7 0 0 7 8 0 1
6 4 7 A : 0 0 7 8 0 1 4 5 7
6 4 7 D : 0 0 7 8 0 1 0 0 7 8 0 1
6 4 8 3 : 0 0 7 0 0 0 4 5 8
6 4 8 6 : 0 0 7 0 0 0 0 0 7 0 0 0
6 4 8 C : 0 0 7 0 0 0 4 5 9
6 4 8 F : 0 0 6 0 1 1 4 6 0 M S H A P E 5
6 4 9 2 : 0 0 6 0 1 1 0 0 6 0 1 1
6 4 9 8 : 0 0 4 0 1 8 4 6 1
6 4 9 B : 0 0 7 0 O F 0 0 7 0 0 3
6 4 A 1 : 0 0 7 0 0 3 4 6 2
6 4 A 4 : 0 0 7 8 0 3 0 0 7 0 0 3
6 4 A A : 0 0 6 0 0 1 4 6 3
6 4 A D : 0 0 6 0 0 1 0 0 3 0 0 3
6 4 8 3 : 0 0 1 8 0 6 4 6 4
6 4 8 6 : 0 0 4 0 2 3 4 6 5 M S H A P E 6
6 4 8 9 : 0 0 4 0 2 3 0 0 4 0 2 3
6 4 8 F : 0 0 0 0 3 1 4 6 6
6 4 C 2 : 0 0 6 0 I F 0 0 6 0 0 7
6 4 C 8 : 0 0 7 0 0 7 4 6 7
6 4 C B : 0 0 7 8 0 7 0 0 6 0 0 7
6 4 0 1 : 0 0 6 0 0 7 4 6 8

H E X 0 0 1 C 2 2 0 2 1 E 2 2 2 2 1 C ; " 6 "

H E X 0 0 3 E 2 0 1 0 0 8 0 4 0 4 0 4 ; " 7 "

H E X 0 0 1 C 2 2 2 2 1 C 2 2 2 2 1 C ; " 8 "

HEX 001C22223C20221C ; "9 "

HEX OOOEOIOOOEOIOOOEOI ;MAN SHAPE TABLES

H E X O O 4 4 O 1 O O 7 F O O 6 O 1 F 0 O

H E X 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0

H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0

H E X 6 0 6 0 0 0
H E X 0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 C 0 2

H E X 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0

H E X 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0

H E X 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0

H E X 0 0 6 3 0 0
H E X 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4

H E X 0 0 1 0 0 6 0 0 7 C 0 3 0 0 7 C 0 0

H E X 0 0 7 C 0 0 0 0 7 E 0 0 0 0 7 C 0 0

H E X 0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 C 0 0

H E X 0 0 4 6 0 1
H E X 0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8

H E X 0 0 2 0 0 C 0 0 7 8 0 7 0 0 7 8 0 1

H E X 0 0 7 8 0 1 0 0 7 8 0 1 0 0 7 8 0 1

H E X 0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0

H E X 0 0 7 0 0 0
H E X 0 0 6 0 11 0 0 6 0 11 0 0 6 0 11

H E X 0 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3

H E X 0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3

H E X 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3

H E X 0 0 1 8 0 6
H E X 0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3

H E X 0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7

H E X 0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7

H E X 0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6

Scoring, Stopping, and Restarting

6 4 D 4 :
6 4 D A :
6 4 D D :
6 4 E 0 :
6 4 E 6 :
6 4 E 9 :
6 4 E F :
6 4 F 2 :
6 4 F 8 :
6 4 F B :
6 5 0 1 :
6 5 0 4 :
6 5 0 5 :
6 5 0 6 :
6 5 0 7 :
6 5 0 8 :
6 5 0 9 :
6 5 0 A :
6 5 0 B :
6 5 0 E :
6 5 1 0 :
6 5 1 3 :
6 5 1 5 :
6 5 1 8 :
6 5 1 D :
6 5 2 0 :
6 5 2 5 :
6 5 2 8 :
6 5 2 0 :
6 5 3 0 :

0 0 6 0
0 0 3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 4 0
0 0 5 8
00 4C
0 0 4 0
0 0 4 0
0 0 3 0
0 1
0 2
0 4
0 8
10
2 0
4 0
2 8 2 2
2 5 1 4
2 C 5 2
32 OC
3 8 3 E
7 E 7 E
1 8 0 6
OF 7C
7C 7F
3F 7E
7E OF
I F 7 0

0 6 0 0 6 0
O C 4 6 9
4 7 4 7 0
4 7 0 0 0 0
6 2 4 7 1
3 F 0 0 7 0
O F 4 7 2
OF 00 40
O F 4 7 3
0 0 0 0 6 0
3 0 4 7 4

4 7 5
4 7 6
4 7 7
4 7 8
4 7 9
4 8 0
4 8 1

l A 4 8 2

4 4 4 8 3

MSHAPE7
4 7

B S H A P E l
B S H A P E 2
B S H A P E 3
BSHAPE4
BSHAPE5
BSHAPE6
BSHAPE7
ESHAPE

3 F 3 F I C
7 C 4 8 5
3F 7E 3F
7 0 4 8 6
3 F 7 F I F
7 0 4 8 7
O F 4 0 0 3

B Y T E T B L
O F F S E T
H I
L O

2235 bytes

Symbol table - numerical order:

0 0 3 0 0 0
000047000047000047

00006200403F00700F

00580F00400F00400F

00400F00400D006018

0 0 3 0 3 0
0 1
0 2
0 4
0 8
10
20
4 0
28221A2514

2 0 5 2 4 4 3 2 0 0

;BULLET SHAPES

;EXPLOSION SHAPES - NO. 1

; N 0 . 2

383E7F7E7E3F3F10 ;N0. 3

1806700F703F7E3F ;N0. 4

7C7F7C3F7E3F7F1F

7E0F701F700F4003

LOW =$1A H I G H =$1B MLINE =$6003 M L I N E A =$6004
B L I N E =$6005 D E P T H =$6006 MHORIZ =$6007 B H O R I Z =$6008
H O R I Z B =$6009 H O R I Z M =$600A BULON =$6008 XOOUNT =$6000
D E L AY =$6000 BTEMP =$600E MTEMP =$600F E L I N E = $ 6 0 3 6
E L I N E A =$6037 E O E P T H =$6038 SUM = $ 6 0 3 9 OOUNTER =$603A
MSHPADR = $ 6 0 3 B B S H PA O R =$6049 PGM =$6057 O L R l =$6068
OLR =$606F L N =$6091 L N l = $ 6 0 A 8 PA O O L E =$6088
B U L L E T l = $ 6 0 0 6 B U L L E T =$60DB TOP =$60FD M I N I T I A L =$6103
B I N I T I A L =$6112 S I N I T I A L=$6110 PR =$6128 POLE =$6131
PDLE l =$6147 LOAD =$6161 MORAW =$6160 MDRAWl =$6171
LOADBUL =$6186 BDRAW =$6109 NOHIT =$61F5 00LLISI0N=$61FD
BXDRAW =$620F EXPLODE =$6227 DRAWEl =$6260 DRAWE2 =$6296
I N I T E l =$6208 I N I T E 2 =$62EC I N I T E 3 =$6300 I N I T E 4 =$6314
SCORE =$6328 0 1 0 =$6339 S TO P l =$6354 S TO P =$6367
PRINT =$6372 NSHAPE =$63A3 MSHAPEl =$63F3 MSHAPE2 =$641A
MSHAPE3 =$6441 MSHAPE4 =$6468 MSHAPE5 =$648F MSHAPE6 =$6466
MSHAPE7 =$6400 B S H A P E l =$6504 B S H A P E 2 =$6505 BSHAPE3 =$6506
B S H A P E 4 =$6507 B S H A P E 5 =$6508 B S H A P E 6 =$6509 B S H A P E 7 =$650A
ESHAPE = $ 6 5 0 8 B Y T E T B L =$6535 OFFSET =$6638 H I =$6738
LO =$67FB GRAPHICS=$0050 M I X O F F =$0052 PA G E l =$0054
H I R E S =$0057 B U T TO N = $ 0 0 6 1 PREAO =$FB1E W A I T =$F0A8

Hi-Res Graphics and Animation Using Assembiy Language

C O U N T I N G B Y M U L T I P L E S A N D D E C R E M E N T I N G S C O R E

The counting routine in Program 8-1 fits in well with our game program
where we increment the score by 1 every time a plane is hit, and stop the
program when we reach 100 (or until 100 planes have appeared). However, it
does have some limitations. First, if we want to increment in jumps greater than
one, we have a problem. If we increment by 3 and go from 9 to 12, for example,
the counter will display 010 because SUM is zeroed after we increment
COUNTER. Second, if we want to decrement the score, say by 1 each time the
bullet is fired, the routine will not handle this at the 9-0 boundaries (e.g., from
10 to 9), and there would also be a problem if the score is decremented while at
000. The following program (Program 8-2) presents a score routine that solves
all these problems.

The SINITIAL and PRINT subroutines are the same in Program 8-2 as in
Program 8-1 and again we use SUM as the I's counter and COUNTER as the lO's
counter. The differences are in the MAIN PROGRAM, COLLISION, and SCORE
routines. In the MAIN PROGRAM, we decrement the score by one each time a
bullet is fired and jump to SCORE to display the count (lines 119 and 120). In
COLLISION, SUM is incremented by three each time a collision is detected (lines
254 to 256). Let's see how the SCORE routine handles these changes.

First, we load the Accumulator with SUM and compare to #$FF. If SUM
initially contains zero, as it would if the count were QIC, 020, 030, etc., and is
then decremented by 1 before we jump to the SCORE routine, we want to
change its value to 9 and then decrement COUNTER by 1. Decrementing #$00
by 1 results in a value of #$FF. Thus, SUM would contain #$FF and the branch at
line 382 would not be taken. The program would continue to line 383 where
#$09 is loaded into SUM and COUNTER is decremented by 1. We now want to
see if the score was at 000 at the time SUM was decremented by a bullet firing—
obviously at this point we don't want to decrement the score, but rather retain
the 000 display. If the score is 000, then both SUM and COUNTER contain zero.
Thus, decrementing COUNTER will yield a value of #$FF and the branch at line
388 will not be taken. The program would continue to line 389 where
COUNTER and SUM are both set to zero in preparation for printing 000. These
CMP #$FF instructions then are used for the special situations where either SUM
= 0 and is decremented, or where both SUM and COUNTER = 0 and SUM is
d e c r e m e n t e d .

If SUM doesn't contain zero before decrementing or is simply not decre
mented, SUM wil l not contain #$FF, the branch at l ine 382 is taken, and the
program proceeds to CI (line 392). Here SUM is compared to 10 and if less than
10, the program branches to CIO for the same print routine as in Program 8-1. If
SUM equals or is greater than 10, the branch at line 394 is not taken, COUNTER
is incremented by 1, 10 is subtracted from SUM, and the count is then printed.
Thus, if SUM contains 12, subtracting 10 leaves 2 in SUM. This figure is then
printed in the rightmost digit position, and COUNTER will contain 1, which is
printed in the middle digit position, producing the display 012.

Scoring, Stopping, and Restarting

L O A D S H A P E A D D R E S S E S
I N T O S H R A D R

D I S P L A Y A N D
C L E A R S C R E E N

D R A W T O P A N D
B O T T O M L I N E S

M I N I T I A L — S E T
L I N E A N D D E P T H

B I N I T I A L - S E T L I N E
A N D B U L L E T O F F

(BULON = 0)

R E A D P A D D L E

BULLET ON? h—H SET BHORIZ = MHORIZ

) R A W M A N

B U L L E T O N ?

B U T T O N P R E S S E D ?
SET BULLET ON (BULON = 1)

D E C S C O R E B Y 1 A N D D I S P L A Y

E R A S E M A N

A N D B T E M P W I T H
S C R E E N B Y T E

^ 1 Y e s
C O L L I S I O N ? D R A W A N D E R A S E

E X P L O S I O N S H A P E S

D R A W B U L L E T I N C S C O R E B Y 3

D E L A Y S C O R E = 1 0 0 ? D I S P L A Y 1 0 0

E R A S E M A N
A N D B U L L E T

MOVE BLINE
UP 8 LINES

< 5 L I N E S
F R O M T O P ?

D I S P L A Y S C O R E

B I N I T I A L

ERASE MAN 1-

S T O P G A M E

Hi-Res Graphics and Animation Using Assembiy Language

]PROGRAM
: A S M

1 ♦C O L L I S I O N A N O E X P L O S I O N W :
2 ORG $ 6 0 0 0

6 0 0 0 : 4 0 5 7 6 0 3 J M P PGM
4 M L I N E OS 1
5 M L I N E A OS 1
6 B L I N E OS
7 OEPTH OS 1
8 M H O R I Z OS 1
9 B H O R I Z OS 1
1 0 H O R I Z B OS 1
1 1 H O R I Z M OS I
1 2 BULON OS 1
1 3 XOOUNT OS 1
1 4 O E L AY OS 1
1 5 BTEMP DS 1
1 6 MTEMP OS 3 9
1 7 E L I N E D S 1
1 8 E L I N E A DS 1
1 9 E O E P T H D S 1
2 0 SUM DS 1
2 1 COUNTER D S 1
2 2 G R A P H I C S = $ 0 0 5 0
2 3 M I X O F F = $ 0 0 5 2
2 4 H I R E S = $ 0 0 5 7
25 P A G E l = $0054
2 6 H I G H = $1B
2 7 LOW = $1A
2 8 W A I T = $F0A8
2 9 PREAO = $FB1E
3 0 BUTTON = $ 0 0 6 1 ; l
3 1 * L O A O S H A P E A O O R E S S E S I N T O
3 2 ♦CONTINUE FOR ALL 7 SHAPES

6 0 3 B : I E 3 3 MSHPAOR D F B #<MSHAPE1
6 0 3 C : 6 4 3 4 D F B #>MSHAPE1
6 0 3 0 : 4 5 3 5 D F B #<MSHAPE2
6 0 3 E : 6 4 3 6 D F B #>MSHAPE2
6 0 3 F : 6 0 3 7 D F B #<MSHAPE3
6 0 4 0 : 6 4 3 8 D F B #>MSHAPE3
6 0 4 1 : 9 3 3 9 D F B #<MSHAPE4
6 0 4 2 : 6 4 4 0 D F B #>MSHAPE4
6 0 4 3 : B A 4 1 D F B #<MSHAPE5
6 0 4 4 : 6 4 4 2 D F B #>MSHAPE5
6 0 4 5 : E l 4 3 D F B #<MSHAPE6
6 0 4 6 : 6 4 4 4 D F B #>MSHAPE6
6 0 4 7 : 0 8 4 5 D F B #<MSHAPE7
6 0 4 8 : 6 5 4 6 D F B #>MSHAPE7
6 0 4 9 : 2F 4 7 B S H PA O R D F B #<BSHAPE1
6 0 4 A : 6 5 4 8 D F B #>BSHAPE1
6 0 4 B : 3 0 4 9 DFB #<BSHAPE2
6 0 4 C : 6 5 5 0 D F B #>BSHAPE2
6 0 4 0 : 31 51 DFB #<BSHAPE3
6 0 4 E : 65 52 D F B #>BSHAPE3
6 0 4 F : 32 53 D F B #<BSHAPE4
6 0 5 0 : 65 5 4 D F B #>BSHAPE4
6 0 5 1 : 33 5 5 D F B #<BSHAPE5
6 0 5 2 : 6 5 5 6 D F B #>BSHAPE5
6 0 5 3 : 3 4 5 7 D F B #<BSHAPE6

W I T H S C O R I N G * D E C R E M E N T I N G S C O R E

SHPADR,

i

Scoring, Stopping, and Restarting

6 0 5 4 : 6 5 5 8 D F B # > B S H A P E 6
6 0 5 5 : 3 5 5 9 D F B #<BSHAPE7
6 0 5 6 : 6 5 6 0 D F B # > B S H A P E 7
6 0 5 7 : A D 5 0 C O 6 1 PGM L D A GRAPHICS
605A: AD 52 CO 6 2 L D A MIXOFF
605D: AD 57 CO 6 3 L D A H I R E S
6 0 6 0 : A D 5 4 C O 6 4 L D A PA G E l
6 0 6 3 : A 9 0 0 6 5 L D A #$00
6 0 6 5 : 8 5 l A 6 6 S TA LOW
6 0 6 7 : A 9 2 0 6 7 L D A #$20
6 0 6 9 : 8 5 I B 6 8 S T A H I G H
6 0 6 B : A O 0 0 6 9 C L R l L D Y # $ 0 0
6 0 6 D : A 9 0 0 7 0 L D A # $ 0 0
6 0 6 F : 9 1 l A 7 1 C L R S T A (L0W),Y
6 0 7 1 : C 8 72 I N Y
6 0 7 2 : D O F B 73 BNE C L R
6 0 7 4 : E 6 I B 74 I N C H I G H
6 0 7 6 : A 5 I B 7 5 L D A HIGH
6 0 7 8 : C 9 4 0 7 6 CMP # $ 4 0
6 0 7 A : 9 0 E F 7 7 B L T C L R l
6 0 7 C : A 9 5 0 7 8 L D A # $ 5 0
6 0 7 E : 8 D O D 6 0 7 9 S T A D E L AY
6 0 8 1 : A 2 B 7 8 0 L D X #$B7
6 0 8 3 : A O 0 0 8 1 L D Y #$00
6 0 8 5 : B D 6 6 6 7 8 2 L D A H I , X
6 0 8 8 : 8 5 I B 8 3 S T A H I G H
6 0 8 A : B D 2 6 6 8 8 4 L D A LO,X
6 0 8 D : 8 5 l A 8 5 STA LOW
6 0 8 F : A 9 7 F 8 6 L D A # $ 7 F
6 0 9 1 : 9 1 l A 8 7 L N S T A (L0W),Y
6 0 9 3 : C 8 8 8 I N Y
6 0 9 4 : C O 2 7 8 9 C P Y #$27
6 0 9 6 : 9 0 F 9 90 B L T L N
6 0 9 8 : A 2 O C 9 1 L D X #$0C
6 0 9 A : A O 0 0 9 2 L D Y # $ 0 0
6 0 9 C : B D 6 6 6 7 9 3 L D A H l , X
6 0 9 F : 8 5 I B 9 4 STA H I G H
6 0 A 1 : B D 2 6 6 8 9 5 LHA LO,X
6 0 A 4 : 8 5 l A 9 6 S TA LOW
6 0 A 6 : A 9 7 F 9 7 L D A # $ 7 F
6 0 A 8 : 9 1 l A 9 8 L N l S T A (L0W),Y
6 0 A A : C 8 9 9 I N Y
6 0 A B : C O 1 4 1 0 0 CPY # $ 1 4
6 0 A D : 9 0 F 9 1 0 1 B L T L N l

1 0 2 * * * * * * * * * * m a i n p r o g r a m
6 0 A F : 2 0 0 9 6 1 1 0 3 J S R M I N I T I A L
6 0 B 2 : 2 0 1 8 6 1 1 0 4 J S R B I N I T I A L
6 0 B 5 : 2 0 2 3 6 1 1 0 5 J S R S I N I T I A L
6 0 B 8 : 2 0 3 7 6 1 1 0 6 PA D D L E J S R POLE
6 0 B B : 2 0 7 2 6 1 1 0 7 JSR MDRAW
60BE: AD OB 60 1 0 8 LDA BULON
6 0 C 1 : C 9 0 1 109 CMP #$01
6 0 C 3 : F O I C 11 0 BEQ BULLET
6 0 C 5 : A D 6 1 C O 111 LDA BUTTON
6 0 C 8 : 3 0 O C 1 1 2 B M I B U L L E T l
60CA: AD OD 60 11 3 L D A D E L AY
6 0 C D : 2 0 A 8 F C 1 1 4 J S R W A I T
6 0 D 0 : 2 0 7 2 6 1 1 1 5 J S R MDRAW

; H I R E S , P. l

;CLEAR SCREEN 1

;LOAD DELAY

;DRAW BOTTOM LINE

;DRAW TOP LINE

* * * * * * * * * *

;SET LINE & DEPTH OF MAN
;SET L INE FOR BULLET
;ZERO SCORE COUNTER
;READ PADDLE
:DRAW MAN

IS BULLET ON?
IF YES, CONTINUE BULLET DRAW
IF NO, IS BUTTON PRESSED?
IF YES, DRAW BULLET
IF NO,

D E L A Y A N D
E R A S E M A N A N D

Hi-Res Graphics and AnimaUon Using Assemhiy Language

6 0 D 3 : 4C B 8 6 0 1 1 6 J M P PA D D L E READ PADDLE AGAIN
6 0 D 6 : A 9 0 1 1 1 7 B U L L E T l L D A # $ 0 1 ; SET BULLET ON
6 0 D 8 : 8 0 OB 6 0 1 1 8 S TA B U L O N
6 0 D B : CE 3 9 6 0 1 1 9 D E C S U M ; DECREMENT SUM AND
6 0 D E : 2 0 3 4 6 3 1 2 0 J S R SCORE DISPLAY SCORE
6 0 E 1 : 2 0 B C 6 1 1 2 1 B U L L E T J S R L O A D B U L ; LOAD BULLET SHAPE INTO BTEMP
6 0 E 4 : 2 0 O F 61 1 2 2 J S R B D R A W ; DRAW BULLET & TEST FOR COLLISION
6 0 E 7 : AO 0 0 6 0 1 2 3 LDA D E L A Y
6 0 E A : 2 0 A 8 F C 1 2 4 J S R W A I T ; D E L AY
6 0 E D : 2 0 I B 6 2 1 2 5 J S R BXDRAW ERASE BULLET
6 0 F 0 : 2 0 7 2 6 1 1 2 6 J S R MDRAW E R A S E M A N
6 0 F 3 : AO 0 5 6 0 1 2 7 L D A B L I N E
6 0 F 6 : 3 8 1 2 8 SEC
6 0 F 7 : E 9 0 8 1 2 9 S B C # $ 0 8 ; M O V E B L I N E U P 8 L I N E S
6 0 F 9 : 8 0 0 5 6 0 1 3 0 S T A B L I N E
6 0 F C : C 9 0 5 1 3 1 CMP # $ 0 5 LESS THAN 5 LINES FROM TOP?
6 0 F E : 9 0 03 1 3 2 B LT T O P ; IF YES TAKE BRANCH
6 1 0 0 : 4C B 8 6 0 1 3 3 JMP P A D D L E ; IF NO, READ PADDLE AGAIN
6 1 0 3 : 2 0 1 8 61 1 3 4 TOP J S R B I N I T I A L ; I N I T I A L I Z E B U L L E T L I N E
6 1 0 6 : 4 C B 8 6 0 1 3 5 J M P PA D D L E READ PADDLE

1 3 6 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

6 1 0 9 : A 9 A A 1 3 7 M I N I T I A L L D A # $ A A
6 1 0 B : 8 0 0 3 6 0 1 3 8 S TA M L I N E
6 1 0 E : 8 0 0 4 6 0 1 3 9 S T A M L I N E A
6 1 1 1 : 1 8 1 4 0 C L C
6 1 1 2 : 6 9 0 0 1 4 1 A D C # $ 0 D

158 6 1 1 4 : 8 0 0 6 6 0 1 4 2 STA D E P T H

6 1 1 7 : 6 0 1 4 3 RTS
■ 1 4 4

6 1 1 8 : A 9 0 0 1 4 5 B I N I T I A L L D A # $ 0 0 ; B U L O N = 0 I F
6 1 1 A : 8 0 OB 6 0 1 4 6 S T A BULON BULLET NOT ON SCREEN
6 1 1 0 : A 9 A 4 1 4 7 L D A #$A4
6 1 1 F : 8 0 0 5 6 0 1 4 8 S T A B L I N E
6 1 2 2 : 6 0 1 4 9 R T S

1 5 0
6 1 2 3 : A 9 0 0 1 5 1 S I N I T I A L L D A # $ 0 0 ; SCORE DISPLAYS THREE O'S
6 1 2 5 : 8 0 3 9 6 0 1 5 2 S T A SUM
6 1 2 8 ; 8 0 3 A 6 0 1 5 3 STA COUNTER
6 1 2 B : A A 1 5 4 T A X
6 1 2 C : AO 1 1 1 5 5 L D Y #$11
6 1 2 E : 2 0 9 0 6 3 1 5 6 PR J S R P R I N T
6 1 3 1 : C8 1 5 7 I N Y
6 1 3 2 : CO 1 4 1 5 8 C P Y #$14
6 1 3 4 : 9 0 F 8 1 5 9 B L T P R
6 1 3 6 : 6 0 1 6 0 RT S

1 6 1 *

6 1 3 7 : A 2 0 0 1 6 2 P O L E L D X #$00
6 1 3 9 : 2 0 I E F B 1 6 3 J S R PREAD ;READ PADDLE 0
6 1 3 C : 9 8 1 6 4 T Y A
6 1 3 0 : 8 0 0 7 6 0 1 6 5 S T A M H O R I Z ;0-255 IN MHORIZ
6 1 4 0 : AO OB 6 0 1 6 6 LDA BULON
6 1 4 3 : C9 01 167 CMP #$01 ;IS BULLET ON?
6 1 4 5 : FO 0 6 168 BEQ P D L E l ;IF YES, TAKE BRANCH
6 1 4 7 : AO 07 6 0 1 6 9 LDA MHORIZ ;IF NO, SET BHORIZ EQUAL
6 1 4 A : 8 0 0 8 6 0 1 7 0 STA BHORIZ TO MHORIZ
6 1 4 0 : AC 0 7 6 0 1 7 1 P D L E l L D Y MHORIZ
6 1 5 0 : B 9 6 0 6 5 1 7 2 LDA BYTETBL.Y ;CONVERT 0-255 TO 0-36 (BYTE)
6 1 5 3 : 8 0 OA 6 0 1 7 3 S T A H O R I Z M ;MAN BYTE POSITION
6 1 5 6 : B 9 6 3 6 6 1 7 4 L D A OFFSET,Y ;GET SHAPE NUMBER

Scoring, Stopping, and Restarting

OA
A A
B D 3 8 6 0
8 5 l A
B D 3 C 6 0
8 5 I B
A O 0 0
B 1 l A
9 9 O F 6 0
C 8
C O 2 7
9 0 F 6
6 0

A 9 0 0
8D OC 60
A E 0 3 6 0
AC OA 60
B D 6 6 6 7
8 5 I B
B D 2 6 6 8
8 5 l A
A E O C 6 0
B 1 l A
5 0 O F 6 0
9 1 l A
C8
B 1 l A
5 D 1 0 6 0
9 1 l A
C 8
B 1 l A
5 0 1 1 6 0
9 1 l A
EE OC 60
E E O C 6 0
EE OC 60
E E 0 3 6 0
A D 0 3 6 0
CD 06 60
90 C2
A D 0 4 6 0
8 0 0 3 6 0
6 0

A C 0 8 6 0
B 9 6 0 6 5
1 8
6 9 0 2
8 0 0 9 6 0
B 9 6 3 6 6
OA
AA
B D 4 9 6 0
8 5 l A
BD 4A 60
8 5 I B
A O 0 0
B 1 l A

175 A S L
1 7 6 TA X

177 L D A MSHPADR.X
1 7 8 S T A LOW
1 7 9 L D A MSHPADR+1,X
1 8 0 S T A HIGH
181 L D Y #$00
1 8 2 L O A D L D A (LOW).Y
1 8 3 S TA MTEMP, Y
1 8 4 I N Y
1 8 5 CPY # $ 2 7
1 8 6 B L T L O A D
1 8 7 RT S
1 8 8
1 8 9 MDRAW L D A # $ 0 0
1 9 0 STA XCOUNT
1 9 1 MDRAWl L D X M L I N E
1 9 2 L D Y HORIZM
1 9 3 L D A H I , X
1 9 4 S TA H I G H
1 9 5 L D A LO,X
1 9 6 S TA LOW
1 9 7 L D X XCOUNT
1 9 8 L D A (L0W),Y
1 9 9 EOR MTEMP, X
2 0 0 STA (L0W),Y
2 0 1 I N Y
2 0 2 L D A (L0W),Y
2 0 3 EOR MTEMP+1,X
2 0 4 S TA (LOW),Y
2 0 5 I N Y
206 L D A (LOW),Y
2 0 7 EOR MTEMP+2,X
2 0 8 S TA (L0W),Y
2 0 9 I N C XCOUNT
2 1 0 I N C XCOUNT
2 1 1 I N C XCOUNT
2 1 2 I N C M L I N E
2 1 3 L D A M L I N E
2 1 4 CMP D E P T H

2 1 5 B LT M D R AW l
2 1 6 L D A M L I N E A
2 1 7 S T A M L I N E

;LOAD SHAPE INTO MTEMP

;RESET LINE

* *

L O A D B U L L D Y B H O R I Z ; C O N V E RT S 0 - 2 5 5 TO
L D A B Y T E T B L . Y
C L C
ADC #$02
S T A H O R I Z B
LDA OFFSET,Y
ASL
TAX
LDA BSHPADR,X
S T A 1 n u

LDA BSHPADR+1,X
S T A H I G H
LDY #$00
LDA (L0W),Y

SCREEN BYTE (0-36)
ADD 2 TO ALIGN BULLET

W I T H G U N
BULLET BYTE POSITION
GET BULLET SHAPE NUMBER
LOAD BULLET SHAPE INTO BTEMP

Hi-Res Graphics and Animation Using Assembiy Language

6 1 D B : 8 0 OE 6 0 2 3 4 S TA BTEMP
6 1 D E : 6 0 2 3 5 RT S

2 3 6 *

6 1 D F : AE 0 5 6 0 2 3 7 B D R A W L D X B L I N E
6 1 E 2 : AC 0 9 6 0 2 3 8 L D Y HORIZB
6 1 E 5 : BO 6 6 6 7 2 3 9 L D A H I , X
6 1 E 8 : 8 5 I B 2 4 0 STA H I G H
6 1 E A : BO 2 6 6 8 241 L D A LO,X
6 1 E D : 8 5 l A 2 4 2 S TA LOW
6 1 E F : B 1 l A 2 4 3 L D A (LOW),Y
6 1 F 1 : 2 0 OE 6 0 2 4 4 A N D BTEMP
6 1 F 4 : C 9 0 0 2 4 5 CMP # $ 0 0
6 1 F 6 : FO 0 3 2 4 6 BEQ N O H I T
6 1 F 8 : 4 C 0 3 6 2 2 4 7 J M P C O L L I S I O N
6 1 F B : B 1 l A 2 4 8 N O H I T L D A (L0W),Y
6 1 F D : 4 0 OE 6 0 2 4 9 EOR BTEMP
6 2 0 0 : 91 l A 2 5 0 S T A (LOW),Y
6 2 0 2 : 60 2 5 1 RTS

2 5 2 *

6 2 0 3 : 2 0 3 3 6 2 2 5 3 C O L L I S I O N J S R EXPLODE
6 2 0 6 : EE 3 9 6 0 2 5 4 I N C SUM
6 2 0 9 : EE 3 9 6 0 2 5 5 I N C SUM
6 2 0 C : EE 3 9 6 0 2 5 6 I N C SUM
6 2 0 F : 2 0 3 4 6 3 2 5 7 J S R SCORE
6 2 1 2 : 2 0 1 8 6 1 2 5 8 J S R B I N I T I A L
6 2 1 5 : 2 0 7 2 6 1 2 5 9 J S R MDRAW
6 2 1 8 : 4C B 8 6 0 2 6 0 J M P PADDLE

2 6 1
6 2 1 B : AE 0 5 6 0 2 6 2 B X D R A W L D X B L I N E
6 2 1 E : A C 0 9 6 0 2 6 3 L D Y H O R I Z B
6 2 2 1 : BO 6 6 6 7 2 6 4 L D A HI ,X
6 2 2 4 : 8 5 I B 2 6 5 S T A H I G H
6 2 2 6 : BO 2 6 6 8 2 6 6 L D A LO,X
6 2 2 9 : 8 5 l A 2 6 7 S T A LOW
6 2 2 B : B 1 l A 2 6 8 L D A {L0W),Y
6 2 2 0 : 4 0 OE 6 0 2 6 9 EOR BTEMP
6 2 3 0 : 9 1 l A 2 7 0 S T A (L0W),Y
6 2 3 2 : 6 0 2 7 1 RTS

2 7 2 *

6 2 3 3 : 20 E4 6 2 2 7 3 E X P L O D E J S R I N I T E l
6 2 3 6 : 2 0 7 8 6 2 2 7 4 J S R D R AW E l
6 2 3 9 : A 9 6 0 2 7 5 L D A #$60
6 2 3 B : 2 0 A 8 F C 2 7 6 J S R W A I T
6 2 3 E : 2 0 E 4 6 2 2 7 7 J S R I N I T E l
6 2 4 1 : 2 0 7 8 6 2 2 7 8 J S R D R A W E l
6 2 4 4 : 2 0 F 8 6 2 2 7 9 J S R I N I T E 2
6 2 4 7 : 2 0 7 8 6 2 2 8 0 J S R D R AW E l
6 2 4 A : A 9 B B 2 8 1 L D A #$BB
6 2 4 C : 2 0 A 8 F C 2 8 2 J S R W A I T
6 2 4 F : 2 0 F 8 6 2 2 8 3 J S R I N I T E 2
6 2 5 2 : 2 0 78 6 2 2 8 4 J S R DRAWEl
6 2 5 5 : 20 OC 6 3 2 8 5 JSR I N I T E 3
6 2 5 8 : 20 7 8 62 2 8 6 J S R DRAWEl
6 2 5 B : A 9 BB 2 8 7 L D A #$BB
6 2 5 0 : 2 0 A8 FC 2 8 8 J S R WAIT
6 2 6 0 : 2 0 OC 63 2 8 9 J S R I N I T E 3
6 2 6 3 : 2 0 7 8 6 2 2 9 0 J S R DRAWEl
6 2 6 6 : 2 0 2 0 6 3 2 9 1 J S R I N I T E 4
6 2 6 9 : 2 0 A 7 6 2 2 9 2 J S R DRAWE2

;RESULT IS 0 IF NO COLLISION

;DRAW BULLET

;ADD 1 TO SCORE

;DISPLAY SCORE

;ERASE MAN

;BDRAW WITHOUT COLLISION TEST

;ERASE

;ERASE

;DRAW

;ERASE

;DRAW

6 2 6 C : A 9 F F 2 9 3 L D A #$FF
6 2 6 E : 2 0 A 8 F C 2 9 4 J S R W A I T
6 2 7 1 : 2 0 2 0 6 3 2 9 5 J S R I N I T E 4
6 2 7 4 : 2 0 A 7 6 2 2 9 6 J S R DRAWE2 ;ERASE
6 2 7 7 : 6 0 2 9 7 RT S

2 9 8 *

6 2 7 8 : A C 0 9 6 0 2 9 9 D R A W E l L D Y HORIZB •.ROUTINE FOR FIRST 3
6 2 7 B : A E 3 6 6 0 3 0 0 L D X E L I N E EXPLOSION SHAPES
6 2 7 E : BO 6 6 6 7 3 0 1 L D A H I , X
6 2 8 1 : 8 5 I B 3 0 2 S TA H I G H
6 2 8 3 : BO 2 6 6 8 3 0 3 L D A LO,X
6 2 8 6 : 8 5 l A 3 0 4 S TA LOW
6 2 8 8 : A E OC 6 0 3 0 5 L D X XCOUNT
6 2 8 B : B 1 l A 3 0 6 L D A (LOW).Y
6 2 8 D : 5 0 3 6 6 5 3 0 7 EOR ESHAPE.X
6 2 9 0 : 9 1 l A 3 0 8 STA (LOW),Y
6 2 9 2 : EE OC 60 3 0 9 I N C XCOUNT
6 2 9 5 : EE 36 6 0 3 1 0 I N C E L I N E
6 2 9 8 : AO 3 6 6 0 3 1 1 L D A E L I N E
6 2 9 B : CO 3 8 6 0 3 1 2 CMP E D E P T H
6 2 9 E : 9 0 0 8 3 1 3 B L T D R AW E l
6 2 A 0 : AO 3 7 6 0 3 1 4 L D A E L I N E A
6 2 A 3 : 8 0 3 6 6 0 3 1 5 S TA E L I N E
6 2 A 6 : 6 0 3 1 6 RT S

3 1 7 *

6 2 A 7 : AC 0 9 6 0 3 1 8 DRAWE2 L D Y HORIZB ;ROUTINE FOR FOURTH
6 2 A A : AE 3 6 6 0 3 1 9 L D X E L I N E EXPLOSION SHAPE 161
6 2 A D : BO 6 6 6 7 3 2 0 L D A H I , X
6 2 B 0 : 8 5 I B 3 2 1 S T A H I G H ■
6 2 B 2 : BO 2 6 6 8 3 2 2 LDA' LO,X
6 2 B 5 : 8 5 l A 3 2 3 S T A LOW
6 2 B 7 : AE OC 6 0 3 2 4 L D X XCOUNT
6 2 B A : B1 l A 3 2 5 L D A (LOW).Y
6 2 B C : 5 0 3 6 6 5 3 2 6 EOR ESHAPE.X
6 2 B F : 9 1 l A 3 2 7 S T A (LOW),Y
6 2 C 1 : EE OC 6 0 3 2 8 I N F XCOUNT
6 2 C 4 : C8 3 2 9 I N Y
6 2 C 5 : AE OC 6 0 3 3 0 LDX XCOUNT
6 2 C 8 : B1 l A 3 3 1 L D A (LOW),Y
6 2 C A : 5 0 3 6 6 5 3 3 2 EOR ESHAPE.X
62CD: 9 1 l A 3 3 3 STA (LOW).Y
6 2 C F : EE OC 6 0 3 3 4 I N C XCOUNT -

6 2 D 2 : EE 3 6 6 0 3 3 5 I N C E L I N E

6 2 0 5 : AO 3 6 6 0 3 3 6 L D A E L I N E
6 2 0 8 : CO 3 8 6 0 3 3 7 CMP E D E P T H
6 2 0 B : 9 0 C A 3 3 8 B L T DRAWE2
6 2 0 0 : AO 3 7 6 0 3 3 9 L D A E L I N E A
6 2 E 0 : 8 0 3 6 6 0 3 4 0 S T A E L I N E
6 2 E 3 : 6 0 3 4 1 R T S

3 4 2 *

6 2 E 4 : A9 00 3 4 3 I N I T E l LDA #$00 ■.INITIALIZE FIRST EXPLOSION
6 2 E 6 : 80 OC 6 0 3 4 4 STA XCOUNT
6 2 E 9 : A9 09 3 4 5 LDA #$09
6 2 E B : 80 37 6 0 3 4 6 STA EL INEA
6 2 E E : 80 3 6 6 0 3 4 7 STA E L I N E
6 2 F 1 : 1 8 3 4 8 C L C
6 2 F 2 : 6 9 0 5 3 4 9 ADC # $ 0 5
6 2 F 4 : 8 0 3 8 6 0 3 5 0 S T A EDEPTH
6 2 F 7 : 6 0 3 5 1 RT S

Hi-Res Braphics and Animation Using Assembly Language

6 2 F 8 : A 9 0 5 3 5 2 I N I T E 2 L O A #$05 ;INITIALIZE SECOND EXPLOSION
6 2 FA : 8 0 O C 6 0 3 5 3 S T A XCOUNT
6 2 F D : A 9 0 9 3 5 4 L O A # $ 0 9
6 2 F F : 8 0 3 7 6 0 3 5 5 S T A E L I N E A
6 3 0 2 : 8 0 3 6 6 0 3 5 6 S T A E L I N E
6 3 0 5 : 1 8 3 5 7 C L C
6 3 0 6 : 6 9 0 5 3 5 8 AOC #$05
6 3 0 8 : 8 0 3 8 6 0 3 5 9 STA E O E P T H
6 3 0 B : 6 0 3 6 0 RT S
6 3 0 C : A 9 O A 361 I N I T E 3 L O A #$0A ;INITIALIZE THIRD EXPLOSION
6 3 0 E : 8 0 O C 6 0 3 6 2 S T A X C O U N T
6 3 1 1 : A 9 0 5 3 6 3 L O A # $ 0 5
6 3 1 3 : 8 0 3 7 6 0 3 6 4 S T A E L I N E A
6 3 1 6 : 8 0 3 6 6 0 3 6 5 S TA E L I N E
6 3 1 9 : 1 8 3 6 6 C L C
6 3 1 A : 6 9 0 8 3 6 7 AOC # $ 0 8
6 3 1 C : 8 0 3 8 6 0 3 6 8 STA EOEPTH
6 3 1 F : 6 0 3 6 9 RTS
6 3 2 0 : A 9 1 2 3 7 0 I N I T E 4 L O A #$12 ;INITIALIZE FOURTH EXPLOSION
6 3 2 2 : 8 0 O C 6 0 3 7 1 S T A XCOUNT
6 3 2 5 : A 9 0 1 3 7 2 L O A # $ 0 1
6 3 2 7 : 8 0 3 7 6 0 3 7 3 S T A E L I N E A
6 3 2 A : 8 0 3 6 6 0 3 7 4 S T A E L I N E
6 3 2 0 : 1 8 3 7 5 C L C
6 3 2 E : 6 9 O C 3 7 6 AOC #$0C
6 3 3 0 : 8 0 3 8 6 0 3 7 7 S T A E O E P T H
6 3 3 3 : 6 0 3 7 8 RTS

3 7 9 *

6 3 3 4 : A O 3 9 6 0 3 8 0 SCORE L O A SUM ;IF SUM = 0 AND
6 3 3 7 : C 9 F F 3 8 1 CMP #$FF DECREMENTED TO #$FF
6 3 3 9 : 0 0 1 7 3 8 2 BNE C I T H E N
6 3 3 B : A 9 0 9 3 8 3 L O A #$09 SET SUM TO
6 3 3 0 : 8 0 3 9 6 0 3 8 4 S T A SUM #$09 AND
6 3 4 0 : C E 3 A 6 0 3 8 5 DEC C O U N T E R DECREMENT COUNTER
6 3 4 3 : A O 3 A 6 0 3 8 6 L O A COUNTER I F C O U N T E R = 0
6 3 4 6 : C 9 F F 3 8 7 CMP #$FF AND DECREMENTED TO #$FF
6 3 4 8 : 0 0 0 8 3 8 8 B N E C I T H E N
6 3 4 A : A 9 0 0 3 8 9 L O A #$00 SET COUNTER
6 3 4 C : 8 0 3 A 6 0 3 9 0 STA COUNTER AND SUM
6 3 4 F : 8 0 3 9 6 0 3 9 1 S TA SUM EQUAL TO ZERO
6 3 5 2 : A O 3 9 6 0 3 9 2 C I L O A SUM GET SUM
6 3 5 5 : C 9 O A 3 9 3 CMP #$0A LESS THAN 10?
6 3 5 7 : 9 0 O C 3 9 4 B L T C I O IF YES, BRANCH TO PRINT
6 3 5 9 : E E 3 A 6 0 3 9 5 I N C COUNTER IF NO, INCREMENT COUNTER AND
6 3 5 C : A D 3 9 6 0 3 9 6 L O A SUM SUBTRACT 10 FROM SUM
6 3 5 F : 3 8 3 9 7 S E C
6 3 6 0 : E 9 O A 3 9 8 S B C #$0A
6 3 6 2 : 8 0 3 9 6 0 3 9 9 S T A SUM
6 3 6 5 : O A 4 0 0 C I O A S L ;MULTIPLY BY 8
6 3 6 6 : O A 4 0 1 A S L
6 3 6 7 : O A 4 0 2 A S L
6 3 6 8 : A A 4 0 3 TAX
6 3 6 9 : A O 1 3 4 0 4 L D Y # $ 1 3 ; POSITION FOR FIRST DIGIT
6 3 6 B : 2 0 9 0 6 3 4 0 5 J S R P R I N T ; P R I N T D I G I T
6 3 6 E : A O 3 A 6 0 4 0 6 L O A C O U N T E R ; GET COUNTER
6 3 7 1 : C 9 O A 4 0 7 CMP # $ 0 A ; LESS THAN 10?
6 3 7 3 : B O O A 4 0 8 BGE S T O P l ; IF NO, PRINT 100 AND STOP GAME
6 3 7 5 : O A 4 0 9 A S L 3 IF YES, MULTIPLY BY 8
6 3 7 6 : O A 4 1 0 A S L

Scoring, Stopping, and Restarting

OA
A A
A O 1 2
2 0 9 0 6 3
6 0

A 2 0 8
A O 1 1
2 0 9 0 6 3
A 2 0 0
A O 1 2
2 0 9 0 6 3
A O 1 3
2 0 9 0 6 3
2C 00 CO
10 FB
2C 10 CO
4 0 5 7 6 0

8 0 C E 6 3
9 9 0 0 2 3
BO CP 63
9 9 0 0 2 7
BO 00 63
99 DO 2B
BO 01 63
9 9 0 0 2 F
BO 02 63
9 9 0 0 3 3
BO 03 63
9 9 0 0 3 7
B O 0 4 6 3
9 9 0 0 3 B
B O 0 5 6 3
9 9 0 0 3 F
6 0

0 0 1 0 2 2
2 2 2 2 2 2
0 0 0 8 0 0
0 8 0 8 0 8
0 0 1 0 2 2
2 0 1 0 0 8
0 0 1 0 2 2
2 0 1 0 2 0
0 0 1 0 1 8
1 4 1 2 3 E
0 0 3 E 0 2
I E 2 0 2 0
0 0 1 0 2 2
0 2 I E 2 2
0 0 3 E 2 0
1 0 0 8 0 4
0 0 1 0 2 2
2 2 1 0 2 2
0 0 1 0 2 2
2 2 3 0 2 0
0 0 O E 0 1

4 1 1
4 1 2
4 1 3
4 1 4
4 1 5
4 1 6
4 1 7
4 1 8
4 1 9
4 2 0
4 2 1
4 2 2
4 2 3
4 2 4
4 2 5
4 2 6
4 2 7
4 2 8
4 2 9
4 3 0
4 3 1
4 3 2
4 3 3
4 3 4
4 3 5
4 3 6
4 3 7
4 3 8
4 3 9
4 4 0
4 4 1
4 4 2
4 4 3
4 4 4
4 4 5
4 4 6
4 4 7
4 4 8
4 4 9

2 2 1 0
4 5 0

0 8 1 0
4 5 1

0 4 3 E
4 5 2

2 2 1 0
4 5 3

1 0 1 0
4 5 4

2 0 I E
4 5 5

2 2 1 0
4 5 6

0 4 0 4
4 5 7

2 2 1 0
4 5 8

2 2 1 0
4 5 9

A S L
TA X
L O Y # $ 1 2
J S R P R I N T
R T S

* *

•.POSITION OF SECOND DIGIT
;PRINT DIGIT

PRINTS 100 AND STOPS GAME
S T O P l L D X # $ 0 8 ; A O O E S S E

L O Y # $ 1 1 ; B Y T E P C
J S R P R I N T ; P R I N T [
L O X # $ 0 0 ; A O O E S S t
L O Y # $ 1 2 ; B Y T E P C
J S R P R I N T ; P R I N T [
L O Y # $ 1 3 ; B Y T E P C
J S R P R I N T ; P R I N T I

S T O P B I T $ 0 0 0 0 ; A N Y K E ^
B P L S T O P ; I F N O ,
B I T $ 0 0 1 0 ; I F Y E S ,
J M P P G M S T A R l

* *

P R I N T L O A N S H A P E . X ; R E T R I E)
S TA $ 2 3 0 0 , Y ; L I N E # $
L O A N S H A P E + 1 , X
S TA $ 2 7 0 0 , Y ; L I N E # $
L O A N S H A P E + 2 , X
S TA $ 2 8 0 0 , Y ; L I N E # $
LOA NSHAPE+3,X
S TA $ 2 F 0 0 , Y ; L I N E # $
LOA NSHAPE+4,X
S TA $ 3 3 0 0 , Y ; L I N E # $
LOA NSHAPE+5,X
S TA $ 3 7 0 0 , Y ; L I N E # 3
LOA NSHAPE+6,X
S TA $ 3 8 0 0 , Y ; L I N E # 1
LOA NSHAPE+7,X
S TA $ 3 F 0 0 , Y ; L I N E # 3
RT S

* *

N S H A P E H E X 0 0 1 0 2 2 2 2 2 2 2 2 2 2 1 0

H E X 0 0 0 8 0 0 0 8 0 8 0 8 0 8 1 0

H E X 0 0 1 0 2 2 2 0 1 0 0 8 0 4 3 E

H E X 0 0 1 0 2 2 2 0 1 0 2 0 2 2 1 0

H E X 0 0 1 0 1 8 1 4 1 2 3 E 1 0 1 0

H E X 0 0 3 E 0 2 1 E 2 0 2 0 2 0 1 E

H E X 0 0 1 0 2 2 0 2 1 E 2 2 2 2 1 0

H E X 0 0 3 E 2 0 1 0 0 8 0 4 0 4 0 4

H E X 0 0 1 0 2 2 2 2 1 0 2 2 2 2 1 0

H E X 0 0 1 0 2 2 2 2 3 0 2 0 2 2 1 0

MSHAPEl HEX OOOEOIOOOEOIOOOEOI

A C C E S S E S D I G I T " 1 "
BYTE POSIT ION OF LEFTMOST DIGIT
P R I N T D I G I T
A C C E S S E S D I G I T " 0 "
B Y T E P O S I T I O N O F M I D D L E D I G I T
P R I N T D I G I T
B Y T E P O S I T I O N O F F I R S T D I G I T
P R I N T D I G I T
ANY KEY PRESSED?
IF NO, BRANCH BACK & WAIT
IF YES, CLEAR KEYBOARD STROBE AND

START PROGRAM OVER
r

iRETRIEVE NUMBER SHAPE
LINE #$B8 (184)

LINE #$B9 (185)

LINE #$BA (186)

LINE #$BB (187)

LINE #$B0 (188)

LINE #$B0 (189)

LINE #$BE (190)

LINE #$BF (191)

NUMBER SHAPES - "0 '

MAN SHAPE TABLES

Hi-Res Braphlcs and Animation Using Assembiy Language

6 4 2 1 : 0 0 O E 0 1 0 0 O E 0 1
6 4 2 7 : 0 0 4 4 0 1 4 6 0 HEX 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F 0 0
6 4 2 A : 0 0 7 F 0 0 6 0 I F 0 0
6 4 3 0 : 3 0 I F 0 0 4 6 1 HEX 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0
6 4 3 3 : 1 8 I F 0 0 0 0 I F 0 0
6 4 3 9 : 0 0 I F 0 0 4 6 2 H E X 0 0 1 F 0 0 0 0 1 8 0 0 4 0 3 1 0 0
6 4 3 C : 0 0 I B 0 0 4 0 3 1 0 0
6 4 4 2 : 6 0 6 0 0 0 4 6 3 HEX 6 0 6 0 0 0
6445: 00 IC 02 464 MSHAPE2 HEX 0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 C 0 2
6 4 4 8 : 0 0 I C 0 2 0 0 I C 0 2
6 4 4 E : 0 0 0 8 0 3 4 6 5 H E X 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0
6 4 5 1 : 0 0 7 E 0 1 0 0 3 E 0 0
6 4 5 7 : 0 0 3 F 0 0 4 6 6 HEX 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0
6 4 5 A : 4 0 3 F 0 0 0 0 3 E 0 0
6 4 6 0 : 0 0 3 E 0 0 4 6 7 HEX 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0
6 4 6 3 : 0 0 3 6 0 0 0 0 3 6 0 0
6 4 6 9 : 0 0 6 3 0 0 4 6 8 HEX 0 0 6 3 0 0
646C: 00 38 04 469 MSHAPE3 HEX 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4
6 4 6 F : 0 0 3 8 0 4 0 0 3 8 0 4
6 4 7 5 : 0 0 1 0 0 6 4 7 0 H E X 0 0 1 0 0 6 0 0 7 C 0 3 0 0 7 C 0 0
6 4 7 8 : 0 0 7 C 0 3 0 0 7 C 0 0
6 4 7 E : 0 0 7 C 0 0 4 7 1 H E X 0 0 7 C 0 0 0 0 7 E 0 0 0 0 7 C 0 0
6 4 8 1 : 0 0 7 E 0 0 0 0 7 C 0 0
6 4 8 7 : 0 0 3 8 0 0 4 7 2 H E X 0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 C 0 0
6 4 8 A : 0 0 3 8 0 0 0 0 6 C 0 0
6 4 9 0 : 0 0 4 6 0 1 4 7 3 H E X 0 0 4 6 0 1

164 6 4 9 3 : 0 0 7 0 0 8 4 7 4 M S H A P E 4 HEX 0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8
6496: 00 70 08 00 70 08■ 6 4 9 C : 0 0 2 0 O C 4 7 5 HEX 0 0 2 0 0 C 0 0 7 8 0 7 0 0 7 8 0 1
6 4 9 F : 0 0 7 8 0 7 0 0 7 8 0 1
6 4 A 5 : 0 0 7 8 0 1 4 7 6 H E X 0 0 7 8 0 1 0 0 7 8 0 1 0 0 7 8 0 1
6 4 A 8 : 0 0 7 8 0 1 0 0 7 8 0 1
6 4 A E : 0 0 7 0 0 0 4 7 7 HEX 0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0
6 4 8 1 : 0 0 7 0 0 0 0 0 7 0 0 0
6 4 8 7 : 0 0 7 0 0 0 4 7 8 HEX 0 0 7 0 0 0
6 4 8 A : 0 0 6 0 1 1 4 7 9 M S H A P E 5 HEX 0 0 6 0 1 1 0 0 6 0 1 1 0 0 6 0 1 1
6 4 8 0 : 0 0 6 0 1 1 0 0 6 0 1 1
6 4 C 3 : 0 0 4 0 1 8 4 8 0 H E X 0 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3
6 4 C 6 : 0 0 7 0 O F 0 0 7 0 0 3
6 4 C C : 0 0 7 0 0 3 4 8 1 HEX 0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3
6 4 C F : 0 0 7 8 0 3 0 0 7 0 0 3
6 4 0 5 : 0 0 6 0 0 1 4 8 2 HEX 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3
6 4 0 8 : 0 0 6 0 0 1 0 0 3 0 0 3
6 4 0 E : 0 0 1 8 0 6 4 8 3 HEX 0 0 1 8 0 6
6 4 E 1 : 0 0 4 0 2 3 4 8 4 M S H A P E 6 HEX 0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3
6 4 E 4 : 0 0 4 0 2 3 0 0 4 0 2 3
6 4 E A : 0 0 0 0 3 1 4 8 5 HEX 0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7
6 4 E 0 : 0 0 6 0 I F 0 0 6 0 0 7
6 4 F 3 : 0 0 7 0 0 7 4 8 6 H E X 0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7
6 4 F 6 : 0 0 7 8 0 7 0 0 6 0 0 7
6 4 F C : 0 0 6 0 0 7 4 8 7 H E X 0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6
64FF: 00 60 06 00 60 06
6 5 0 5 : 0 0 3 0 O C 4 8 8 HEX 0 0 3 0 0 C
6508: 00 00 47 489 MSHAPE7 HEX 0 0 0 0 4 7 0 0 0 0 4 7 0 0 0 0 4 7
6508: 00 00 47 00 00 47
6 5 1 1 : 0 0 0 0 6 2 4 9 0 H E X 0 0 0 0 6 2 0 0 4 0 3 F 0 0 7 0 0 F
6514: 00 40 3F 00 70 OF i

6 5 1 A : 0 0 5 8 O F 4 9 1 H E X 0 0 5 8 0 F 0 0 4 C O F 0 0 4 0 0 F 1

Scoring, Stopping, and Restarting

0 0 4 C
0 0 4 0
0 0 4 0
0 0 3 0
0 1
0 2
0 4
0 8
1 0
2 0
4 0
2 8 2 2
2 5 1 4
2C 52
3 2 O C
3 8 3 E
7E 7E
1 8 0 6
O F 7 C
7C 7F
3 F 7 E
7 E O F
I F 7 0

O F 0 0 4 0
O F 4 9 2
O D 0 0 6 0
3 0 4 9 3

4 9 4
4 9 5
4 9 6
4 9 7
4 9 8
4 9 9
5 0 0

l A 5 0 1

4 4 5 0 2

7 F 5 0 3
3 F 3 F I C
7 C 5 0 4
3 F 7 E 3 F
7 C 5 0 5
3 F 7 F I F
7 C 5 0 6
O F 4 0 0 3

0 0 4 0 0 F 0 0 4 0 0 D 0 0 6 0 1 8

BSHAPEl
BSHAPE2
BSHAPE3
B S H A P E 4
BSHAPE5
B S H A P E 6
B S H A P E 7
E S H A P E

B Y T E T B L
O F F S E T
H I
L O

0 0 3 0 3 0
0 1
02
0 4
0 8
1 0
2 0
4 0
2 8 2 2 1 A 2 5 1 4

2 C 5 2 4 4 3 2 0 C

;BULLET SHAPES

; E X P L 0 S I 0 N S H A P E S - N O . 1

3 8 3 E 7 F 7 E 7 E 3 F 3 F 1 C

1 8 0 6 7 C 0 F 7 C 3 F 7 E 3 F

7C7F7C3F7E3F7F1F

7 E 0 F 7 C 1 F 7 0 0 F 4 0 0 3

N O . 2

N O . 3

N O . 4

2 2 7 8 b y t e s

Symbol table - numerical order:

LOW =$1A HIGH =$1B MLINE =$6003 MLINEA = $ 6 0 0 4
B L I N E =$6005 D E P T H =$6006 MHORIZ =$6007 BHORIZ =$6008
HORIZB =$6009 H O R I Z M = S 6 0 0 A B U L O N =$6008 XOOUNT =$6000
D E L AY =$6000 BTEMP =$600E MTEMP =$600F E L I N E =$6036
E L I N E A =$6037 E O E P T H =$6038 SUM =$6039 COUNTER = $ 6 0 3 A
MSHPADR =$603B B S H PA O R =$6049 PGM =$6057 O L R l = $ 6 0 6 8
C L R = $ 6 0 6 F L N =$6091 L N l =$60A8 PA D D L E =$6088
B U L L E T l =$6006 B U L L E T =$60E1 T O P = $ 6 1 0 3 M I N I T I A L = $ 6 1 0 9
B I N I T I A L =$6118 S I N I T I A L=$6123 P R =$612E PDLE = $ 6 1 3 7
P D L E l = $ 6 1 4 0 L O A D =$6167 MORAW = $ 6 1 7 2 M D R AW l =$6177
L O A D B U L =$61BC BORAW =$610F N O H I T =$61FB 00LLISI0N=$6203
BXDRAW =$6218 E X P L O D E =$6233 O R A W E l = $ 6 2 7 8 DRAWE2 =$62A7
I N I T E l =$62E4 I N I T E 2 =$62F8 I N I T E 3 =$6300 I N I T E 4 =$6320
SCORE =$6334 01 =$6352 0 1 0 =$6365 STOPl =$637F
STOP =$6392 P R I N T =$6390 NSHAPE =$630E MSHAPEl =$641E
MSHAPE2 =$6445 MSHAPE3 =$6460 MSHAPE4 =$6493 MSHAPE5 =$64BA
MSHAPE6 =$64E1 MSHAPE7 =$6508 BSHAPEl =$652F BSHAPE2 =$6530
BSHAPE3 =$6531 BSHAPE4 =$6532 BSHAPE5 =$6533 B S H A P E 6 =$6534
BSHAPE7 =$6535 ESHAPE =$6536 BYTETBL =$6560 O F F S E T =$6663
H I =$6766 LO =$6826 G R A P H I C S =$0050 M I X O F F = $ 0 0 5 2
P A G E l =$0054 H I R E S =$0057 BUTTON =$0061 P R E A D =$FB1E
W A I T = $ F C A 8

Hi-Res Graphics and Animation Using Assembiy Language

The protocols presented in this chapter are not the end-all of scoring rou
tines. I know of at least two others that more or less accomplish the same pur
pose and I'm sure there are still others lurking in programs somewhere. Perhaps
you could devise a better routine yourself. Why not give it a try? If you come up
with something better, fame, fortune, and members of the opposite sex (or the
same sex?) await you.

Sound Generation:
Explosions and Clickety-Clicks
Clickety-click, buzz and wham
Puckety-puckety, pjt and slam
Pow and bang
Whoosh and dang
Tinkdy-tink, whir and blayn.

C
C-/ound generation routines are among the easiest to explain but the

hardest to apply, at least in game programs, requiring a great deal of trial and
error and just plain all around fiddling. This is why other books on assembly
language hi res graphics and most commercial hi res graphics utility programs
omit the subject entirely. Well, there's no getting around it so let's jump in. We'll
discuss first the principles of sound generation on the Apple II and then see how
to apply these principles to our game program.

THE APPLE SPEAKER AND SOUND GENERATION

Somewhere in your little tan Apple box is what is laughingly called a loud
speaker. Its size is so small it gives new meaning to the term "low fidelity."
However, it is capable of producing sounds, if not music. It does this in the
following way. The speaker cone is in one of two positions, in or out. By access
ing a soft switch located at $C030, the cone changes position thereby pushing air
and producing a sound wave. When the speaker is accessed just once, a click can
be heard if you listen carefully. By accessing the speaker in rapid succession,
tones are produced; the more frequent the access, the higher the tone or pitch.
The basic tone-producing cycle is as follows:

S P E A K E R D E L A Y

Hi-Hes Graphics and Animation Using Assembiy Language

By altering the delay time, different pitches are produced, ranging anywhere
from low-pitched clicks (long delay) to high-pitched tones (short delay).

Writing an assembly language program to produce the cycle depicted above
is easy to do, especially for us experts, but something else is required lest the
tone continue indefinitely (you could always stop the program or pull the plug
and lucky Apple lie owners could always turn down the volume, but let's do it
properly). The point is that the cycle has to be interrupted so that we can spec
ify the tone's duration. Let's look at the following program to see how it's done.

]PROGRAM
: A S M

1 * * * * S O U N D * * * *

2 O R G $6000
6 0 0 0 : 4 C 0 4 6 0 3 J M P PGM

4 D E L A Y D S 1
5 SPEAKER = $C030
6 WAIT = $FCA8

6 0 0 4 : A 9 6 0 7 PGM L D A #$60
6 0 0 6 : 8 D 0 3 6 0 8 S T A D E L A Y
6 0 0 9 : A O 0 2 9 L D Y #$02
6 0 0 B : 2 C
6 0 0 E : A D
6 0 1 1 : 2 0
6 0 1 4 : 8 8
6 0 1 5 : D O
6 0 1 7 : 4 C

3 0 C O
0 3 6 0
A 8 F C

F 4
0 4 6 0

S O U N D B I T S P E A K E R
L D A D E L A Y
J S R W A I T
D E Y
B N E S O U N D
J M P P G M

— E n d a s s e m b l y —

2 6 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

D E L A Y = $ 6 0 0 3 P G M = $ 6 0 0 4
W A I T = $ F C A 8

S O U N D = $ 6 0 0 B SPEAKER =$0030

The program loads DELAY with #$60 and Y with #$02. At SOUND, the
speaker is accessed, using BIT instead of LDA just because I feel like it ($C030
must be accessed either with LDA or BIT, not STA). There is then a time delay
followed by a DEY and BNE SOUND. A BNE that doesn't follow a comparison
instruction simply means branch if the previous operation results in a non-zero;
in this case, branch if Y hasn't reached zero yet. Because Y is now 1, the program
branches for another speaker access and delay. DEY now decrements Y to zero
so the branch is not taken and the program jumps to START for another round.
What's happening here is that the value in DELAY is specifying the pitch, i.e., the
time between speaker accesses, while Y specifies the duration. The duration
effect is not readily apparent in this program, because at the end of each tone
pulse, the program branches immediately back to the beginning for another
cycle. If we replace line 15 with RTS, we would then produce a single tone
whose duration would be more obviously controlled by Y.

One problem with this type of routine should be mentioned, although it has
no bearing on our game program. The duration of the tone depends not only on
Y but also on DEIAY, because DELAY contributes to the overal l execution t ime
for the routine and, thus, a given Y cannot be used to produce different pitched

Sound Generation: Explosions and Cllckety-Cllcks

tones of equal duration. (By the way, have you ever noticed that tone is an
anagram of note? I only mention this to take your mind off the duration control
problem.)

To see the effect of the time delay on pitch, run Program 9-1 with different
values in DELAY. A value of #S60 produces a low, rapid clicking. If we increase
the delay, the clicks become lower and slower—#$90 produces a kind of put-put
and #$BB a sort of hoppity-hop (this is by far the hardest part of writing this
book, trying to find adjectives to describe these sounds!). Decreasing the delay
produces higher pitches and more rapid clicking. A value of #$40 produces a
buzz, and it's only when we get to #$30 or below that we hear something that
resembles a musical tone. A value of #$05 results in a very high pitched tone, just
barely audible and just barely bearable. Try #$01 and drive every dog in the
neighborhood crazy. Isn't this fun? I hope you're enjoying it, because now we're
getting to the sticky part.

INTEGRATING SOUND EFFECTS
I N T O T H E G A M E P R O G R A M

Although we won't be discussing the game program as such until the next
chapter, we know enough about the game already to allow us to apply the prin
ciples of sound generation to the development of sound effects. The game itself
is relatively simple and this limits our options. The sound effects I've decided to
include are an explosion sound when a plane is hit and some sort of sound when _
a p l a n e i s t r a v e r s i n g t h e s c r e e n . *

One problem with integrating sound effects into any type of program is that
any sort of sound, except individual clicks, requires a time delay between
speaker accesses and we have to be careful that our sound routine doesn't result
in an unwanted program interruption. The solution to this problem is to insert
sound routines where program delays already exist.

Let's discuss the explosion sound ui-t. In the game program, as in Program
8-1, a collision sends the program to the EXPLODE subroutine where the explo
sion shapes are drawn and erased. Remember that between each draw and erase,
we inserted a time delay. What I've done is substitute the explosion sound rou
tine for the first delay, i.e., between drawing and erasing the first explosion
shape. In other words, the sound routine itself provides the delay—in this way
we've added an extra feature to the program without altering its execution time.
The sound routine itself is listed below:

S O U N D L D Y # $ 0 2
S O U N D 1 B I T S P E A K E R

LDA #$60
J S R W A I T
D E Y
B N E S 0 U N D 1
R T S

This routine produces a single tone with a delay of #$60 between speaker
accesses. The total delay for this routine can be calculated as follows. The LDA
#$60, JSR WAIT is accessed twice (Y = 2). Two times #$60 equals 2 times 96 =
192 or #$C0. The original delay time was #$BB or 187. Thus, even adding a little

Hi-Hes Graphics and Animation Using Assembiy Language

extra time for the execution of the sound routine, we see that the total delay is
very close to what we had originally.

It might seem, on paper at least, that a single tone is hardly appropriate for
an explosion sound but if you run the game program you'll see that it works.
That's why so much fiddling is required—what looks bad on paper may be per
fectly alright in a program and, unfortunately, vice versa.

In spite of the fact that the routine works, I'm sure that with a little extra
fiddling, you or I could come up with something better. Instead of me doing it
for you, here is an opportunity for you to display your expertise and imagination
(if you think I'm trying to wriggle out of this, you're right). How can we do this?
Well, we could try to alter the tone by raising the pitch and duration. Doing this
would not increase the total delay time because raising the pitch means less
delay between speaker accesses. We could try inserting other tones in other
program locations—obvious places would be the time delays between drawing
and erasing the other explosion shapes. We could try—well, as 1 told you in the
beginning, there's a lot of trial and error involved in this process, and so on some
cold February night, with a blizzard raging, nothing on television, the kids asleep,
the dog at the vet, and your wife/hubby in Hoboken for the annual meeting of
the International Computer Widows/Widowers Association, give it a try. You
have nothing to lose except your sanity.

Now we get to the plane sound. The plane as drawn looks like it's jet- or
rocket-powered and so one might imagine that we should strive for something
like a whooshing sound. However, computer game programmers are allowed the
equivalent of poetic license, which means if it's too hard, we'll do something
else. The plane is, in fact, powered by an electric motor. Why? Because I say
so — after all, I am its creator (there's nothing like learning assembly language to
give one a feeling of omnipotency)—and besides, the motor sound effect some
how seems to work. The sound we want then is a kind of clickety-click (there
are those adjectives again) and one way to accomplish this is by clicking the
speaker just once each time a plane is moved one bit position. The delay
between clicks is accomplished by the program itself as it loops from one plane
move to the next. However, when 1 tried this in the game program 1 wasn't
entirely satisfied because the clicks were too rapid, and so I decided instead to
have the .speaker click every other plane move. The technique for doing this
illustrates a method generally applicable to any situation where we want to
access a routine every other cycle, so let's discuss the details.

The Apple II microprocessor contains another register besides the Accumu
lator, X, and Y, called the Status Register, which can also hold just a single byte.
In contrast to the other registers, however, the Status Register is not used to
store numbers per se, but rather to indicate certain conditions by having each bit
contain a 1 or 0. I'm not going to discuss all the functions of the Status Register
bits but the one bit 1 do want to discuss is called the Carry bit. One function of
the Carry bit is to indicate an overflow when a number is added to #$FF in the
Accumulator. For example, adding #$01 to #$FF zeros the Accumulator and sets
the Carry bit to 1. This is why the instruction ADC (ADd with Carry) requires a
prior CLC (CLear Carry) and why SBC (SuBtract with Carry) requires a prior
SEC (SEt Carry). Another function of the Carry bit is as an indicator in compari
sons. For example, CMP compares a value to the value in the Accumulator. If the
value in the Accumulator is less than the compared value, the Carry bit is cleared
(0), if more, the Carry bit is set (1). This is why the pseudo-op BLT (Branch if
Less Than) is used in some Assemblers in place of BCC (Branch on Carry C:iear),
and BfiF (Branch if Greater or Equal) in place of BC:S (Branch on Carry Set).

Sound Generation: Explosions and Ciickety-Clicks

Now we're ready to see how we can use the Carrj' bit for our eveiy -other-cj'cle
c l i c k r o u t i n e .

Tlie instruction LSR (Logical Shift Right) moves each bit in the Accumulator
one position to the right—a zero is moved into bit 7 and bit 0 moves into the
Carry. Note that some assemblers require A in the operand column, i.e., LSR A.

7 6 5 4 3 2 1 0

LSR can be used to test if the number in the Accumulator is odd or even. If
even, bit 0 (this is the I's column) must contain 0 and after LSR, the Cariy bit
will be clear; if odd, bit 0 must contain 1 and after LSR the Carry bit will be set.
Thus, a BCC will branch the program if the number is even and not branch if the
number is odd (here we're using BCC instead of BLT because the standard
mnemonic reminds us what the instruction is doing).

Now let's see how to use LSR to alternate the speaker clicks. First, some
where in the beginning of the program we define a memory' location DE. Then,
in the MAIN PROGRAM at the point where we draw a plane with JSR PDRAW,
we include the following routine:

J S R P D R A W
I N C D E

L D A D E
* * *

L S R

B C C B U L

B I T S P E A K E R

: D R A W P L A N E

;CARRY = 0 IF DE IS EVEN
:CARRY = 1 IF DE IS ODD
: S K I P N E X T L I N E I F C A R RY = 0
: C L I C K S P E A K E R

Every time a plane is drawn, DE changes from odd to even or vice versa and
thus the speaker is accessed only every other plane draw. Because this routine
clicks the speaker just once, no time delay is involved (except for the time it
takes to run the routine) and the program execution time is not noticeably
affected. DE does not have to be set to any particular number in the beginning of
the program, as the actual value in DE is immaterial for the odd-even cycle. Note
also that DE never fills up because when it reaches *$FF it simply wraps around
to *$00. In addition, notice that we first load DE into the Accumulator and then
do an LSR on the Accumulator contents. The LSR instruction can have a memory
location as the operand, but if we perform an LSR DE directly without loading
DE into the Accumulator, DE would itself be changed and this would interfere
with the odd-even cycling.

This brings us to the end of our preparatory chapters. In the next chapter we
will see how to assemble the final game program.

j Putting It All Tc
i The Game
I There once was a girl from Sydney
• Who could . . . (never mind).

goal is finally in sight. All we need do now is to take our expert
knowledge of assembly language programming and the routines we've already
developed and assemble them into the final game program, but this is easier said
t h a n d o n e a s w e ' l l s o o n s e e .

Essentially what we're going to do is merge Programs 8-1 and 5-1, and add
sound routines and a few other embellishments. Before we do this, however, a
brief description of the game is in order. A man will move along a bottom line,
his movement controlled by a paddle or joystick. Planes will appear, with
appropriate sound effects, one at a time near the top of the screen, moving left to
right all at the same screen line position. A bullet can be fired by pressing the
paddle or joystick button. If a plane isn't hit by a bullet, it continues to the end of
the screen where it is erased and a new plane then reappears for another screen
traversal. If a plane is hit, it explodes with a (sort of) bang, the score is incre
mented by 1 and another plane then appears at the left border. The game stops
when the score reaches 100 or when 100 planes have appeared. Thus, if 10
planes are missed, the game will stop at a score of 90. In this way, a player can
tell how close he came to the ideal of hitting all 100 planes. The game can be
restarted by pressing any key.

Now to the heart of the matter. As mentioned in a previous chapter, when
dealing with a relatively complicated program, it is essential to design the flow
chart first, leaving the details to later. The fact that we already have most of the
details is of no matter. It is merely a consequence of the fact that this book is a
teaching exercise—an experienced programmer would start with this chapter
first and work backwards, so to speak, to fill in the details.

Putting It All Together: The Same

The main problem in designing a game program is ordering the routines in
such a way that the desired simulation is achieved. Remember that a computer
can do only one thing at a time and in the final program we might want to
simulate, at some points at least, simultaneous events, and some events must
follow or precede others. We have to consider which shapes to draw first, w^hich
to draw last, when to erase, where to insert the paddle read, score, and explo
sions, etc. The ordering of routines then is the salient dictum.

Remember that in Chapter 6 we discussed for the first time how to design a
program with two shapes moving at the same time, the man and bullet. The
overall design can be depicted as follows:

The program continues in this loop indefinitely even if a bullet isn't drawn
or if the paddle doesn't change position. The important point is that we created
the illusion that the bullet moves at the same time the man's movement is con
trolled by the paddle even though, of course, each man and bullet move is a
separate event. This is a direct consequence of the speed of the program—the
time between the bullet move and the paddle-controlled move is so small as to
produce the illusion of simultaneity. Tlie game program uses the same principle
except here we're drawing a plane after the man draw:

Again, the speed of the program allows us to create the illusion of three
shapes moving at the same time. Now, with all this in mind, let's examine the
flowchart for the game program.

Hi-Res Graphics and Animation Using Assembiy Language

In the program's beginning, we take care of the "housekeeping" chores—the
shape addresses are assembled into shape address tables, the screen is cleared
and displayed, the bottom line drawn, counters are zeroed, and we initialize the
score, man, plane, and bullet. Let's stop here to discuss a point we haven't seen
before. Remember that we want to keep track of how many planes are drawn so
we can stop the program when 100 planes have appeared (if the perfect score of
100 has not been attained). We do this in the PINITIAL routine because this
routine is accessed when, and only when, a new plane is drawn, either after a
plane has been hit or when a plane has reached the end of the screen (and of
course for the first plane draw). We accomplish this by incrementing PCOUNTER
(initially set to zero at the beginning) for each access to PINITIAL and asking
whether PCOUNTER contains a value less than 101. If it does, we continue—if it
doesn't, we stop the program (we don't do a comparison to 100 because we
want the 100th plane to be drawn).

The program then continues with a paddle read and man draw. If there is
such a thing as a grand design for a program, we can illustrate it in the following
diagram:

Everything else in the program we want to do, drawing the planes and
bullets, keeping score, displaying explosions, all the sound effects, reinitializing,
are all done in between paddle reads. The program doesn't have to be designed
this way—it's just that the program is fast enough so that paddle reads do not
have to be done more frequently. The illusion we're striving for (and attaining)
is that the man's position is always responsive to the paddle regardless of what
ever else is going on. (But note the caveat discussed in Chapter 7 — the man's
position becomes momentarily unresponsive to the paddle during the explosion
shapes display; but note, too, as also discussed in Chapter 7, that this delay is
hardly noticeable and could be eliminated by inserting other paddle reads
between drawing and erasing the explosion shapes.)

The paddle read routine, you will remember, also contains a "bullet on?"
question. If the bullet is not on, BHORIZ is set equal to MHORIZ so that when
the bullet is fired, it will be aligned with the man. If the bullet is already on, this
step is skipped to allow the bullet to move up independent of the man's position.

After the paddle read, the man is drawn and then we prepare to draw the
plane. Here we access the plane shape number a little differently than before for
programming convenience. We first increment PSHPNO. Because we want the
first shape, PSHPNO should contain #$00 after we increment. This is why
PSHPNO is loaded with #$FF in PINITIAL—incrementing #$FF wraps the value
around to #100. We then ask if the value in PSHPNO is greater than 6; i.e., have
we finished all seven shapes? If no, we continue and draw the plane, clicking the

Putting It All Together: The Game

speaker every other cycle. If yes, we move to the next screen byte and ask if
we've reached the end of the screen. If no, we load PSHPNO with #$FF again and
loop back to INC PSHPNO in preparation for the next plane draw, this time with
shape 0 at the next screen byte position. If we have reached the end of the
screen, we erase the man (the plane has already been erased by the DRAW-
ERASE protocol), and initialize the plane again, thereby also incrementing
PCOUNTER. We then test PCOUNTER to see if 100 planes have appeared—if
yes, we stop the program; if no, we continue with another paddle read which
draws the man, and then the plane is drawn again.

After the plane is drawn, we ask if the bullet is on or if the button is pressed.
If neither, we skip the bullet draw routine entirely and erase the man and the
plane in preparation for another paddle read—the man's position is updated and
the plane moves over one bit. Note a general feature of the program; just before
a paddle access, we always erase whatever shape (man, plane, or bullet) that
happens to be on the screen, in preparation for the next move.

Supposing the button is pressed or the bullet is already on the screen—we
then go to the bullet draw routine before we reaccess the paddle (if the button
is pressed, the bullet on marker, BULON, is set). The BDRAW routine first does a
col l is ion test before the bul let is drawn. I f there is no col l is ion, the bul let is
drawn and then the bullet, plane, and man are erased in preparation for the next
paddle read. Before we access the paddle however, we move the next bullet
position up eight lines and ask if it has reached the top (actually, within five lines
of the top). If it hasn't, that's fine—we simply go back for another paddle read. If
it has, we have to initialize the bullet first before the paddle read.

Suppose a collision is detected. Here I've changed the protocol slightly to
produce what I think is a better display. You remember in Program 8-1 we
displayed the explosion first and then the score. This was done so that when the
score reached 100 (if all 100 planes were hit) the explosion would finish before
the score indicated the program should stop; otherwise, we would be left with
an unexploded plane on the screen. I found this delay in displaying the score
unnerving—I want to see the score right after that plane is blasted! So here we're
going to display the score first, before the explosion.

In the COLLISION routine, we first erase the plane (we always erase the
shape that's hit), INC SUM, and then go to SCORE routine. In SCORE, if the
count is 100, we print 100 in the display and then, instead of stopping the pro
gram, we load an indicator labeled ST with #$01. If the score is not 100, ST
contains #$00. We then jump back to the COLLISION routine, draw and erase
the explosion shapes with the accompanying sound effect, and test ST. If ST
contains #$01, it means the score has reached 100 and we stop the program—
remember we've already displayed and erased the explosion so we're not left
with an unexploded plane. If ST contains #$00, the score has not reached 100
and we continue by erasing the man (there's no need to erase the bullet, as the
collision test is done before the bullet is drawn), initializing the plane and bullet,
and reading the paddle again.

We've now come to the end of the flowchart. A good way to check out a
program, to make sure it's doing what we want it to do, is to run through the
flowchart considering all possible routes, so let's do that now.

Hi-Res Graphics and Animation Using Assembly Language

Situation—The. man and plane are drawn and the bullet is not fired and is
Flow—After a delay, the man and plane are erased and the paddle read aĝn

for another man and plane draw. The plane moves across the screen and the
man's movement is controlled by the paddle; nothing else happens.

Situation-The man and plane are drawn but PSHPNO indicates the next
plane draw will reach the end of the screen.

Flow—The man is erased and the plane initialized so that the next p ane wi
appear at the starting left border position. If 100 planes have appeare , t ̂ P̂ '
gram stops; if not, the paddle is read again to update the man s position an t e
next man and plane are drawn.

Situation—The man and plane are drawn and the button is pressed.
Hom/—BULON is set to indicate bullet on and the bullet draw routine is

accessed. Because the bullet was not on when the paddle was read, BHORIZ is
equal to MHORIZ and the bullet is fired from the man's position.

Situation—The man and plane are drawn and the bullet is on the screen.
/7ou;-BDRAW is accessed but BHORIZ is now independent of MHORIZ, so

the bullet can move up independently of the man's position.
Situation—The man and plane are drawn, a bullet is on the screen but not

yet at the top, and no collision is detected,
y-- Flow—The bullet is drawn and after a delay, the bullet, man, and plane are_ erased. The paddle is read again to update the man shape position, the plane
H moves one bit position and the bullet moves up eight lines. This continues until

the bullet has reached the top of the screen or until a plane is hit.
Situation—Sztne as above but the bullet has reached the top.
Flow—The bullet is initialized, which sets BULON to indicate the bullet is

not on and the bullet will not be drawn unless the button is pressed. Thus, we re
back to the situation where the man and plane are drawn but the bullet is not
o n .

Situation—The man and plane are drawn, a bullet is on the screen, and a
c o l l i s i o n i s d e t e c t e d .

Flow—The plane is erased, SUM incremented, the score displayed, and the
explosion shapes drawn and erased with the explosion sound effect. If the score
is at 100, the program stops. If less than 100, the man is erased, the plane and
bullet initialized, and the paddle read in preparation for another cycle.

Situation—A plane has been hit or has reached the end of the screen.
PCOUNTER is incremented for each such occurrence. After 100 such

events, the program stops (unless stopped by the score reaching 100).

This takes us through essentially all the game assembly, as we already know
most of the program details. In fact, there is only one minor detail that need be
considered. Conditional branch instructions branch to program locations by
relative rather than absolute addressing; i.e., the location to be branched to is not
specified by a particular address but rather by the distance (in bytes) from the
branch instruction. The branching distance is limited, however, by a maximum
of 127 bytes forward or 128 bytes back. What do you do if you want to branch to
a location outside these limits? Lines 172-174 and 365-368 in Program 10-1
illustrate the solution. In line 172, for example, what we would like to do is

Putting It All Together: The Bame

branch to BI with a BLT BI but BI is too far from the branch instruction. So, what
we do instead is insert a short branch to a JMP instruction (JMP branches to
absolute addresses and thus does not have any distance limitation). The routine
i s ;

B L T L O N G

L O N G J M P B I

By the way, your assembler will tell you, with an error message, when you
attempt to branch beyond the distance limits.

And now—fanfare please—it is with great pride (or at least some pride) and
little trepidation that I hereby present THE GAME! (Whoops—it has no name!
To enter the Name the Game contest, send $10 in cash, and also an entry if you
like, to me, care of the publisher. The winner will receive a thank you note
suitable for framing.)

]PROGRAM 10-1
: A S M

6 0 0 0 : 4 C 7 C 6 0

1 * * * * T H E GAME 1 * * * *

2 ORG $ 6 0 0 0
3 J M P PGM
4 MLINE DS 1
5 M L I N E A DS 1
6 B L I N E D S 1
7 D E P T H D S 1 "
8 MHORIZ DS 1
9 BHORIZ D S 1
1 0 HORIZB DS 1
1 1 HORIZM DS 1
1 2 BULON DS 1
13 XCOUNT DS 1
14 DELAY DS 1
1 5 BTEMP D S 1
16 MTEMP DS 39
1 7 E L I N E D S 1
18 EL INEA DS 1
1 9 EDEPTH D S 1
2 0 SUM DS 1
2 1 COUNTER DS 1
2 2 DE DS 1
2 3 PCOUNTER DS 1
2 4 P L I N E D S 1
2 5 PL INEA DS 1
2 6 PBYTE DS 1
27 PDEPTH DS 1
2 8 PSHPNO DS 1
2 9 PTEMP DS 1 5
3 0 ST DS 1
31 GRAPHICS = $C050
3 2 MIXOFF = $C052
3 3 H I R E S = $C057
3 4 P A G E l = $C054
3 5 H I G H = $1B
3 6 LOW = $ 1 A
3 7 W A I T = SFCAB
3 8 PREAD = $FB1E

J

Hi-Res Graphics and Animation Using Assembiy Language

B U T T O N = $ C 0 6 1 ; B U T T O N 0
S P E A K E R = $ C 0 3 0
*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
♦CONTINUE FDR ALL 7 SHAPES

6 0 5 2 : E E 4 3 MSHPAOR OFB #<MSHAPE1
6 0 5 3 : 6 4 4 4 OFB #>MSHAPE1
6 0 5 4 : 1 5 4 5 OFB #<MSHAPE2
6 0 5 5 : 6 5 4 6 OFB #>MSHAPE2
6 0 5 6 : 3 C 4 7 O F B #<MSHAPE3
6 0 5 7 : 6 5 4 8 O F B #>MSHAPE3
6 0 5 8 : 6 3 4 9 O F B #<MSHAPE4
6 0 5 9 : 6 5 5 0 O F B #>MSHAPE4
6 0 5 A : 8 A 5 1 O F B #<MSHAPE5
6 0 5 B : 6 5 5 2 O F B #>MSHAPE5
6 0 5 C : B 1 5 3 O F B #<MSHAPE6
6 0 5 D : 6 5 5 4 O F B #>MSHAPE6
6 0 5 E : D 8 5 5 OFB #<MSHAPE7
6 0 5 F : 6 5 56 O F B #>MSHAPE7
6 0 6 0 : F F 57 BSHPAOR O F B #<BSHAPE1
6 0 6 1 : 6 5 5 8 O F B #>BSHAPE1
6 0 6 2 : 0 0 5 9 O F B #<BSHAPE2
6 0 6 3 : 6 6 6 0 O F B #>BSHAPE2
6 0 6 4 : 0 1 6 1 OFB #<BSHAPE3
6 0 6 5 : 6 6 6 2 O F B #>BSHAPE3
6 0 6 6 : 0 2 6 3 O F B #<BSHAPE4
6 0 6 7 : 6 6 6 4 O F B #>BSHAPE4
6 0 6 8 : 0 3 6 5 OFB #<BSHAPE5
6 0 6 9 : 6 6 6 6 OFB #>BSHAPE5
6 0 6 A : 0 4 6 7 OFB #<BSHAPE6
6 0 6 B : 6 6 6 8 O F B #>BSHAPE6
6 0 6 C : 0 5 6 9 OFB #<BSHAPE7
6 0 6 0 : 6 6 7 0 O F B #>BSHAPE7
6 0 6 E : 3 0 7 1 PSHPAOR OFB #<PSHAPE1
6 0 6 F : 6 6 7 2 O F B #>PSHAPE1
6 0 7 0 : 3 F 7 3 O F B #<PSHAPE2
6 0 7 1 : 6 6 7 4 O F B #>PSHAPE2
6 0 7 2 : 4 E 7 5 OFB #<PSHAPE3
6 0 7 3 : 6 6 7 6 OFB #>PSHAPE3
6 0 7 4 : 5 0 7 7 OFB #<PSHAPE4
6 0 7 5 : 6 6 7 8 O F B #>PSHAPE4
6 0 7 6 : 6 C 7 9 O F B #<PSHAPE5
6 0 7 7 : 6 6 8 0 O F B #>PSHAPE5
6 0 7 8 : 7 B 8 1 O F B #<PSHAPE6
6 0 7 9 : 6 6 8 2 O F B #>PSHAPE6
6 0 7 A : 8 A 8 3 O F B #<PSHAPE7
6 0 7 B : 6 6 8 4 OFB #>PSHAPE7
6 0 7 C : A O 5 0 CO 8 5 PGM L O A G R A P H I C S
6 0 7 F : A O 5 2 CO 8 6 L O A M I X O F F
6 0 8 2 : A O 5 7 CO 8 7 L O A H I R E S
6 0 8 5 : A O 5 4 CO 8 8 L O A P A G E l
6 0 8 8 : A 9 0 0 8 9 LOA #$00
6 0 8 A : 8 5 l A 9 0 STA LOW
6 0 8 C : A 9 2 0 91 LOA #$20
6 0 8 E : 8 5 I B 9 2 STA HIGH
6 0 9 0 : A O 0 0 93 C L R l L O Y #$00
6 0 9 2 : A 9 0 0 94 L O A #$00
6 0 9 4 : 9 1 l A 9 5 C L R STA (LOW),Y
6 0 9 6 : C 8 9 6 I N Y
6 0 9 7 : 0 0 F B 9 7 B N E C L R
6 0 9 9 : E 6 I B 9 8 I N C H I G H
6 0 9 B : A 5 I B 9 9 L O A H I G H

; H I R E S , P. l

;CLEAR SCREEN 1

Putting It All Together: The Berne

6 0 9 D : C 9 4 0 1 0 0 CMP # $ 4 0
6 0 9 F : 9 0 E F 1 0 1 B L T C L R l
6 0 A 1 : A 9 5 0 1 0 2 L D A # $ 5 0 ; L O A D D E L AY
6 0 A 3 : 8 0 OD 6 0 1 0 3 S TA D E L AY
6 0 A 6 : A 2 B 7 1 0 4 L D X #$B7 DRAW BOTTOM LINE
6 0 A 8 : AO 0 0 1 0 5 L D Y #$00
6 0 A A : B D 9 F 6 8 1 0 6 L D A H I , X
6 0 A D : 8 5 I B 1 0 7 S TA H I G H
6 0 A F : B D 5 F 6 9 1 0 8 L D A LO,X
6 0 B 2 : 8 5 l A 1 0 9 S T A LOW
6 0 B 4 : A 9 7 F 1 1 0 L D A #$7F
6 0 B 6 : 9 1 l A 1 1 1 L N S TA (LOW).Y
6 0 B 8 : C 8 1 1 2 I N Y
6 0 B 9 : CO 2 7 1 1 3 CPY #$27
6 0 B B : 9 0 F 9 1 1 4 B L T L N

6 0 B D : A9 0 0 11 5 LDA #$00
6 0 B F : 8 0 3C 6 0 11 6 STA PCOUNTER
6 0 C 2 : 8 0 51 6 0 11 7 STA ST

1 1 8 * * * * * * * * * * P R O G R A M * * * * * * * * * *

6 0 C 5 : 2 0 7 0 6 1 11 9 J S R S I N I T I A L ; I N I T I A L I Z A T I O N

6 0 C 8 : 2 0 5 6 6 1 1 2 0 J S R M I N I T I A L
6 0 C B : 2 0 8 4 6 1 1 2 1 P I J S R P I N I T I A L
6 0 C E : 2 0 6 5 6 1 1 2 2 B I J S R B I N I T I A L
6 0 D 1 : 2 0 C 6 6 1 1 2 3 PA D D L E J S R P O L E ; R E A D PA D D L E
6 0 D 4 : 2 0 0 1 6 2 1 2 4 J S R M D R A W ; DRAW MAN
6 0 D 7 : E E 4 1 6 0 1 2 5 P S T A R T I N C PSHPNO FIRST SHAPE NUMBER TO ZERO
6 0 D A : AD 4 1 6 0 1 2 6 L D A P S H P N O m i
6 0 D D : C9 07 1 2 7 CMP # $ 0 7 ; DRAWN ALL 7 SHAPES?

1 0 1

6 0 D F : 9 0 I B 1 2 8 B L T PSTART2 ,IF NO, DRAW PLANE ■
6 0 E 1 : E E 3 F 6 0 1 2 9 I N C PBYJE ;IF YES, NEXT SCREEN BYTE
6 0 E 4 : A D 3 F 6 0 1 3 0 L D A P B Y T E
6 0 E 7 : C 9 2 6 1 3 1 CMP # $ 2 6 ;END OF SCREEN?
6 0 E 9 : 9 0 0 9 1 3 2 B L T P S T A R T l ,IF NO, RESET SHAPE NO. &

1 3 3 * C O N T I N U E D R AW
6 0 E B : 2 0 8 4 6 1 1 3 4 J S R P I N I T I A L ;IF YES, INITIALIZE PLANE AND
6 0 E E : 2 0 0 1 6 2 1 3 5 J S R MDRAW E R A S E M A N A N D
6 0 F 1 : 4C 0 1 6 0 1 3 6 J M P PA H D L E GO BACK TO PADDLE READ
6 0 F 4 : A 9 F F 1 3 7 P S TA RT l L D A #$FF
6 0 F 6 : 8D 41 6 0 1 3 8 S T A PSHPNO
6 0 F 9 : 4C 0 7 6 0 1 3 9 J M P P S TA R T
6 0 F C : 2 0 A A 6 1 1 4 0 PSTART2 J S R P L O A D S H P
6 0 F F : 2 0 4 B 6 2 1 4 1 J S R PDRAW ;DRAW PLANE
6 1 0 2 : EE 3 B 6 0 1 4 2 I N C DE ;ACCESS SPEAKER EVERY OTHER CYCLE
6 1 0 5 : A D 3 B 6 0 1 4 3 L D A DE

1 4 4 ★ ★

6 1 0 8 : 4 A 1 4 5 L S R ;C=0 IF DE IS EVEN
6 1 0 9 : 9 0 0 3 1 4 6 BCC B U L ;C=1 IF DE IS ODD
6 1 0 B : 2 C 3 0 CO 1 4 7 B I T S P E A K E R
6 1 0 E : AD OB 6 0 1 4 8 B U L L D A B U L O N
6 1 1 1 : C 9 0 1 1 4 9 CMP #$01 IS BULLET ON?
6 1 1 3 : FO 1 9 1 5 0 BEQ BULLET IF YES, CONTINUE BULLET DRAW
6 1 1 5 : AD 6 1 CO 1 5 1 LDA BUTTON IF NO, IS BUTTON PRESSED?
6 1 1 8 : 30 OF 1 5 2 B M I B U L L E T l IF YES, DRAW BULLET
6 1 1 A : AD 0 0 6 0 1 5 3 LDA DELAY IF NO,
6 1 1 D : 2 0 A 8 FC 154 J S R WAIT DELAY AND
6 1 2 0 : 2 0 0 1 6 2 1 5 5 J S R MDRAW ERASE MAN AND
6 1 2 3 : 2 0 4 B 6 2 1 5 6 J S R PDRAW E R A S E P L A N E
6 1 2 6 : 4 C D 1 6 0 1 5 7 J M P PA D D L E READ PADDLE AGAIN
6 1 2 9 : A 9 0 1 1 5 8 B U L L E T l L D A # $ 0 1 ;;SET BULLET ON
6 1 2 B : 8 0 OB 6 0 1 5 9 S T A B U L O N
6 1 2 E : 2 0 9 5 6 2 1 6 0 B U L L E T J S R L O A D B U L ;;LOAD BULLET SHAPE INTO BTEMP

Hi-Res Braphics and Animation Using Assembiy Language

6 1 3 1 : 2 0 B 8 6 2
6 1 3 4 : A D O D 6 0
6 1 3 7 : 2 0 A 8 F C
6 1 3 A : 2 0 F 8 6 2
6 1 3 D : 2 0 0 1 6 2
6 1 4 0 : 2 0 4 B 6 2
6 1 4 3 : A D 0 5 6 0
6 1 4 6 : 3 8
6 1 4 7 : E 9 0 8
6 1 4 9 : 8 0 0 5 6 0
6 1 4 C : C 9 0 5
6 1 4 E : 9 0 0 3
6 1 5 0 : 4 C 0 1 6 0
6 1 5 3 : 4 C C E 6 0

6 1 5 6 : A 9 A A
6 1 5 8 : 8 0 0 3 6 0
6 1 5 B : 8 0 0 4 6 0
6 1 5 E : 1 8
6 1 5 F : 6 9 0 0
6 1 6 1 : 8 0 0 6 6 0
6 1 6 4 : 6 0

6 1 6 5 : A 9 0 0
6 1 6 7 : 8 0 O B 6 0
6 1 6 A : A 9 A 4
6 1 6 C : 8 0 0 5 6 0
6 1 6 F : 6 0

6 1 7 0 : A 9 0 0
6 1 7 2 : 8 0 3 9 6 0
6 1 7 5 : 8 0 3 A 6 0
6 1 7 8 : A A
6 1 7 9 : A O 1 1
6 1 7 B : 2 0 6 0 6 4
6 1 7 E : C 8
6 1 7 F : C O 1 4
6 1 8 1 : 9 0 F 8
6 1 8 3 : 6 0

6 1 8 4 : A 9 F F

6 1 8 6 : 8 0 4 1 6 0
6 1 8 9 : E E 3 0 6 0

6 1 8 0 :
6 1 8 F :
6 1 9 1 :
6 1 9 3 :
6 1 9 6 :
6 1 9 8 :
6 1 9 B :
6 1 9 0 :
6 1 A 0 :
6 1 A 3 :
6 1 A 4 :
6 1 A 6 :
6 1 A 9 :

A O 3 0 6 0
0 9 6 5
9 0 0 3
4 0 6 2 6 4
A 9 0 0
8 0 3 F 6 0
A 9 0 8
8 0 3 E 6 0
8 0 3 D 6 0
1 8
6 9 0 5
8 0 4 0 6 0
6 0

* * * * * * * * * * s

M I N I T I A L L O A
STA
STA
OLO
ADO
S T A

BORAW
D E L AY
W A I T
BXORAW
MORAW
PORAW
B L I N E

$ 0 8
B L I N E
$ 0 5
L O N G
PA O O L E
B I

UBROUTINES * *
#$AA
MLINE
MLINEA

#$00
D E P T H

;ORAW BULLET & TEST FOR COLLISION

D E L AY
ERASE BULLET
ERASE MAN
ERASE PLANE

;MOVE BLINE UP 8 LINES

;LESS THAN 5 LINES FROM TOP?
;IF YES, TAKE BRANCH
;IF NO, READ PAOOLE AGAIN

* * * * * * * *

* *

B I N I T I A L L O A # $ 0 0
S T A B U L O N
L O A # $ A 4
S T A B L I N E
RTS

* *

S I N I T I A L L O A
S TA

#$00
SUM
C O U N T E R

#$11
P R I N T

;BULON = 0 IF
B U L L E T N O T O N S C R E E N

:SOORE DISPLAYS THREE O'S

* *

P I N I T I A L L O A

S TA P S H P N O
I N C P O O U N T E R

P O O U N T E R
$ 6 5
POONT
S T 0 P 2
#$00
PBYTE
#$08
PL INEA
P L I N E

$ 0 5
P O E P T H

;PSHPNO LOADED WITH #$FF SO FIRST
INC PSHPNO WILL LOAD PSHPNO
WITH ZERO

;PINITIAL AND POOUNTER ACCESSED
ONLY ON COLLISION OR
E N D O F S C R E E N

POOUNTER MORE THAN 100?
IF NO, CONTINUE P INITIALIZATION
IF YES, STOP GAME

POONT

Putting It All Togetlten The Berne

6 1 A A : A D 4 1 6 0
6 1 A D : O A
6 1 A E : A A
6 1 A F : B D 6 E 6 0
6 1 8 2 : 8 5 l A
6 1 8 4 : 6F 60
6 1 8 7 : 8 5 1 8
6 1 8 9 : A O 0 0
6 1 8 8 : 8 1 l A
6 1 8 D : 9 9 4 2 6 0
6 1 C 0 : C 8
6 1 C 1 : C O O F
6 1 C 3 : 9 0 F 6
6 1 C 5 : 6 0

6 1 C 6 : A 2 0 0
6 1 0 8 : 2 0 I E F 8

PLOADSHP LDA PSHPNO
A S L
TA X
LDA PSHPADR.X
S T A L O W
LDA PSHPADR+1,X
S T A H I G H
L D Y # $ 0 0

PLOADSHPl LDA (L0W),Y
S TA P T E M P, Y
I NY
C P Y # $ 0 F
8 L T P L O A D S H P l
RT S

#$00
PREAD ;READ PADDLE 0

8 D 0 7 6 0
AD 08 60
0 9 0 1
FO 06
A D 0 7 6 0
8 D 0 8 6 0
AO 07 60
8 9 9 9 6 6
8D OA 60
8 9 9 0 6 7
OA
A A

8 D 5 2 6 0
8 5 l A
B D 5 3 6 0
8 5 1 8
AO 00
8 1 l A
9 9 O F 6 0
0 8
0 0 2 7
9 0 F 6
60

A 9 0 0
8 D 0 0 6 0
AE 03 60
AO OA 60
8 D 9 F 6 8
8 5 I B
BD 5F 69
8 5 l A
AE 00 60
B 1 l A
5D OF 60
9 1 l A
0 8
8 1 l A
5 0 1 0 6 0
9 1 l A
0 8
8 1 l A
5 D 1 1 6 0

P D L E l

MHORIZ
8 U L 0 N
#$01
P D L E l
M H O R I Z
B H O R I Z
M H O R I Z

BYTETBL,Y
HORIZM
OFFSET,Y

;0-255 IN MHORIZ

;IS BULLET ON?
;IF YES, TAKE BRANCH
;IF NO, SET BHORIZ EQUAL

T O M H O R I Z

-.CONVERT 0-255 TO 0-36 (BYTE)
;MAN BYTE POSITION
;GET SHAPE NUMBER
-.LOAD SHAPE INTO MTEMP

MSHPADR,X
LOW

MSHPADR+1,X
H I G H
#$00
(LOW),Y
MTEMP,Y

* *

MDRAW

MDRAWl

#$00
XOOUNT
M L I N E
H O R I Z M

H I , X
H I G H
LO,X
LOW
XOOUNT

(LOW),Y
MTEMP,X
(L0W),Y

(LOW),Y
MTEMP+1,X
(LOW),Y

(LOW),Y
MTEMP+2,X

Hi-Res Graphics and Animation Using Assembly Language----

6 2 2 E : 9 1 l A 2 8 3 STA (LOW),Y
6 2 3 0 : EE OC 6 0 2 8 4 I N C XCOUNT

6 2 3 3 : EE OC 6 0 2 8 5 I N C XCOUNT

6 2 3 6 : E E OC 6 0 2 8 6 I N C XCOUNT

6 2 3 9 : EE 0 3 6 0 2 8 7 I N C M L I N E

6 2 3 C : AD 0 3 6 0 2 8 8 L O A M L I N E

6 2 3 F : CD 0 6 6 0 2 8 9 CMP D E P T H

6 2 4 2 : 90 C2 2 9 0 B I T M O R AW l

6 2 4 4 : AD 0 4 6 0 2 9 1 L O A M L I N E A ;RESET LINE
6 2 4 7 : 8 0 0 3 6 0 2 9 2 S T A M L I N E

6 2 4 A : 6 0 2 9 3 R T S
2 9 4 *

6 2 4 B : A 9 0 0 2 9 5 PORAW L O A #$00
6 2 4 0 : 8 0 OC 6 0 2 9 6 S T A XCOUNT

6 2 5 0 : A C 3 F 6 0 2 9 7 P O R A W l L O Y P B Y T E

6 2 5 3 : A E 3 0 6 0 2 9 8 L O X P L I N E

6 2 5 6 : BO 9F 68 2 9 9 LOA H I , X
6 2 5 9 : 85 I B 3 0 0 STA HIGH
6 2 5 B : BO 5F 6 9 3 0 1 LOA LO,X
6 2 5 E : 8 5 l A 3 0 2 STA LOW
6 2 6 0 : AE OC 6 0 3 0 3 L O X XCOUNT

6 2 6 3 : B 1 l A 3 0 4 L O A (LOW),Y
6 2 6 5 : 5 0 4 2 6 0 3 0 5 EOR PTEMP,X
6 2 6 8 : 9 1 l A 3 0 6 S T A (LOW).Y
6 2 6 A : C 8 3 0 7 I N Y

6 2 6 B : B 1 l A 3 0 8 L O A (LOW).Y
1 Q A 6 2 6 D : 50 4 3 60 3 0 9 EOR PTEMP+1,X
1 6 4

6 2 7 0 : 9 1 l A 3 1 0 S T A (LOW),Y
■ 6 2 7 2 : C8 3 11 I N Y

6 2 7 3 : B 1 l A 3 1 2 L O A (LOW),Y
6 2 7 5 : 5 0 4 4 6 0 3 1 3 EOR PTEMP+2,X
6 2 7 8 : 9 1 l A 3 1 4 S T A (LOW).Y
6 2 7 A : EE OC 6 0 3 1 5 I N C XCOUNT
6 2 7 0 : E E OC 6 0 3 1 6 I N C XCOUNT
6 2 8 0 : EE OC 6 0 3 1 7 I N C XCOUNT

6 2 8 3 : EE 3 0 6 0 3 1 8 I N C P L I N E

6 2 8 6 : AO 3 0 6 0 3 1 9 L O A P L I N E

6 2 8 9 : CO 4 0 60 3 2 0 CMP POEPTH
6 2 8 C : 9 0 C2 3 2 1 B LT P O R A W l

6 2 8 E : AO 3 E 6 0 3 2 2 L O A P L I N E A ;RESET LINE
6 2 9 1 : 8 0 30 6 0 3 2 3 S T A P L I N E

6 2 9 4 : 6 0 3 2 4 R T S
3 2 5 *

6 2 9 5 : A C 0 8 6 0 3 2 6 LOAOBUL L O Y B H O R I Z •.CONVERTS 0-255 TO
6 2 9 8 : B 9 9 9 6 6 3 2 7 L O A BYTETBL .Y SCREEN BYTE (0-36)
6 2 9 B : 1 8 3 2 8 C L C ;A00 2 TO ALIGN BULLET
6 2 9 C : 6 9 0 2 3 2 9 AOC # $ 0 2 W I T H G U N
6 2 9 E : 8 0 0 9 6 0 3 3 0 S TA H O R I Z B ;BULLET BYTE POSITION
6 2 A 1 : B 9 9 C 6 7 3 3 1 L O A O F F S E T, Y ;GET BULLET SHAPE NUMBER
6 2 A 4 : OA 3 3 2 A S L •.LOAD BULLET SHAPE INTO BTEMP
6 2 A 5 : AA 3 3 3 TAX
6 2 A 6 : BO 60 60 3 3 4 LOA BSHPADR.X
6 2 A 9 : 8 5 l A 3 3 5 STA LOW
6 2 A B : BO 6 1 6 0 3 3 6 L O A BSHPAOR+1, X

6 2 A E : 8 5 I B 3 3 7 STA H I G H
6 2 B 0 : AO 0 0 3 3 8 L O Y #$00
6 2 B 2 : B 1 l A 3 3 9 L O A (LOW).Y
6 2 B 4 : 80 OE 6 0 3 4 0 STA BTEMP
6 2 B 7 : 6 0 3 4 1 R T S

3 4 2 *

Putting It All Together: The Game

Hi-Hes Braphics and Animation Using Assembiy Language

634C 2 0 0 9 6 4 4 0 2 J S R I N I T E 4
6 3 4 F 2 0 9 0 6 3 4 0 3 J S R DRAWE2

6 3 5 2 6 0 4 0 4 RT S
4 0 5 *

6 3 5 3 : AO 02 4 0 6 SOUND LDY # $ 0 2
6 3 5 5 :; 2 C 3 01 00 4 0 7 S O U N D l B I T S P E A K E R

6 3 5 8 :: A 9 6 0 4 0 8 L D A #$60
6 3 5 A : 2 0 A 8 FO 4 0 9 J S R W A I T

6 3 5 D : 8 8 4 1 0 D E Y

6 3 5 E : DO F5 4 1 1 8 N E SOUNDl
6 3 6 0 : 6 0 4 1 2 RT S

4 1 3 *

6 3 6 1 AC 09 6 0 4 1 4 D R A W E l L D Y H 0 R I Z 8

6 3 6 4 AE 36 6 0 4 1 5 L D X E L I N E

6 3 6 7 8 D 9 F 6 8 4 1 6 L D A H I , X
6 3 6 A 8 5 1 8 4 1 7 S TA H I G H

6 3 6 C BD 5F 6 9 4 1 8 LDA LO,X
6 3 6 F 8 5 l A 4 1 9 STA LOW
6371 AE 00 6 0 4 2 0 L D X XOOUNT
6 3 7 4 8 1 l A 4 2 1 L D A (LOW).Y
6 3 7 6 5D 06 6 6 4 2 2 EOR ESHAPE.X
6 3 7 9 9 1 l A 4 2 3 S TA (LOW).Y
6 3 7 B E E 0 0 6 0 4 2 4 I NO XOOUNT

6 3 7 E E E 3 6 6 0 4 2 5 I NO E L I N E

6 3 8 1 A D 3 6 6 0 4 2 6 L D A E L I N E

6 3 8 4 OD 38 6 0 4 2 7 OMP E D E P T H

6 3 8 7 9 0 D 8 4 2 8 B LT DRAWEl
6 3 8 9 AD 37 6 0 4 2 9 L D A E L I N E A
638C 8D 36 6 0 4 3 0 S T A E L I N E

6 3 8 F 6 0 4 3 1 RTS
4 3 2 * i

6 3 9 0 : AO 09 6 0 4 3 3 D R AW E 2 L D Y H 0 R I Z 8
6 3 9 3 : A E 3 6 6 0 4 3 4 L D X E L I N E
6 3 9 6 : 8 D 9 F 6 8 4 3 5 L D A H I , X
6 3 9 9 : 8 5 1 8 4 3 6 S T A H I G H
6 3 9 8 : 8 D 5 F 6 9 4 3 7 L D A LO,X
6 3 9 E : 8 5 l A 4 3 8 S T A LOW
6 3 A 0 : A E 0 0 6 0 4 3 9 L D X XOOUNT
6 3 A 3 : 8 1 l A 4 4 0 L D A (L0W),Y
6 3 A 5 : 5 D 0 6 6 6 4 4 1 EOR ESHAPE.X
6 3 A 8 : 9 1 l A 4 4 2 S T A (L0W),Y
6 3 A A : E E 0 0 6 0 4 4 3 I NO XOOUNT
6 3 A D : 0 8 4 4 4 I N Y
6 3 A E : A E 0 0 6 0 4 4 5 L D X X O O U N T
6 3 8 1 : 8 1 l A 4 4 6 L D A (L0W) ,Y
6 3 8 3 : 5 D 0 6 6 6 4 4 7 EOR ESHAPE.X
6 3 8 6 : 9 1 l A 4 4 8 S T A (LOW).Y
6 3 8 8 : E E 0 0 6 0 4 4 9 I NO XOOUNT
6 3 8 8 : E E 3 6 6 0 4 5 0 I NO E L I N E
6 3 8 E : A D 3 6 6 0 4 5 1 L D A E L I N E
6 3 C 1 : OD 38 6 0 4 5 2 OMP E D E P T H
6 3 C 4 : 9 0 O A 4 5 3 B LT DRAWE2
6 3 C 6 : AD 37 6 0 4 5 4 L D A E L I N E A
6 3 C 9 : 8 D 3 6 6 0 4 5 5 S T A E L I N E
6 3 C C : 6 0 4 5 6 RTS

4 5 7 * i i

6 3 C D : A 9 0 0 4 5 8 I N I T E l L D A #$00

[E R A S E

;EXPLOSION SOUND

;ROUTINE FOR FIRST 3
E X P L O S I O N S H A P E S

;ROUTINE FOR FOURTH
E X P L O S I O N S H A P E

I I T I A L I Z E F I R S T E X P L O S I O N

PuHing It All Together: The Game

L

1

Hi-Res Graphics and Animation Using Assembly Language

Putting It All Together: The Game

6 4 E E : 0 0 OE 0 1 5 6 3 M S H A P E l H E X O O O E O I O O O E O I O O O E O I ;MAN SHAPE TABLES
6 4 F 1 : 0 0 OE 0 1 0 0 O E 0 1
6 4 F 7 : 0 0 4 4 0 1 5 6 4 H E X 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F 0 0
6 4 F A : 0 0 7 F 0 0 6 0 I F 0 0
6 5 0 0 : 3 0 I F 0 0 5 6 5 HEX 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0
6 5 0 3 : 1 8 I F 0 0 0 0 I F 0 0

6 5 0 9 : 0 0 I F 0 0 5 6 6 H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0
6 5 0 C : 0 0 I B 0 0 4 0 3 1 0 0
6 5 1 2 : 6 0 6 0 0 0 5 6 7 H E X 6 0 6 0 0 0

6 5 1 5 : 0 0 I C 0 2 5 6 8 M S H A P E 2 HEX 0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 0 0 2

6 5 1 8 : 0 0 I C 0 2 0 0 1 0 0 2
6 5 1 E : 0 0 0 8 0 3 5 6 9 HEX 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0

6 5 2 1 : 0 0 7E 0 1 0 0 3 E 0 0
6 5 2 7 : 0 0 3 F 0 0 5 7 0 HEX 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0

6 5 2 A : 4 0 3 F 0 0 0 0 3 E 0 0

6 5 3 0 : 0 0 3E 00 571 HEX 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0
6 5 3 3 : 0 0 3 6 0 0 0 0 3 6 0 0

6 5 3 9 : 0 0 63 0 0 5 7 2 H E X 0 0 6 3 0 0
6 5 3 C : 0 0 3 8 04 5 7 3 MSHAPE3 HEX 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4
6 5 3 F : 0 0 3 8 0 4 0 0 3 8 0 4

6 5 4 5 : 0 0 1 0 0 6 5 7 4 HEX 0 0 1 0 0 6 0 0 7 0 0 3 0 0 7 0 0 0
6 5 4 8 : 0 0 7 C 0 3 0 0 7 0 0 0
6 5 4 E : 0 0 7 C 0 0 5 7 5 HEX 0 0 7 C 0 0 0 0 7 E 0 0 0 0 7 C 0 0
6 5 5 1 : 0 0 7E 0 0 0 0 7 0 0 0

6 5 5 7 : 0 0 3 8 0 0 5 7 6 HEX 0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 0 0 0
6 5 5 A : 0 0 3 8 0 0 0 0 6 0 0 0

6 5 6 0 : 0 0 4 6 0 1 5 7 7 HEX 0 0 4 6 0 1 W
6 5 6 3 : 0 0 70 0 8 5 7 8 M S H A P E 4 H E X 0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8
6 5 6 6 : 00 70 0 8 0 0 7 0 0 8 ■
6 5 6 C : 0 0 20 OC 5 7 9 H E X 0 0 2 0 0 0 0 0 7 8 0 7 0 0 7 8 0 1
6 5 6 F : 0 0 78 0 7 0 0 7 8 0 1
6 5 7 5 : 0 0 7 8 0 1 5 8 0 H E X 0 0 7 8 0 1 0 0 7 8 0 1 0 0 7 8 0 1
6 5 7 8 : 0 0 7 8 0 1 0 0 7 8 0 1

6 5 7 E : 0 0 7 0 0 0 5 8 1 H E X 0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0
6 5 8 1 : 0 0 7 0 0 0 0 0 7 0 0 0

6 5 8 7 : 0 0 7 0 0 0 5 8 2 H E X 0 0 7 0 0 0
6 5 8 A : 0 0 6 0 1 1 5 8 3 M S H A P E 5 H E X 0 0 6 0 11 0 0 6 0 11 0 0 6 0 11
6 5 8 D : 00 6 0 1 1 0 0 6 0 1 1

6 5 9 3 : 0 0 40 18 5 8 4 H E X C 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3
6 5 9 6 : 0 0 7 0 O F 0 0 7 0 0 3

6 5 9 C : 00 70 0 3 5 8 5 H E X 0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3
6 5 9 F : 0 0 7 8 0 3 0 0 7 0 0 3

6 5 A 5 : 0 0 6 0 0 1 5 8 6 H E X 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3
6 5 A 8 : 00 6 0 0 1 0 0 3 0 0 3

6 5 A E : 0 0 1 8 0 6 5 8 7 H E X 0 0 1 8 0 6
6 5 B 1 : 0 0 4 0 2 3 5 8 8 M S H A P E 6 HEX 0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3
6 5 B 4 : 0 0 4 0 2 3 0 0 4 0 2 3
6 5 B A : 0 0 0 0 3 1 5 8 9 H E X 0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7
6 5 B D : 0 0 6 0 I F 0 0 6 0 0 7

6 5 C 3 : 0 0 70 0 7 5 9 0 H E X 007007007807006007
6 5 C 6 : 00 78 0 7 0 0 6 0 0 7
6 5 C C : 0 0 60 0 7 5 9 1 HEX 006007006006006006
6 5 C F : 0 0 60 0 6 0 0 6 0 06
6 5 0 5 : 0 0 3 0 OC 5 9 2 HEX 0 0 3 0 0 0
6 5 0 8 : 0 0 00 4 7 5 9 3 MSHAPE7 HEX 000047000047000047
6 5 0 B : 0 0 0 0 47 0 0 0 0 4 7
6 5 E 1 : 0 0 0 0 6 2 5 9 4 H E X 0 0 0 0 6 2 0 0 4 0 3 F 0 0 7 0 0 F

m-nes Graphics and Animation Using Assemhiy Language

6 5 E 4 : 0 0 4 0 3 F 0 0 7 0 OF
6 5 E A : 0 0 5 8 O F 5 9 5 H E X 0 0 5 8 0 F 0 0 4 0 0 F 0 0 4 0 0 F
6 5 E D : 0 0 4 C OF 0 0 4 0 O F
6 5 F 3 : 0 0 4 0 O F 5 9 6 HEX 0 0 4 0 0 F 0 0 4 0 0 D 0 0 6 0 1 8
6 5 F 6 : 0 0 4 0 0 0 0 0 6 0 1 8
6 5 F C : 0 0 3 0 3 0 5 9 7 HEX 0 0 3 0 3 0
6 5 F F : 0 1 5 9 8 BSHAPEl HEX 0 1 ; B U L L E T S H A P E S
6 6 0 0 : 0 2 5 9 9 BSHAPE2 H E X 0 2
6 6 0 1 : 0 4 6 0 0 BSHAPE3 HEX 0 4
6 6 0 2 : 0 8 6 0 1 B S H A P E 4 H E X 0 8
6 6 0 3 : 1 0 6 0 2 B S H A P E 5 HEX 1 0
6 6 0 4 : 2 0 6 0 3 B S H A P E 6 HEX 2 0
6 6 0 5 : 4 0 6 0 4 B S H A P E 7 HEX 4 0
6 6 0 6 : 2 8 2 2 l A 6 0 5 E S H A P E H E X 28221A2514 -.EXPLOSION SHAPES - NO. 1
6 6 0 9 : 2 5 1 4
6 6 0 B : 2 C 5 2 4 4 6 0 6 H E X 2 0 5 2 4 4 3 2 0 0 ;N0. 2
6 6 0 E : 3 2 OC
6 6 1 0 : 3 8 3E 7 F 6 0 7 H E X 3 8 3 E 7 F 7 E 7 E 3 F 3 F 1 0 ;N0. 3
6 6 1 3 : 7E 7E 3 F 3 F 1 0
6 6 1 8 : 1 8 0 6 7 0 6 0 8 H E X 1 8 0 6 7 0 0 F 7 0 3 F 7 E 3 F ; N 0 . 4
6 6 1 B : OF 7C 3 F 7 E 3 F
6 6 2 0 : 7C 7 F 7 0 6 0 9 HEX 7 0 7 F 7 0 3 F 7 E 3 F 7 F 1 F
6 6 2 3 : 3 F 7 E 3 F 7 F I F
6 6 2 8 : 7 E O F 7 0 6 1 0 HEX 7 E 0 F 7 0 1 F 7 0 0 F 4 0 0 3
6 6 2 B : I F 7 0 O F 4 0 0 3
6 6 3 0 : 0 2 0 0 0 0 6 1 1 P S H A P E l HEX 0 2 0 0 0 0 0 6 0 0 0 0 7 E 1 F 0 0 ;PLANE SHAPES

190 6 6 3 3 : 0 6 0 0 0 0 7 E I F 0 0
6 6 3 9 : 7 E 3 7 0 0 6 1 2 H E X 7 E 3 7 0 0 7 E 7 F 0 0

■ 6 6 3 C : 7E 7F 0 0
6 6 3 F : 0 4 0 0 0 0 6 1 3 PSHAPE2 H E X 0 4 0 0 0 0 0 0 0 0 0 0 7 0 3 F O O
6 6 4 2 : OC 0 0 0 0 7 0 3 F 0 0
6 6 4 8 : 7C 6 F 0 0 6 1 4 H E X 7 0 6 F 0 0 7 0 7 F 0 1
6 6 4 B : 7 C 7 F 0 1
6 6 4 E : 0 8 0 0 0 0 6 1 5 P S H A P E 3 H E X 0 8 0 0 0 0 1 8 0 0 0 0 7 8 7 F 0 0
6 6 5 1 : 1 8 0 0 0 0 7 8 7 F 0 0
6 6 5 7 : 7 8 5 F 0 1 6 1 6 H E X 7 8 5 F Q 1 7 8 7 F 0 3
6 6 5 A : 7 8 7 F 0 3
6 6 5 0 : 1 0 0 0 0 0 6 1 7 PSHAPE4 H E X 1 0 0 0 0 0 3 0 0 0 0 0 7 0 7 F 0 1
6 6 6 0 : 3 0 0 0 0 0 7 0 7 F 01
6 6 6 6 : 70 3 F 03 6 1 8 H E X 7 0 3 F 0 3 7 0 7 F 0 7
6 6 6 9 : 7 0 7F 0 7
6 6 6 C : 2 0 0 0 0 0 6 1 9 P S H A P E 5 H E X 2 0 0 0 0 0 6 0 0 0 0 0 6 0 7 F 0 3
6 6 6 F : 6 0 0 0 0 0 6 0 7 F 0 3
6 6 7 5 : 6 0 7 F 0 6 6 2 0 H E X 6 0 7 F 0 6 6 0 7 F 0 F
6 6 7 8 : 6 0 7 F O F
6 6 7 B : 4 0 0 0 0 0 6 2 1 P S H A P E 6 H E X 4 0 0 0 0 0 4 0 0 1 0 0 4 0 7 F 0 7
6 6 7 E : 4 0 0 1 0 0 4 0 7 F 0 7
6 6 8 4 : 4 0 7 F OD 6 2 2 H E X 4 0 7 F 0 D 4 0 7 F 1 F
6 6 8 7 : 4 0 7 F I F
6 6 8 A : 0 0 0 1 0 0 6 2 3 P S H A P E 7 H E X 0 0 0 1 0 0 0 0 0 3 0 0 0 0 7 F O F
6 6 8 0 : 0 0 0 3 0 0 0 0 7 F OF
6 6 9 3 : 0 0 7F I B 6 2 4 H E X 0 0 7 F 1 B 0 0 7 F 3 F
6 6 9 6 : 0 0 7F 3 F
6 6 9 9 : 0 0 0 0 0 0 6 2 5 BYTETBL HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 9 C : 00 0 0 0 0 0 0
6 6 A 0 : 0 1 0 1 0 1 6 2 6 HEX 0 1 0 1 0 1 0 1 0 1 0 1 0 1
6 6 A 3 : 0 1 0 1 0 1 0 1

f t l l C f l f C i f I # l f f f v l i U t f l U f • i f l f v U W f f l w

6 6 A 7 : 0 2 0 2 0 2 6 2 7 HEX 0 2 0 2 0 2 0 2 0 2 0 2 0 2
6 6 A A : 0 2 0 2 0 2 0 2
6 6 A E : 0 3 0 3 0 3 6 2 8 HEX 0 3 0 3 0 3 0 3 0 3 0 3 0 3
6 6 B 1 : 0 3 0 3 0 3 0 3
6 6 B 5 : 0 4 0 4 0 4 6 2 9 HEX 0 4 0 4 0 4 0 4 0 4 0 4 0 4

6 6 B 8 : 0 4 0 4 0 4 0 4
6 6 B C : 0 5 0 5 0 5 6 3 0 HEX 0 5 0 5 0 5 0 5 0 5 0 5 0 5
6 6 B F : 0 5 0 5 0 5 0 5
6 6 C 3 : 0 6 0 6 0 6 6 3 1 HEX 0 6 0 6 0 6 0 6 0 6 0 6 0 6
6 6 C 6 : 0 6 0 6 0 6 0 6
6 6 C A : 0 7 0 7 0 7 6 3 2 HEX 0 7 0 7 0 7 0 7 0 7 0 7 0 7

6 6 C D : 0 7 0 7 0 7 0 7
6 6 D 1 : 0 8 0 8 0 8 6 3 3 HEX 0 8 0 8 0 8 0 8 0 8 0 8 0 8

6 6 0 4 : 0 8 0 8 0 8 0 8
6 6 0 8 : 0 9 0 9 0 9 6 3 4 HEX 0 9 0 9 0 9 0 9 0 9 0 9 0 9

6 6 0 B : 0 9 0 9 0 9 0 9

6 6 0 F : O A OA OA 6 3 5 HEX OAOAOAOAOAOAOA
6 6 E 2 : O A OA OA OA

6 6 E 6 : O B OB OB 6 3 6 HEX OBOBOBOBOBOBOB
6 6 E 9 : O B OB OB OB
6 6 E 0 : O C 0 0 0 0 6 3 7 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 F 0 : O C 0 0 0 0 0 0

6 6 F 4 : 0 0 0 0 0 0 6 3 8 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 F 7 : 0 0 0 0 0 0 0 0

6 6 F B : O E OE OE 6 3 9 HEX OEOEOEOEOEOEOE

66FE: OE OE OE OE

6 7 0 2 : O F OF OF 6 4 0 HEX OFOFOFOFOFOFOF 191
6 7 0 5 : O F OF OF OF
6 7 0 9 : 1 0 10 10 6 4 1 HEX 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ■
6 7 0 C : 1 0 1 0 10 10
6 7 1 0 : 1 1 1 1 1 1 6 4 2 H E X l l l l l l l l l H l l l
6 7 1 3 : 1 1 1 1 1 1 1 1

6 7 1 7 : 1 2 1 2 1 2 6 4 3 H E X 1 2 1 2 1 2 1 2 1 2 1 2 1 2
6 7 1 A : 1 2 12 1 2 12
6 7 1 E : 1 3 13 1 3 6 4 4 HEX 1 3 1 3 1 3 1 3 1 3 1 3 1 3
6 7 2 1 : 1 3 1 3 1 3 1 3

6 7 2 5 : 1 4 14 1 4 6 4 5 HEX 1 4 1 4 1 4 1 4 1 4 1 4 1 4
6728 : 14 14 1 4 14
6720: 15 15 15 6 4 6 HEX 1 5 1 5 1 5 1 5 1 5 1 5 1 5
6 7 2 F : 1 5 1 5 15 15
6 7 3 3 : 1 6 1 6 16 6 4 7 H E X 1 6 1 6 1 6 1 6 1 6 1 6 1 6
6 7 3 6 : 1 6 16 1 6 16
673A: 17 17 17 6 4 8 H E X 1 7 1 7 1 7 1 7 1 7 1 7 1 7
6730: 17 17 17 17
6 7 4 1 : 1 8 1 8 1 8 6 4 9 H E X 1 8 1 8 1 8 1 8 1 8 1 8 1 8
6 7 4 4 : 1 8 1 8 1 8 1 8

6 7 4 8 : 1 9 1 9 1 9 6 5 0 H E X 1 9 1 9 1 9 1 9 1 9 1 9 1 9
6 7 4 B : 1 9 19 19 1 9

6 7 4 F : l A l A l A 6 5 1 H E X l A l A l A l A l A l A l A
6 7 5 2 : l A l A l A l A

6 7 5 6 : I B I B I B 6 5 2 HEX I B I B I B I B I B I B - I B
6 7 5 9 : I B I B I B I B

6 7 5 0 : I C 10 10 6 5 3 HEX I C I C I C I C I O I C I C
6 7 6 0 : 1 0 10 10 10
6 7 6 4 : 1 0 10 10 6 5 4 HEX 1 0 1 0 1 0 1 0 1 0 1 0 1 0
6 7 6 7 : 1 0 1 0 I D 1 0

6 7 6 B : I E I E I E 6 5 5 HEX l E l E l E l E l E l E l E
6 7 6 E : I E I E I E I E
6 7 7 2 : I F I F I F 6 5 6 HEX I F I F I F I F I F I F I F

Hi-Res Graphics and Animation Using Assembiy Language

6 7 7 5 : I F I F I F I F
6 7 7 9 : 2 0 2 0 2 0 6 5 7 HEX 2 0 2 0 2 0 2 0 2 0 2 0 2 0
6 7 7 C : 2 0 2 0 2 0 2 0
6 7 8 0 : 2 1 2 1 2 1 6 5 8 HEX 2 1 2 1 2 1 2 1 2 1 2 1 2 1
6 7 8 3 : 2 1 2 1 2 1 2 1
6 7 8 7 : 2 2 2 2 2 2 6 5 9 H E X 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 7 8 A : 2 2 2 2 2 2 2 2
6 7 8 E : 2 3 23 2 3 6 6 0 HEX 2 3 2 3 2 3 2 3 2 3 2 3 2 3
6 7 9 1 : 2 3 2 3 23 23
6 7 9 5 : 2 4 2 4 2 4 6 6 1 H E X 2 4 2 4 2 4 2 4 2 4 2 4 2 4
6 7 9 8 : 2 4 2 4 2 4 2 4
6 7 9 C : 0 0 0 1 0 2 6 6 2 O F F S E T H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 9 F : 0 3 0 4 0 5 0 6
6 7 A 3 : 0 0 0 1 0 2 6 6 3 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 A 6 : 0 3 0 4 0 5 0 6
6 7 A A : 0 0 0 1 0 2 6 6 4 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 A D : 0 3 0 4 0 5 0 6
6 7 B 1 : 0 0 01 02 6 6 5 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 B 4 : 0 3 04 0 5 0 6
6 7 B 8 : 0 0 01 0 2 6 6 6 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 B B : 0 3 0 4 0 5 0 6
6 7 B F : 0 0 0 1 0 2 6 6 7 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 C 2 : 0 3 0 4 0 5 0 6
6 7 C 6 : 0 0 0 1 0 2 6 6 8 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 C 9 : 0 3 0 4 0 5 0 6
6 7 C D : 0 0 0 1 0 2 6 6 9 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 0 0 : 0 3 0 4 0 5 0 6
6 7 0 4 : 0 0 0 1 02 6 7 0 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 0 7 : 0 3 0 4 0 5 0 6
6 7 0 B : 0 0 0 1 0 2 6 7 1 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 0 E : 0 3 0 4 0 5 0 6
6 7 E 2 : 0 0 0 1 0 2 6 7 2 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 E 5 : 0 3 0 4 0 5 0 6
6 7 E 9 : 0 0 0 1 0 2 6 7 3 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 E C : 0 3 0 4 0 5 0 6
6 7 F 0 : 0 0 0 1 0 2 6 7 4 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 7 F 3 : 0 3 0 4 0 5 0 6
6 7 F 7 : 0 0 0 1 0 2 6 7 5 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
67FA: 03 0 4 0 5 0 6
6 7 F E : 0 0 0 1 0 2 6 7 6 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 0 1 : 0 3 0 4 0 5 0 6
6805 : 00 0 1 0 2 6 7 7 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 0 8 : 0 3 0 4 0 5 0 6
6 8 0 C : 0 0 0 1 0 2 6 7 8 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 0 F : 0 3 0 4 0 5 0 6
6 8 1 3 : 0 0 0 1 0 2 6 7 9 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 1 6 : 0 3 0 4 0 5 0 6
6 8 1 A : 0 0 0 1 0 2 6 8 0 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 1 D : 0 3 0 4 0 5 0 6
6 8 2 1 : 0 0 0 1 0 2 6 8 1 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 2 4 : 0 3 0 4 0 5 0 6
6828: GO 01 0 2 6 8 2 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 2 B : 0 3 04 05 0 6
6 8 2 F : 0 0 01 02 6 8 3 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 3 2 : 0 3 04 05 0 6
6 8 3 6 : 0 0 0 1 0 2 6 8 4 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 3 9 : 0 3 0 4 0 5 0 6
6 8 3 0 : 0 0 0 1 0 2 6 8 5 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 4 0 : 0 3 0 4 0 5 0 6

6 8 4 4 ; 0 0 0 1 0 2 6 8 6 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 4 7 : 0 3 0 4 0 5 0 6
6 8 4 8 : 0 0 0 1 0 2 6 8 7 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 4 E : 0 3 0 4 0 5 0 6
6 8 5 2 : 0 0 0 1 0 2 6 8 8 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 5 5 : 0 3 0 4 0 5 0 6
6 8 5 9 : 0 0 01 0 2 6 8 9 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 5 C : 0 3 0 4 0 5 0 6
6 8 6 0 : 0 0 0 1 0 2 6 9 0 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 6 3 : 0 3 0 4 0 5 0 6
6 8 6 7 : 0 0 0 1 0 2 6 9 1 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 6 A : 0 3 0 4 0 5 0 6
6 8 6 E : 0 0 0 1 0 2 6 9 2 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 7 1 : 0 3 0 4 0 5 0 6
6 8 7 5 : 0 0 0 1 0 2 6 9 3 HEX 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 7 8 : 0 3 0 4 0 5 0 6

6 8 7 C : 0 0 0 1 0 2 694 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 7 F : 0 3 0 4 0 5 0 6
6 8 8 3 : 0 0 0 1 0 2 6 9 5 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 8 6 : 0 3 0 4 0 5 0 6
6 8 8 A : 0 0 0 1 0 2 6 9 6 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 8 D : 0 3 0 4 0 5 0 6

6 8 9 1 : 0 0 0 1 0 2 6 9 7 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6

6 8 9 4 : 0 3 0 4 0 5 0 6

6 8 9 8 : 0 0 0 1 0 2 6 9 8 H E X 0 0 0 1 0 2 0 3 0 4 0 5 0 6
6 8 9 8 : 0 3 0 4 0 5 0 6

6 8 9 F : 2 0 24 28 6 9 9 H I H E X 2024282C3034383C ; HIGH BYTE LINE ADDRESSES 193
6 8 A 2 : 2 C 30 34 38 3C
6 8 A 7 : 2 0 2 4 2 8 7 0 0 H E X 2 0 2 4 2 8 2 C 3 0 3 4 3 8 3 C ■
6 8 A A : 2 C 3 0 3 4 3 8 3 C

6 8 A F : 2 1 2 5 2 9 7 0 1 HEX 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 8 8 2 : 2 0 3 1 3 5 3 9 3 D

6 8 8 7 : 2 1 2 5 2 9 7 0 2 HEX 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 8 8 A : 2 0 3 1 3 5 39 3D
6 8 B F : 2 2 2 6 2 A 7 0 3 H E X 2 2 2 6 2 A 2 E 3 2 3 6 3 A 3 E
6 8 C 2 : 2 E 3 2 3 6 3A 3E
6 8 C 7 : 2 2 26 2 A 7 0 4 H E X 2 2 2 6 2 A 2 E 3 2 3 6 3 A 3 E
6 8 C A : 2 E 3 2 36 3A 3E
68CF: 23 27 2 8 7 0 5 HEX 2 3 2 7 2 8 2 F 3 3 3 7 3 8 3 F
6802: 2F 3 3 3 7 3 8 3 F
6807 : 23 27 2 8 7 0 6 HEX 2 3 2 7 2 8 2 F 3 3 3 7 3 8 3 F
6 8 0 A : 2 F 3 3 3 7 3 8 3 F
680F: 20 2 4 28 7 0 7 HEX 2 0 2 4 2 8 2 C 3 0 3 4 3 8 3 C
6 8 E 2 : 2 C 3 0 3 4 3 8 3 C

6 8 E 7 : 2 0 2 4 28 7 0 8 HEX 2 0 2 4 2 8 2 C 3 0 3 4 3 8 3 C
6 8 E A : 2 C 3 0 3 4 3 8 3 C

6 8 E F : 2 1 2 5 2 9 7 0 9 HEX 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 8 F 2 : 2 0 3 1 3 5 3 9 3 D

6 8 F 7 : 2 1 25 2 9 7 1 0 HEX 2 1 2 5 2 9 2 D 3 1 3 5 3 9 3 D
6 8 F A : 2 0 3 1 35 3 9 3 D

68FF: 22 26 2 A 7 11 HEX 22262A2E32363A3E
6902: 2E 32 36 3A 3E
6907 : 22 26 2 A 7 1 2 H E X 22262A2E32363A3E
6 9 0 A : 2 E 3 2 36 UJCOCO
6 9 0 F : 2 3 27 2 8 7 1 3 HEX 2327282F3337383F
6 9 1 2 : 2 F 33 37 3B 3F
6 9 1 7 : 2 3 27 2 8 7 1 4 H E X 23272B2F33373B3F
6 9 1 A : 2 F 33 37 3 8 3 F

6 9 1 F : 2 0 2 4 2 8 7 1 5 HEX 2 0 2 4 2 8 2 C 3 0 3 4 3 8 3 C

Hi-Res Graphics and Animation Using Assembiy Language

6922: 2C 30 34 38 3C
6927: 20 24 28 716 HEX 2 0 2 4 2 8 2 C 3 0 3 4 3 8 3 C
692A: 2C 30 34 38 3C
692F: 21 25 29 717 HEX 2 1 2 5 2 9 2 0 3 1 3 5 3 9 3 0
6932: 20 31 35 39 3D
6937: 21 25 29 718 HEX 2 1 2 5 2 9 2 0 3 1 3 5 3 9 3 0
693A: 20 31 35 39 30
693F: 22 26 2A 719 H E X 22262A2E32363A3E
6942: 2E 32 36 3A 3E
6947: 22 26 2A 720 HEX 22262A2E32363A3E
694A: 2E 32 36 3A 3E
694F: 23 27 2B 721 HEX 2 3 2 7 2 B 2 F 3 3 3 7 3 B 3 F
6952: 2F 33 37 3B 3F
6957 : 23 27 2B 722 HEX 2 3 2 7 2 B 2 F 3 3 3 7 3 B 3 F
695A: 2F 33 37 3B 3F
6 9 5 F : 0 0 0 0 0 0 7 2 3 L O H E X 0000000000000000 ; LOW BYTE LINE ADDRESSES
6962: 00 00 00 00 00
6 9 6 7 : 8 0 8 0 8 0 7 2 4 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
696A: 80 80 80 80 80
6 9 6 F : 0 0 0 0 0 0 7 2 5 HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6972: 00 00 00 00 00
6 9 7 7 : 8 0 8 0 8 0 7 2 6 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
6 9 7 A : 8 0 8 0 8 0 8 0 8 0
6 9 7 F : 0 0 0 0 0 0 7 2 7 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 9 8 2 : 0 0 0 0 0 0 0 0 0 0
6 9 8 7 : 8 0 8 0 8 0 7 2 8 H E X 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
698A: 80 80 80 80 80
6 9 8 F : 0 0 0 0 0 0 7 2 9 H E X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 9 9 2 : 0 0 0 0 0 0 0 0 0 0
6 9 9 7 : 8 0 8 0 8 0 7 3 0 HEX 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
6 9 9 A : 8 0 8 0 8 0 8 0 8 0
6 9 9 F : 2 8 2 8 2 8 7 3 1 HEX 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 9 A 2 : 2 8 2 8 2 8 2 8 2 8
6 9 A 7 : A 8 A 8 A 8 7 3 2 HEX A8A8A8A8A8A8A8A8
6 9 A A : A 8 A 8 A 8 A 8 A 8
6 9 A F : 2 8 2 8 2 8 7 3 3 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 9 B 2 : 2 8 2 8 2 8 2 8 2 8
6 9 B 7 : A 8 A 8 A 8 7 3 4 HEX A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8
6 9 B A : A 8 A 8 A 8 A 8 A 8
6 9 B F : 2 8 2 8 2 8 7 3 5 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 9 C 2 : 2 8 2 8 2 8 2 8 2 8
6 9 C 7 : A 8 A 8 A 8 7 3 6 HEX A8A8A8A8A8A8A8A8
6 9 C A : A 8 A 8 A 8 A 8 A 8
6 9 C F : 2 8 2 8 2 8 7 3 7 H E X 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
6 9 0 2 : 2 8 2 8 2 8 2 8 2 8
6 9 0 7 : A 8 A 8 A 8 7 3 8 HEX A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8
6 9 0 A : A 8 A 8 A 8 A 8 A 8
6 9 0 F : 5 0 5 0 5 0 7 3 9 H E X 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0
6 9 E 2 : 5 0 5 0 5 0 5 0 5 0
6 9 E 7 : D O D O 0 0 7 4 0 HEX DOOODODODODODODO
69EA: DO DO DO DO DO
6 9 E F : 5 0 5 0 5 0 7 4 1 HEX 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0
6 9 F 2 : 5 0 5 0 5 0 5 0 5 0
6 9 F 7 : D O D O D O 7 4 2 HEX DOOODODODODODODO
69FA: DO DO DO DO DO
6 9 F F : 5 0 5 0 5 0 7 4 3 HEX 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0
6 A 0 2 : 5 0 5 0 5 0 5 0 5 0
6 A 0 7 : D O D O D O 7 4 4 HEX DOOODODODODODODO
6 A 0 A : 0 0 0 0 0 0 0 0 D O

Putting It All Together. The Berne

6 A 0 F : 5 0 5 0 5 0 7 4 5
6 A 1 2 : 5 0 5 0 5 0 5 0 5 0
6 A 1 7 : D O D O D O 7 4 6
6A1A: DO DO DO DO DO

—End assembly—

2591 bytes

H E X 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

HEX DODODODODODODODO

Symbol table - numerical order:

LOW =$1A H I G H = $ 1 B M L I N E =$6003 M L I N E A = $ 6 0 0 4
B L I N E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 M H O R I Z = $ 6 0 0 7 B H O R I Z =$6008
H O R I Z B =$6009 H O R I Z M = $ 6 0 0 A B U L O N = $ 6 0 0 8 XOOUNT =$6000
DELAY =$6000 BTEMP =$600E MTEMP =$600F E L I N E =$6036
EL INEA =$6037 EDEPTH =$6038 SUM =$6039 COUNTER = $ 6 0 3 A
DE =$603B P00UNTER=$6030 P L I N E =$6030 P L I N E A =$603E
PBYTE =$603F PDEPTH =$6040 PSHPNO =$6041 PTEMP = $ 6 0 4 2
S T =$6051 MSHPADR =$6052 BSHPADR =$6060 P S H PA D R =$606E
PGM =$6070 O L R l = $ 6 0 9 0 OLR =$6094 L N = $ 6 0 8 6
P I =$60CB B I = $ 6 0 0 E PA D D L E =$6001 P S TA R T =$6007
PSTART l =$60F4 PSTART2 =$60F0 B U L =$610E B U L L E T l = $ 6 1 2 9
BULLET =$612E L O N G = $ 6 1 5 3 M I N I T I A L=$6156 B I N I T I A L= $ 6 1 6 5
S I N I T I A L=$6170 P R = $ 6 1 7 8 P I N I T I A L=$6184 POONT =$6196
PLOADSHP=$61AA PL0ADSHP1=$61BB P O L E =$6106 P D L E l =$6100
LOAD =$61F6 MDRAW =$6201 M D R AW l =$6206 PDRAW =$6248
PDRAWl =$6250 LOADBUL =$6295 BDRAW =$62B8 NOHIT =$62D4
C0LLISI0N=$62DC L G = $ 6 2 F 5 BXDRAW =$62F8 EXPLODE =$6310
SOUND =$6353 SOUNDl =$6355 DRAWEl =$6361 DRAWE2 =$6390
I N I T E l =$6300 I N I T E 2 = $ 6 3 E 1 I N I T E 3 =$63F5 I N I T E 4 =$6409
SCORE =$6410 0 1 0 = $ 6 4 2 E S T O P l =$6449 S T 0 P 2 = $ 6 4 6 2
PRINT =$6460 NSHAPE =$649E MSHAPEl =$64EE MSHAPE2 =$6515
MSHAPE3 =$6530 MSHAPE4 =$6563 MSHAPE5 =$658A M S H A P E 6 =$6581
MSHAPE7 =$6508 BSHAPEl =$65FF BSHAPE2 =$6600 BSHAPE3 = $ 6 6 0 1
BSHAPE4 =$6602 BSHAPE5 =$6603 BSHAPE6 =$6604 B S H A P E 7 = $ 6 6 0 5
ESHAPE =$6606 PSHAPEl =$6630 PSHAPE2 =$663F P S H A P E 3 =$664E
PSHAPE4 =$6650 PSHAPE5 =$6660 PSHAPE6 =$6678 PSHAPE7 =$668A
BYTETBL =$6699 OFFSET =$6790 H I =$689F LO =$695F
SPEAKER =$0030 GRAPHIOS=$0050 M I X O F F =$0052 P A G E l = $ 0 0 5 4
H I R E S =$0057 BUTTON =$0061 PREAD =$FB1E W A I T =$F0A8

Well, that's it. Hooray and huzzah. Pop the cork, sound the horn, raise the
flag, lean back, light a cigar, and get reacquainted with your loved ones. But don't
rest on your laurels too long—there's more to come for all you masochists out
t h e r e .

In the last chapter, I will make specific suggestions for game modifications
using routines discussed in both Part One and Part Two. For now, to get you
started and to see how easy it is (and also just for the heck of it), I've decided to
present one such modification. The modification is simple—the plane is drawn
with the DRAW-DRAW protocol instead of DRAW-ERASE. We can do this
because the plane itself is not involved in collision detection, but rather the
bullet. Here is the flowchart:

fgethen The Same

2

C ^ - No
<

11 LJJ
C O

h — <
c n C O

L U

1

L U
C L
1 i 1

_ J
1L U

X
1

Z D
H CQ
o

Hi-Res Graphics and Animation Using Assemkiy Language

As you can see, very few changes are required and all relate to the plane
erase, which is done with a separate PXDRAW routine using the EOR instruction.
In contrast to Program 10-1, where the plane is erased before every paddle
access, here the plane is erased at only two places—at the end of the screen and
after a collision. You might also notice that the plane sound is a bit higher in
pitch with faster clicks—this is because DRAW-DRAW takes less time than
D R A W - E R A S E .

The change, simple as it is, has resulted in a somewhat better program
because the plane moves with less flicker. We'll see in the last chapter how we
can effect even other modifications to make the program more interesting.

]PROGRAM 10-2
: A S M

6000: 4C 7C 60

1 * * * * T H E GAME W I T H
2 ORG $6000
3 JMP PGM
4 MLINE DS 1
5 M L I N E A DS 1
6 B L I N E DS 1
7 D E P T H DS 1
8 M H O R I Z DS 1
9 B H O R I Z D S 1
1 0 H O R I Z B DS 1
1 1 H O R I Z M DS 1
1 2 BULON DS 1
1 3 XCOUNT D S 1
1 4 D E L A Y DS 1
1 5 B T E M P DS 1
1 6 MTEMP DS 3 9
1 7 E L I N E DS 1
1 8 E L I N E A DS 1
1 9 E D E P T H DS 1
2 0 SUM DS 1
2 1 COUNTER DS 1
2 2 D E DS 1
2 3 PCOUNTER DS 1
2 4 P L I N E DS 1
2 5 P L I N E A DS 1
2 6 P B Y T E DS 1
2 7 P D E P T H DS 1
2 8 PSHPNO DS 1
2 9 PTEMP DS 1 5
3 0 S T DS 1
3 1 G R A P H I C S = $C050
3 2 M I X O F F = $C052
3 3 H I R E S = $C057
3 4 P A G E l = $C054
3 5 H I G H = $1B
3 6 LOW = $1A
3 7 WAIT = $FCA8
3 8 PREAD = $FB1E
3 9 BUTTON = $C061
4 0 S P E A K E R = $C030

;BUTTON 0

6 0 5 2 : 3 2 4 3 M S H P A D R D F B #<MSHAPE1
6 0 5 3 : 6 5 4 4 D F B #>MSHAPE1
6 0 5 4 : 5 9 4 5 D F B # < M S H A P E 2
6 0 5 5 : 6 5 4 6 D F B #>MSHAPE2

Putting It All Together: The Same

6 0 5 6 : 8 0 47 D F 8 #<MSHAPE3
6 0 5 7 : 6 5 4 8 D F 8 #>MSHAPE3
6 0 5 8 : A 7 4 9 D F B #<MSHAPE4
6 0 5 9 : 6 5 5 0 D F 8 #>MSHAPE4
6 0 5 A : C E 5 1 D F B #<MSHAPE5
6 0 5 8 : 6 5 5 2 D F B #>MSHAPE5
6 0 5 C : F 5 5 3 D F B #<MSHAPE6
6 0 5 D : 6 5 54 D F B #>MSHAPE6
6 0 5 E : 1 0 55 D F B #<MSHAPE7
6 0 5 F : 6 6 5 6 D F B #>MSHAPE7
6 0 6 0 : 4 3 5 7 8 S H PA D R D F B #<BSHAPE1
6 0 6 1 : 6 6 5 8 D F B #>BSHAPE1
6 0 6 2 : 4 4 5 9 D F B #<BSHAPE2
6 0 6 3 : 6 6 6 0 D F B #>BSHAPE2
6 0 6 4 : 4 5 6 1 D F B #<BSHAPE3
6 0 6 5 : 6 6 6 2 D F B #>BSHAPE3
6 0 6 6 : 4 6 6 3 D F B #<BSHAPE4
6 0 6 7 : 6 6 6 4 D F B #>BSHAPE4
6 0 6 8 : 4 7 6 5 D F B #<BSHAPE5
6 0 6 9 : 6 6 66 D F B #>BSHAPE5
6 0 6 A : 4 8 6 7 D F B #<BSHAPE6
6 0 6 8 : 6 6 6 8 D F B #>BSHAPE6
6 0 6 C : 4 9 6 9 D F B #<BSHAPE7
6 0 6 D : 6 6 7 0 D F B # > B S H A P E 7

6 0 6 E : 7 4 7 1 PSHPADR D F B # < P S H A P E 1

6 0 6 F : 6 6 7 2 D F B # > P S H A P E 1

6 0 7 0 : 8 3 7 3 D F B #<PSHAPE2
6071: 66 7 4 D F B #>PSHAPE2
6 0 7 2 : 9 2 75 DFB #<PSHAPE3
6 0 7 3 : 6 6 7 6 D F B #>PSHAPE3
6 0 7 4 : A 1 7 7 D F B # < P S H A P E 4

6 0 7 5 : 6 6 7 8 D F B #>PSHAPE4
6 0 7 6 : 8 0 7 9 D F B #<PSHAPE5
6 0 7 7 : 6 6 8 0 D F B # > P S H A P E 5

6 0 7 8 : 8 F 8 1 D F B #<PSHAPE6
6 0 7 9 : 6 6 8 2 D F B #>PSHAPE6
6 0 7 A : C E 8 3 D F B # < P S H A P E 7
6078: 66 8 4 D F B #>PSHAPE7
607C: AD 50 CO 8 5 PGM LDA GRAPHICS
607F: AD 5 2 CO 8 6 L D A MIXCFF
6 0 8 2 : A D 5 7 CO 8 7 L D A H I R E S
6085: AD 5 4 CO 8 8 L D A PA G E l
6088: A9 0 0 8 9 LDA #$00
608A: 85 l A 9 0 S T A LOW

6 0 8 C : A 9 2 0 9 1 L D A #$20
608E: 85 1 8 9 2 S T A H I G H
6 0 9 0 : A O 0 0 9 3 C L R l L D Y # $ 0 0
6 0 9 2 : A 9 0 0 9 4 L D A #$00
6 0 9 4 : 9 1 l A 9 5 C L R S TA (L0W),Y
6096: C8 9 6 I N Y

6097: DO F 8 9 7 B N E CLR
6099: E6 18 9 8 INC HIGH
6098: A5 I B 9 9 L D A HIGH
609D: C9 4 0 1 0 0 CMP #$40
609F: 90 EF 101 BLT C L R l
60A1: A9 5 0 1 0 2 LDA #$50
6 0 A 3 : 8 0 0 0 60 1 0 3 STA DELAY
60A6: A2 8 7 1 0 4 L D X #$B7
6 0 A 8 : A O 0 0 1 0 5 L D Y #$00
6 0 A A : B D E 3 6 8 1 0 6 L D A H I , X
6 0 A D : 8 5 1 8 1 0 7 S T A H I G H

;HIRES,P.l

;CLEAR SCREEN 1

;LOAD DELAY

;DRAW BOTTOM LINE

Hi-Res Graphics and Animation Using Assembiy Language

6 0 A F : B D A 3 6 9 1 0 8 L D A LO,X
6 0 B 2 : 8 5 l A 1 0 9 S TA LOW

6 0 B 4 : A 9 7 F 1 1 0 L D A # $ 7 F
6 0 B 6 : 9 1 l A 1 1 1 L N S T A (LOW),Y
6 0 B 8 : C 8 1 1 2 I N Y

6 0 B 9 : C O 2 7 1 1 3 C P Y #$27
6 0 B B : 9 0 F 9 11 4 B LT L N

6 0 B D : A 9 0 0 1 1 5 LDA #$00
6 0 B F : 8 D 3 C 6 0 1 1 6 S T A PCOUNTER
6 0 C 2 : 8 D 5 1 6 0 11 7 STA ST

1 1 8 * * * * * * * * * * m a i n p r o g r a m

6 0 C 5 : 2 0 7 0 6 1 1 1 9 J S R S I N I T I A L
6 0 C 8 : 2 0 5 6 6 1 1 2 0 J S R M I N I T I A L
6 0 C B : 2 0 8 4 6 1 1 2 1 P I J S R P I N I T I A L
6 0 C E : 2 0 6 5 6 1 1 2 2 B I J S R B I N I T I A L
6 0 D 1 : 2 0 C 6 6 1 1 2 3 PA D D L E J S R P O L E
6 0 D 4 : 2 0 0 1 6 2 1 2 4 JSR MDRAW
60D7: EE 41 60 1 2 5 p s t a r t INC PSHPNO
6 0 D A : A D 4 1 6 0 1 2 6 LDA PSHPNO
6 0 D D : C 9 0 7 1 2 7 CMP #$07
6 0 D F : 9 0 2 1 1 2 8 B L T P S T A R T 2
6 0 E 1 : E E 3 F 6 0 1 2 9 I N C P B Y T E
6 0 E 4 : A D 3 F 6 0 1 3 0 L D A P B Y T E
6 0 E 7 : C 9 2 6 1 3 1 CMP # $ 2 6
6 0 E 9 : 9 0 O F 1 3 2 B L T P S T A R T l

1 3 3 ★

60EB: 20 01 62 1 3 4 JSR MDRAW
6 0 E E : C E 3 F 6 0 1 3 5 DEC P B Y T E
6 0 F 1 : 2 0 8 F 6 2 1 3 6 J S R PXDRAW
6 0 F 4 : 2 0 8 4 6 1 1 3 7 J S R P I N I T I A L
6 0 F 7 : 4 C 0 1 6 0 1 3 8 J M P PA D D L E
6 0 FA : A 9 F F 1 3 9 P S T A R T l L D A #$FF
6 0 F C : 8 D 4 1 6 0 1 4 0 S T A PSHPNO
60FF; 4C D7 60 1 4 1 J M P P S TA R T
6 1 0 2 : 2 0 A A 6 1 1 4 2 P S T A R T 2 J S R P L O A D S H P
6 1 0 5 : 2 0 4 B 6 2 1 4 3 J S R PDRAW
6 1 0 8 : E E 3 B 6 0 1 4 4 I N C DE
610B: AD 3B 60 1 4 5 LDA DE

1 4 6 * *

6 1 0 E : 4 A 1 4 7 L S R
610F: 90 03 1 4 8 BCC B U L
6111: 2C 30 CO 1 4 9 B I T S P E A K E R
6114: AD OB 60 1 5 0 B U L L D A B U L O N
6117: C9 01 1 5 1 CMP #$01
6 1 1 9 : F O 1 6 1 5 2 BEQ B U L L E T
611B: AD 61 CO 1 5 3 L D A B U T T O N
611E: 30 OC 1 5 4 B M I B U L L E T l
6120: AD OD 60 1 5 5 L D A D E L A Y
6123: 20 A8 FC 1 5 6 J S R W A I T
6126: 20 01 62 1 5 7 J S R MDRAW
6129: 4C D1 60 1 5 8 JMP PADDLE
6120: A9 01 1 5 9 B U L L E T l LDA #$01
612E: 8D OB 60 1 6 0 S T A BULON
6131: 20 D9 62 1 6 1 BULLET J S R LOADBUL
6134: 20 FC 62 162 J S R BDRAW
6 1 3 7 : A D O D 6 0 1 6 3 L D A D E L AY
6 1 3 A : 2 0 A 8 F C 1 6 4 J S R W A I T
6 1 3 D : 2 0 3 C 6 3 1 6 5 J S R BXDRAW
6 1 4 0 : 2 0 0 1 6 2 1 6 6 J S R MDRAW
6 1 4 3 : A D 0 5 6 0 1 6 7 L D A B L I N E
6 1 4 6 : 3 8 1 6 8 SEC

* * * * * * * * * *

; IN IT IAL IZAT ION

;READ PADDLE
• D R A W M A N

•FIRST SHAPE NUMBER TO ZERO

;DRAWN ALL 7 SHAPES?
;IF NO, DRAW PLANE
;IF YES, NEXT SCREEN BYTE

;END OF SCREEN?
;IF NO, RESET SHAPE NO. &

C O N T I N U E D R AW

;IF YES, ERASE MAN AND

ERASE PLANE AND
I N I T I A L I I Z E P L A N E A N D
GO BACK TO PADDLE READ

;DRAW PLANE
;ACCESS SPEAKER EVERY OTHER CYCLE

;C=0 IF DE IS EVEN
;C=1 IF DE IS ODD

;IS BULLET ON?
;IF YES, CONTINUE BULLET DRAW
;IF NO, IS BUTTON PRESSED?
;IF YES, DRAW BULLET
; IF NO,

D E L A Y A N D
ERASE MAN AND

READ PADDLE AGAIN
;SET BULLET ON

;LOAD BULLET SHAPE INTO BTEMP
;DRAW BULLET & TEST FOR COLLISION

;DELAY
;ERASE BULLET
;ERASE MAN

6 1 4 7 : E 9 0 8 1 6 9 S 8 0 #$08 ;MOVE BLINE UP 8 LINES
6 1 4 9 : 8 D 0 5 6 0 1 7 0 S T A 8 L I N E

6 1 4 C : C 9 0 5 1 7 1 OMP #$05 ;LESS THAN 5 LINES FROM TOP?
6 1 4 E : 9 0 0 3 1 7 2 8 L T LONG ;IF YES, TAKE BRANCH
6 1 5 0 : 4 C 0 1 6 0 1 7 3 J M P PA D D L E ;IF NO, READ PADDLE AGAIN
6 1 5 3 : 4 C OE 6 0 1 7 4 LONG J M P 8 1

1 7 5 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

6 1 5 6 : A 9 A A 1 7 6 M I N I T I A L LDA #$AA
6 1 5 8 : 8 0 0 3 6 0 1 7 7 STA MLINE
6 1 5 8 : 8 0 04 6 0 1 7 8 STA MLINEA
6 1 5 E : 1 8 1 7 9 O L O

6 1 5 F : 6 9 0 0 1 8 0 ADO #$0D
6 1 6 1 : 8 0 0 6 6 0 1 8 1 STA DEPTH

6 1 6 4 : 6 0 1 8 2 R T S
1 8 3

6 1 6 5 : A 9 0 0 1 8 4 B I N I T I A L L D A #$00 ;BULON = 0 IF
6 1 6 7 : 8 0 0 8 6 0 1 8 5 S TA 8UL0N BULLET NOT ON SCREEN

6 1 6 A : A 9 A 4 1 8 6 L D A #$A4
6 1 6 C : 8 0 0 5 6 0 1 8 7 S TA B L I N E

6 1 6 F : 6 0 1 8 8 R T S
1 8 9 *

6 1 7 0 : A 9 0 0 1 9 0 S I N I T I A L L D A #$00 ;SOORE DISPLAYS THREE O'S
6 1 7 2 : 8 0 3 9 6 0 1 9 1 S TA SUM

6 1 7 5 : 8 0 3 A 6 0 1 9 2 S T A COUNTER

6 1 7 8 : A A 1 9 3 TA X

6 1 7 9 : A O 1 1 1 9 4 L D Y # $ 11
6 1 7 8 : 2 0 8 1 6 4 1 9 5 PR J S R P R I N T 201
6 1 7 E : C 8 1 9 6 I N Y -

6 1 7 F : C O 14 1 9 7 OPY #$14 ■
6 1 8 1 : 9 0 F8 1 9 8 B L T PR

6 1 8 3 : 6 0 1 9 9 R T S

2 0 0 *

6 1 8 4 : A 9 F F 2 0 1 P I N I T I A L L D A #$FF ;PSHPNO LOADED WITH #$FF SO FIRST
2 0 2 * INO PSHPNO WILL LOAD PSHPNO
2 0 3 * WITH ZERO

6 1 8 6 : 8 0 4 1 6 0 2 0 4 S T A PSHPNO

6 1 8 9 : E E 3 0 6 0 2 0 5 I NO POOUNTER ;PINITIAL AND POOUNTER ACCESSED
2 0 6 * ONLY ON COLLISION OR
2 0 7 * END OF SCREEN

6 1 8 0 : A O 30 6 0 2 0 8 LDA POOUNTER
6 1 8 F : 0 9 6 5 2 0 9 OMP #$65 ;POOUNTER MORE THAN 100?
6 1 9 1 : 9 0 0 3 2 1 0 B L T POONT ;IF NO, CONTINUE P INITIALIZATION
6 1 9 3 : 4 0 A 6 6 4 2 1 1 J M P S T 0 P 2 ;IF YES, STOP GAME
6 1 9 6 : A 9 0 0 2 1 2 POONT L D A #$00
6 1 9 8 : 8 0 3 F 6 0 2 1 3 S TA PBYTE
6198: A9 0 8 2 1 4 L D A # $ 0 8
6 1 9 0 : 8 0 3 E 6 0 2 1 5 S T A PL INEA
6 1 A 0 : 8 0 3 0 6 0 2 1 6 S T A P L I N E

6 1 A 3 : 1 8 2 1 7 OLO

6 1 A 4 : 6 9 0 5 2 1 8 ADO # $ 0 5
6 1 A 6 : 8 0 4 0 6 0 2 1 9 S T A PDEPTH
61A9: 60 2 2 0 RTS

2 2 1 *

6 1 A A : A O 41 60 2 2 2 PLOADSHP L D A PSHPNO
6 1 A 0 : O A 2 2 3 ASL
6 1 A E : A A 2 2 4 TAX

6 1 A F : 8 0 6E 6 0 2 2 5 LDA PSHPADR.X
6 1 8 2 : 8 5 l A 2 2 6 STA LOW
6 1 8 4 : 8 0 6 F 6 0 2 2 7 LDA PSHPADR+1,X
6 1 8 7 : 8 5 I B 2 2 8 S TA H I G H

6 1 8 9 : A O 0 0 2 2 9 L D Y #$00

1

Hi-Res Braphlcs and Animation Using Assembiy Language

61BB: B1 lA 230 PLOADSHPl LDA (LOW),Y
6 1 B D : 9 9 4 2 6 0 2 3 1 S T A P T E M P . Y
6 1 C 0 ; C 8 2 3 2 I N Y
6 1 C 1 : C O O F 2 3 3 C P Y # $ 0 F
6 1 C 3 : 9 0 F 6 2 3 4 B L T P L O A D S H P l
6 1 0 5 : 6 0 2 3 5 R T S

2 3 6 * *★ *★ * * *★★★ *★ *★★★ *★ * * * * * * *

6 1 0 6 : A 2 0 0 2 3 7 P O L E L D X # $ 0 0
6 1 0 8 : 2 0 I E F B 2 3 8 J S R P R E A D ; R E A D PA D D L E 0
6 1 0 B : 9 8 2 3 9 T Y A
6 1 0 0 : 8 D 0 7 6 0 2 4 0 S T A M H O R I Z ; 0 - 2 5 5 I N M H O R I Z
6 1 C F : A D O B 6 0 2 4 1 L D A B U L O N
6 1 D 2 : 0 9 0 1 2 4 2 C M P # $ 0 1 ; I S B U L L E T O N ?
6 1 D 4 : F O 0 6 2 4 3 B E Q P D L E l ; I F Y E S , T A K E B R A N C H
6 1 0 6 : A D 0 7 6 0 2 4 4 L D A M H O R I Z ; I F N O , S E T B H O R I Z E Q U A L
6 1 0 9 : 8 0 0 8 6 0 2 4 5 S T A B H O R I Z T O M H O R I Z
6 1 D 0 : A O 0 7 6 0 2 4 6 P D L E l L D Y M H O R I Z
61DF: B9 DD 66 247 LDA BYTETBL ,Y ;OONVERT 0 -255 TO 0 -36 (BYTE)
6 1 E 2 : 8 0 O A 6 0 2 4 8 S T A H O R I Z M ; M A N B Y T E P O S I T I O N
6 1 E 5 : B 9 E O 6 7 2 4 9 L D A O F F S E T , Y ; G E T S H A P E N U M B E R
6 1 E 8 : O A 2 5 0 A S L ; L O A D S H A P E I N T O M T E M P
6 1 E 9 : A A 2 5 1 T A X
6 1 E A : B D 5 2 6 0 2 5 2 L D A M S H P A D R , X
6 1 E D : 8 5 l A 2 5 3 S T A L O W
6 1 E F : B D 5 3 6 0 2 5 4 L D A M S H P A D R + 1 , X
6 1 F 2 : 8 5 I B 2 5 5 S T A H I G H

2 0 2 6 1 F 4 : A O 0 0 2 5 6 L D Y # $ 0 0
^ 6 1 F 6 : B 1 l A 2 5 7 L O A D L D A (L O W) , Y■ 6 1 F 8 : 9 9 O F 6 0 2 5 8 S T A M T E M P , Y

6 1 F B : 0 8 2 5 9 I N Y
6 1 F 0 : 0 0 2 7 2 6 0 O P Y # $ 2 7
6 1 F E : 9 0 F 6 2 6 1 B L T L O A D
6 2 0 0 : 6 0 2 6 2 R T S

2 5 3 *
6 2 0 1 : A 9 0 0 2 6 4 M D R A W L D A # $ 0 0
6 2 0 3 : 8 0 0 0 6 0 2 6 5 S T A X O O U N T
6 2 0 6 : A E 0 3 6 0 2 6 6 M D R A W l L D X M L I N E
6 2 0 9 : A O O A 6 0 2 6 7 L D Y H O R I Z M
6 2 0 0 : B D E 3 6 8 2 6 8 L D A H I , X
6 2 0 F : 8 5 I B 2 6 9 S T A H I G H
6 2 1 1 : B D A 3 6 9 2 7 0 L D A L O , X
6 2 1 4 : 8 5 l A 2 7 1 S T A L O W
6 2 1 6 : A E 0 0 6 0 2 7 2 L D X X O O U N T
6 2 1 9 : B 1 l A 2 7 3 L D A (L O W) , Y
6 2 1 B : 5 D O F 6 0 2 7 4 E O R M T E M P , X
6 2 1 E : 9 1 l A 2 7 5 S T A (L O W) , Y
6 2 2 0 : 0 8 2 7 6 I N Y
6 2 2 1 : B 1 l A 2 7 7 L D A (L O W) , Y
6 2 2 3 : 5 D 1 0 6 0 2 7 8 E O R M T E M P + 1 , X
6 2 2 6 : 9 1 l A 2 7 9 S T A (L O W) , Y
6 2 2 8 : 0 8 2 8 0 I N Y
6 2 2 9 : B 1 l A 2 8 1 L D A (L O W) , Y
6 2 2 B : 5 D 11 6 0 2 8 2 E O R M T E M P + 2 , X
6 2 2 E : 9 1 l A 2 8 3 S T A (L O W) , Y
6 2 3 0 : E E 0 0 6 0 2 8 4 I N O X O O U N T
6 2 3 3 : E E 0 0 6 0 2 8 5 I N O X O O U N T
6 2 3 6 : E E 0 0 6 0 2 8 6 I N O X O O U N T
6 2 3 9 : E E 0 3 6 0 2 8 7 I N O M L I N E
6 2 3 0 : A D 0 3 6 0 2 8 8 L D A M L I N E
6 2 3 F : O D 0 6 6 0 2 8 9 O M P D E P T H
6 2 4 2 : 9 0 0 2 2 9 0 B L T M D R A W l

-Pumg II All Together: The Bame

6 2 4 4 : A D 0 4 6 0 2 9 1 L D A M L I N E A ; R E S E T L I N E
6 2 4 7 : 8 D 0 3 6 0 2 9 2 S T A M L I N E
6 2 4 A : 6 0 2 9 3 RT S

2 9 4 *

6 2 4 B : A 9 0 0 2 9 5 PDRAW L D A # $ 0 0
6 2 4 0 : 8 D O C 6 0 2 9 6 STA XOOUNT
6 2 5 0 : A C 3 F 6 0 297 P D R AW l L D Y PBYTE
6 2 5 3 : A E 3 D 6 0 2 9 8 L D X P L I N E

6 2 5 6 : B D E 3 6 8 2 9 9 L D A H I , X
6 2 5 9 : 8 5 I B 3 0 0 S T A H I G H

6 2 5 B : B D A 3 6 9 3 0 1 L D A LO,X
6 2 5 E : 8 5 l A 3 0 2 S T A LOW

6 2 6 0 : A E 0 0 6 0 3 0 3 L D X XOOUNT
6 2 6 3 : B D 4 2 6 0 3 0 4 L D A PTEMP.X
6 2 6 6 : 9 1 l A 3 0 5 S TA (LOW),Y
6 2 6 8 : 0 8 3 0 6 I N Y
6 2 6 9 : B D 4 3 6 0 3 0 7 LDA PTEMP+1,X
6 2 6 0 : 9 1 l A 3 0 8 STA (L0W),Y
6 2 6 E : 0 8 3 0 9 I N Y

6 2 6 F : B D 4 4 6 0 3 1 0 L D A PTEMP+2,X
6 2 7 2 : 9 1 l A 3 1 1 S TA {LOW),Y
6 2 7 4 : E E 0 0 6 0 3 1 2 I NO XOOUNT
6 2 7 7 : E E 0 0 6 0 3 1 3 I NO XOOUNT

6 2 7 A : E E 0 0 6 0 3 1 4 I NO XOOUNT
6 2 7 D : E E 3 D 6 0 3 1 5 I NO P L I N E

6 2 8 0 : A D 3 D 6 0 3 1 6 L D A P L I N E
6283: OD 40 60 3 1 7 OMP PDEPTH 9 /) 9
6 2 8 6 : 9 0 0 8 3 1 8 B L T PDRAWl d U J

6288: AD 3E 60 3 1 9 L D A PL INEA ;RESET 1L I N E ■
628B: 80 3D 60 3 2 0 STA PLINE-
6 2 8 E : 6 0 3 2 1 RT S

3 2 2 *

628F: A9 00 3 2 3 PXDRAW L D A #$00
6291: 8D 00 60 3 2 4 S TA XOOUNT
6294: AO 3F 60 3 2 5 P X D R A W l L D Y PBYTE
6297: AE 3D 60 3 2 6 L D X P L I N E
629A: BD E3 68 3 2 7 L D A H I . X
629D: 85 IB 3 2 8 S T A HIGH
629F: BD A3 69 3 2 9 LDA LO,X
62A2: 85 lA 3 3 0 STA LOW
62A4: AE 00 60 3 3 1 LDX XOOUNT
62A7: B1 lA 3 3 2 L D A (L0W),Y
62A9: 5D 42 60 3 3 3 EOR PTEMP.X
62A0 : 91 lA 3 3 4 S TA (LOW),Y
6 2 A E : 0 8 3 3 5 I N Y

62AF: B1 lA 3 3 6 L D A (LOW).Y
62B1: 50 43 60 3 3 7 EOR PTEMP+1,X
62B4 : 91 lA 3 3 8 S T A (LOW).Y
6 2 B 6 : 0 8 3 3 9 I N Y

62B7: B1 lA 3 4 0 L D A (LOW).Y
62B9: 50 44 60 3 4 1 EOR PTEMP+2,X
62B0: 91 lA 3 4 2 STA (L0W),Y
62BE: EE 00 60 3 4 3 I NO XOOUNT
6201: EE 00 60 3 4 4 I NO XOOUNT
6204: EE 00 60 3 4 5 I NO XOOUNT
6207: EE 3D 60 3 4 6 I NO P L I N E
620A: AD 3D 60 3 4 7 L D A P L I N E
6200: OD 40 60 3 4 8 OMP PDEPTH
62D0: 90 02 3 4 9 B L T PXDRAWl
62D2: AD 3E 60 3 5 0 L D A PL INEA
6 2 D 5 : 8 0 3 D 6 0 3 5 1 S T A P L I N E

Hi-Res Graphics and Animation Using Assembiy Language

6 2 D 8 : 6 0 3 5 2 RTS
3 5 3 *

6 2 D 9 : AC 0 8 6 0 3 5 4 L O A O B U L L O Y B H O R I Z ;CONVERTS 0-255 TO
6 2 D C : B 9 0 0 6 6 3 5 5 L O A BYTETBL .Y SCREEN BYTE (0-36)
6 2 D F : 1 8 3 5 6 C L C ;A00 2 TO ALIGN BULLET
6 2 E 0 : 6 9 0 2 3 5 7 AOC # $ 0 2 W I T H G U N
6 2 E 2 : 8 0 0 9 6 0 3 5 8 S TA HORIZB ;BULLET BYTE POSITION
6 2 E 5 : B9 EO 67 3 5 9 L O A OFFSET,Y ;GET BULLET SHAPE NUMBER
6 2 E 8 : OA 3 6 0 A S L ;LOAO BULLET SHAPE INTO BTEMP
6 2 E 9 : A A 361 T A X
6 2 E A : BO 6 0 6 0 3 6 2 L O A BSHPAOR.X
6 2 E D : 8 5 l A 3 6 3 S T A LOW
6 2 E F : BO 6 1 6 0 3 6 4 L O A BSHPA0R+1,X
6 2 F 2 : 8 5 I B 3 6 5 S T A H I G H
6 2 F 4 : AO 0 0 3 6 6 L O Y # $ 0 0
6 2 F 6 : B1 l A 3 6 7 L O A (LOW).Y
6 2 F 8 : 8 0 OE 6 0 3 6 8 STA BTEMP
6 2 F B : 6 0 3 6 9 R T S

3 7 0 *

6 2 F C : A E 0 5 6 0 3 7 1 B O R A W L O X B L I N E
6 2 F F : AC 0 9 6 0 3 7 2 L O Y H O R I Z B
6 3 0 2 : BO E 3 6 8 3 7 3 L O A H I , X
6 3 0 5 : 8 5 I B 3 7 4 S T A H I G H
6 3 0 7 : BO A 3 6 9 3 7 5 L O A L O , X
6 3 0 A : 8 5 l A 3 7 6 S T A LOW
6 3 0 C : B 1 l A 3 7 7 L O A (L0W),Y
6 3 0 E : 2 0 OE 6 0 3 7 8 A N D B T E M P ; RESULT IS 0 IF NO COLL IS ION
6 3 11 : C 9 0 0 3 7 9 CMP # $ 0 0
6 3 1 3 : F O 0 3 3 8 0 BEQ N O H I T
6 3 1 5 : 4 C 2 0 6 3 3 8 1 J M P C O L L I S I O N
6 3 1 8 : B 1 l A 3 8 2 N O H I T L O A (LOW),Y ;ORAW BULLET
6 3 1 A : 4 0 OE 6 0 3 8 3 EOR BTEMP
6 3 1 0 : 9 1 l A 3 8 4 S T A (LOW),Y
6 3 1 F : 6 0 3 8 5 RT S

3 8 6 *

6 3 2 0 : 2 0 8 F 6 2 3 8 7 C O L L I S I O N J S R PXORAW E R A S E P L A N E
6 3 2 3 : EE 3 9 6 0 3 8 8 I N C SUM ADO 1 TO SCORE
6 3 2 6 : 2 0 6 1 6 4 3 8 9 J S R SCORE D I S P L A Y S C O R E
6 3 2 9 : 2 0 5 4 6 3 3 9 0 J S R EXPLODE EXPLOSION DISPLAY AND SOUND
6 3 2 C : A D 5 1 6 0 3 9 1 L O A S T I F C 0 U N T = 1 0 0 .
6 3 2 F : C 9 0 1 3 9 2 CMP # $ 0 1 T H E N G O T O
6 3 3 1 : F O 0 6 3 9 3 BEQ L G S T O P P R O G R A M
6 3 3 3 : 2 0 0 1 6 2 3 9 4 J S R M O R A W ; E R A S E M A N
6 3 3 6 : 4 C CB 6 0 3 9 5 J M P P I ; I N I T I A L I Z E P , B . A N D R E A D P A O O L E
6 3 3 9 : 4 C A 6 6 4 3 9 6 L G J M P S T 0 P 2

3 9 7 *

6 3 3 C : AE 0 5 6 0 3 9 8 B X O R A W L O X B L I N E : B O R A W W I T H O U T C O L L I S I O N T E S T
6 3 3 F : A C 0 9 6 0 3 9 9 L O Y H O R I Z B
6 3 4 2 : BO E 3 6 8 4 0 0 L O A H I , X
6 3 4 5 : 8 5 I B 4 0 1 S TA H I G H
6 3 4 7 : BO A 3 6 9 4 0 2 L O A LO,X
6 3 4 A : 8 5 l A 4 0 3 S TA LOW
6 3 4 C : B 1 l A 4 0 4 LDA (L0W),Y
6 3 4 E : 40 OE 6 0 4 0 5 EOR BTEMP
6 3 5 1 : 9 1 l A 4 0 6 S TA (LOW),Y
6 3 5 3 : 6 0 4 0 7 RT S

4 0 8
6 3 5 4 : 2 0 1 1 6 4 4 0 9 E X P L O D E J S R I N I T E l
6 3 5 7 : 2 0 A 5 6 3 4 1 0 J S R DRAW E l - .DRAW
6 3 5 A : 2 0 9 7 6 3 4 1 1 J S R SOUND .EXPLOSION SOUND
6 3 5 0 : 2 0 1 1 6 4 4 1 2 J S R I N I T E l

1

Putting II All Together: The Game

Hi-Res Braphlcs and Animation Using Assembiy Language

6 3 F 5 : B 1 l A 4 7 4 L O A (L0W),Y
6 3 F 7 : 5 D 4 A 6 6 4 7 5 EOR ESHAPE,X
6 3 F A : 9 1 l A 4 7 6 S TA (LOW),Y
6 3 F C : E E O C 6 0 4 7 7 I N C XCOUNT
6 3 F F : E E 3 6 6 0 4 7 8 I N C E L I N E
6 4 0 2 : A D 3 6 6 0 4 7 9 L O A E L I N E
6 4 0 5 : C D 3 8 6 0 480 CMP E O E P T H
6 4 0 8 : 9 0 C A 4 8 1 BLT 0RAWE2
6 4 0 A : A D 3 7 6 0 4 8 2 L O A E L I N E A
6 4 0 D : 8 D 3 6 6 0 4 8 3 S T A E L I N E
6 4 1 0 : 6 0 4 8 4 R T S

4 8 5 *

6 4 1 1 : A 9 0 0 4 8 6 I N I T E l L O A # $ 0 0
6 4 1 3 : 8 D O C 6 0 4 8 7 S T A XCOUNT
6 4 1 6 : A 9 0 9 4 8 8 L O A # $ 0 9
6 4 1 8 : 8 0 3 7 6 0 4 8 9 S T A E L I N E A
6 4 1 B : 8 D 3 6 6 0 4 9 0 S TA E L I N E
6 4 1 E : 1 8 4 9 1 C L C
641F: 69 05 4 9 2 AOC #$05
6421: 80 38 6 0 4 9 3 S TA E O E P T H
6 4 2 4 : 6 0 4 9 4 R T S
6 4 2 5 : A 9 0 5 4 9 5 I N I T E 2 L O A #$05
6 4 2 7 : 8 0 O C 6 0 4 9 6 S TA XCOUNT
6 4 2 A : A 9 0 9 4 9 7 L O A # $ 0 9
6 4 2 C : 8 0 3 7 6 0 4 9 8 S TA E L I N E A
6 4 2 F : 8 0 3 6 6 0 4 9 9 S TA E L I N E
6 4 3 2 : 1 8 5 0 0 C L C
6433: 69 05 5 0 1 AOC #$05
6435: 80 38 6 0 5 0 2 S T A E O E P T H
6 4 3 8 : 6 0 5 0 3 R T S
6439: A9 OA 5 0 4 I N I T E 3 L O A #SOA
643B: 80 OC 6 0 5 0 5 S T A XCOUNT
6 4 3 E : A 9 0 5 5 0 6 L O A #$05
6 4 4 0 : 8 0 3 7 6 0 5 0 7 S T A E L I N E A
6 4 4 3 : 8 0 3 6 6 0 5 0 8 S T A E L I N E
6 4 4 6 : 1 8 5 0 9 C L C
6 4 4 7 : 6 9 0 8 5 1 0 AOC # $ 0 8
6 4 4 9 : 8 0 3 8 6 0 5 1 1 S T A E O E P T H
644C: 60 5 1 2 RTS
6440 : A9 12 5 1 3 I N I T E 4 LOA #$12
6 4 4 F : 8 0 O C 6 0 5 1 4 S T A XCOUNT
6 4 5 2 : A 9 0 1 5 1 5 L O A #$01
6 4 5 4 : 8 0 3 7 6 0 5 1 6 S T A E L I N E A
6 4 5 7 : 8 0 3 6 6 0 5 1 7 S T A ELINE
6 4 5 A : 1 8 5 1 8 C L C
6 4 5 8 : 6 9 O C 5 1 9 AOC #$0C
6 4 5 0 : 8 0 3 8 6 0 5 2 0 S T A E O E P T H
6 4 6 0 : 6 0 5 2 1 RT S

5 2 2 *

6 4 6 1 : A O 3 9 6 0 5 2 3 SCORE L O A SUM
6 4 6 4 : C 9 O A 5 2 4 CMP #$0A
6466: BO OA 5 2 5 BGE CIO
6 4 6 8 : O A 5 2 6 ASL
6 4 6 9 : O A 5 2 7 A S L
6 4 6 A : O A 5 2 8 ASL
6 4 6 B : A A 5 2 9 T A X
6 4 6 C : A O 1 3 5 3 0 L O Y #$13
6 4 6 E : 2 0 B 1 6 4 5 3 1 J S R P R I N T
6 4 7 1 : 6 0 5 3 2 R T S
6 4 7 2 : E E 3 A 6 0 5 3 3 C I O I N C COUNTER
6 4 7 5 : A O 3 A 6 0 5 3 4 L O A C O U N T E R

;INITIALIZE FIRST EXPLOSION

;INITIALIZE SECOND EXPLOSION

;INITIALIZE THIRD EXPLOSION

;INITIALIZE FOURTH EXPLOSION

GET SCORE (0-9)
GREATER THAN 9?
IF YES, BRANCH
IF NO, MULTIPLY BY 8

;BYTE POSITION FOR FIRST DIGI"
;PRINT DIGIT

;INC COUNTER (INITIALLY 0)

Putting it AH Together: The Game

C 9 O A
B O 1 1
OA
O A
OA
A A
A O 1 2
2 0 B 1
A 9 0 0
8 0 3 9
4C 61
A 2 0 8
A O 1 1
2 0 B 1
A 2 0 0
AO 12
2 0 B 1
AO 13
2 0 B 1
A 9 0 1
8 0 5 1
6 0
2 C 0 0
1 0 F B

2C 10
4C 7C

BO E2
9 9 0 0
BO E3
9 9 0 0
BO E4
9 9 0 0
BO E5
9 9 0 0
BO E6
9 9 0 0

5 3 5
5 3 6
5 3 7
5 3 8
5 3 9
5 4 0
541

6 4 5 4 2
5 4 3

6 0 5 4 4
6 4 5 4 5

5 4 6
5 4 7

6 4 5 4 8
5 4 9
5 5 0

6 4 5 5 1
5 5 2

6 4 5 5 3
5 5 4

6 0 5 5 5
5 5 6

C O 5 5 7
5 5 8
5 5 9

C O 5 6 0
6 0 5 6 1

5 6 2
6 4 5 6 3
2 3 5 6 4
6 4 5 6 5
2 7 5 6 6
6 4 5 6 7
2 B 5 6 8
6 4 5 6 9
2 F 5 7 0
6 4 5 7 1
3 3 5 7 2

S T O P l

ST0P2

B I T
J M P

* * * * * * * * * * * *

#$0A
S T O P l

#$12
P R I N T
#$00
SUM
SCORE
$ 0 8
#$11
P R I N T
$ 0 0
#$12
P R I N T
#$13
PRINT
#$01
S T

$C000
S T 0 P 2

$C010
PGM

* * * * * * * *

M O R E T H A N 9 ?
IF YES, PRINT 100 ANO STOP GAME
IF NO, MULTIPLY BY 8

;BYTE POSITION OF MIDDLE DIGIT
;PRINT DIGIT
;ZERO SUM AND

RETURN TO PRINT 0
I N F I R S T D I G I T P O S I T I O N

; P R I N T 1 0 0 I N C O U N T E R

;SET ST TO INDICATE
C0UNTER=100

;ANY KEY PRESSED?
;IF NO, BRANCH BACK & WAIT
FOR KEYSTROKE
;IF YES, CLEAR KEYBOARD STROBE
AND START PROGRAM OVER

t r * * * * *

BD E7 64 573

PRINT LDA NSHAPE,X ;RETRIEVE NUMBER SHAPE
STA $23D0,Y ;LINE #$B8 (184)
LDA NSHAPE+1,X
STA $27D0,Y ;LINE #$B9 (185)
LDA NSHAPE+2,X
STA $2BD0,Y ;LINE #$BA (186)
LDA NSHAPE+3,X
STA $2FD0,Y ;LINE #$BB (187)
LDA NSHAPE+4,X
STA $33D0,Y ;LINE #$BC (188)
LDA NSHAPh-^5,X

6 4 D 2 : 9 9 DO 37 5 7 4 STA S37D0,Y ;LINE #$BD (189)
6 4 D 5 : BD E8 6 4 5 7 5 L D A NSHAPE+6,X
6 4 D 8 : 99 DO 3 B 5 7 6 S T A $3BD0,Y ;LINE #$BE (190)
6 4 D B : BD E9 6 4 5 7 7 L D A NSHAPE+7,X
6 4 D E : 9 9 DO 3 F 5 7 8 S T A $3FD0,Y ;L INE #$BF (191)
6 4 E 1 : 6 0 5 7 9 R T S

5 8 0

6 4 E 2 : 0 0 I C 2 2 5 8 1 N S H A P E H E X 001C22222222221C NUMBER SHAPES - "0"
6 4 E 5 : 2 2 2 2 2 2 2 2 I C

6 4 E A : 0 0 0 8 OC 5 8 2 H E X 00080C080808081C II2II
6 4 E D : 0 8 0 8 0 8 0 8 I C

6 4 F 2 : 00 I C 2 2 5 8 3 H E X 001C22201008043E II2II
6 4 F 5 : 20 1 0 0 8 0 4 3 E

6 4 FA : 0 0 I C 2 2 5 8 4 HEX 001C22201C20221C " 3 "
6 4 F D : 20 I C 2 0 2 2 I C
6 5 0 2 : 00 10 18 5 8 5 HEX 00101814123E1010 " 4 "
6 5 0 5 : 14 12 3E 1 0 1 0
6 5 0 A : 0 0 3 E 0 2 5 8 6 HEX 003E021E2020201E " 5 "
6 5 0 0 : I E 20 2 0 2 0 I E

6 5 1 2 : 0 0 I C 2 2 5 8 7 HEX 001C22021E22221C " 6 "
6 5 1 5 : 0 2 I E 2 2 2 2 I C

6 5 1 A : 0 0 3 E 2 0 5 8 8 HEX 0 0 3 E 2 0 1 0 0 8 0 4 0 4 0 4 II -J II

L.

Hi-Res Graphics and Animation Using Assembiy Language

1 0 0 8
0 0 I C
2 2 I C
0 0 I C
2 2 3 C
0 0 O E
0 0 O E
0 0 4 4
0 0 7 F
3 0 I F
1 8 I F
0 0 I F
0 0 I B
6 0 6 0
0 0 I C
0 0 I C
0 0 0 8
00 7E
0 0 3 F
4 0 3 F
0 0 3 E
0 0 3 6
0 0 6 3
0 0 3 8
0 0 3 8
0 0 1 0
00 7C
0 0 7 C
0 0 7 E
0 0 3 8
0 0 3 8
0 0 4 6
0 0 7 0
0 0 7 0
0 0 2 0
0 0 7 8
0 0 7 8
0 0 7 8
0 0 7 0
0 0 7 0
0 0 7 0
0 0 6 0
0 0 6 0
0 0 4 0
0 0 7 0
0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 1 8
0 0 4 0
0 0 4 0
0 0 0 0
0 0 6 0
0 0 7 0
0 0 7 8
0 0 6 0
0 0 6 0
0 0 3 0
0 0 0 0
0 0 0 0

0 4 0 4 0 4
2 2 5 8 9
2 2 2 2 I C
2 2 5 9 0
2 0 2 2 I C
0 1 5 9 1
01 00 OE
0 1 5 9 2
0 0 6 0 I F
0 0 5 9 3
0 0 0 0 I F
0 0 5 9 4
0 0 4 0 3 1
0 0 5 9 5
0 2 5 9 6
0 2 0 0 I C
0 3 5 9 7
0 1 0 0 3 E
0 0 5 9 8
0 0 0 0 3 E
0 0 5 9 9
0 0 0 0 3 6
0 0 6 0 0
0 4 6 0 1
0 4 0 0 3 8
0 6 6 0 2
0 3 0 0 7 C
0 0 6 0 3
0 0 0 0 7 C
0 0 6 0 4
0 0 0 0 6 C
0 1 6 0 5
0 8 6 0 6
0 8 0 0 7 0
O C 6 0 7
0 7 0 0 7 8
0 1 6 0 8
0 1 0 0 7 8
0 0 6 0 9
0 0 0 0 7 0
0 0 6 1 0
1 1 6 1 1
1 1 0 0 6 0
1 8 6 1 2
O F 0 0 7 0
0 3 6 1 3
0 3 0 0 7 0
0 1 6 1 4
0 1 0 0 3 0
0 6 6 1 5
2 3 6 1 6
2 3 0 0 4 0
3 1 6 1 7
I F 0 0 6 0
0 7 6 1 8
0 7 0 0 6 0
0 7 6 1 9
0 6 0 0 6 0
O C 6 2 0
4 7 6 2 1
4 7 0 0 0 0

M S H A P E l
0 1

M S H A P E 2
0 2

M S H A P E 3
0 4

MSHAPE4
0 8

MSHAPE5
1 1

M S H A P E 6
23

M S H A P E 7
4 7

0 0 1 C 2 2 2 2 1 C 2 2 2 2 1 C

0 0 1 C 2 2 2 2 3 C 2 0 2 2 1 C

OOOEOIOOOEOIOOOEOI

004401007F00601F00

3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F 0 0

0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0

6 0 6 0 0 0
0 0 1 C 0 2 0 0 1 C 0 2 0 0 1 C 0 2

000803007E01003E00

0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0

0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0

0 0 6 3 0 0
0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4

001006007C03007COO

0 0 7 C 0 0 0 0 7 E 0 0 0 0 7 C 0 0

0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 C 0 0

0 0 4 6 0 1
0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8

0 0 2 0 0 C 0 0 7 8 0 7 0 0 7 8 0 1

0 0 7 8 0 1 0 0 7 8 0 1 0 0 7 8 0 1

0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0

0 0 7 0 0 0
0 0 6 0 11 0 0 6 0 11 0 0 6 0 11

0 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3

0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3

0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3

0 0 1 8 0 6
0 0 4 0 2 3 0 0 4 0 2 3 0 0 4 0 2 3

0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7

0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7

0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6

0 0 3 0 0 C
0 0 0 0 4 7 0 0 0 0 4 7 0 0 0 0 4 7

" 8 "

llg II

M A N S H A P E TA B L E S

Putting It All Together: The Berne

0 0 0 0
0 0 4 0
0 0 5 8
0 0 4 C
0 0 4 0
0 0 4 0
0 0 3 0
01

2 5 1 4
2C 52
32 OC
3 8 3 E
7E 7E
1 8 0 6
O F 7 C
7 C 7 F
3 F 7 E
7 E O F
I F 7 0
0 2 0 0
0 6 0 0
7 E 3 7
7E 7F
0 4 0 0
OC 00
7 0 6 F
7 0 7 F
0 8 0 0
1 8 0 0
7 8 5 F
7 8 7 F
1 0 0 0
3 0 0 0
7 0 3 F
7 0 7 F
2 0 0 0
6 0 0 0
6 0 7 F
6 0 7 F
4 0 0 0
4 0 0 1
4 0 7 F
4 0 7 F
0 0 0 1

6 2 6 2 2
3 F 0 0 7 0
O F 6 2 3
O F 0 0 4 0
O F 6 2 4
O D 0 0 6 0
3 0 6 2 5

6 2 6
6 2 7
6 2 8
6 2 9
6 3 0
6 3 1
6 3 2

l A 6 3 3

4 4 6 3 4

7 F 6 3 5
3 F 3 F 1 0
7 0 6 3 6
3 F 7 E 3 F
7 0 6 3 7
3 F 7 F I F
7 0 6 3 8
O F 4 0 0 3
0 0 6 3 9
0 0 7 E I F
0 0 6 4 0
0 0
0 0 6 4 1
0 0 7 0 3 F
0 0 6 4 2
0 1
0 0 6 4 3
0 0 7 8 7 F
0 1 6 4 4
03
0 0 6 4 5
0 0 7 0 7 F
0 3 6 4 6
0 7
0 0 6 4 7
0 0 6 0 7 F
0 6 6 4 8
OF
0 0 6 4 9
0 0 4 0 7 F
O D 6 5 0
I F
0 0 6 5 1
0 0 0 0 7 F
I B 6 5 2
3 F

0 0 0 0 6 2 0 0 4 0 3 F 0 0 7 0 0 F

0 0 5 8 0 F 0 0 4 0 0 F 0 0 4 0 0 F

0 0 4 0 0 F 0 0 4 0 0 D 0 0 6 0 1 8

BSHAPEl
BSHAPE2
BSHAPE3
BSHAPE4
B S H A P E 5
BSHAPE6
BSHAPE7
E S H A P E

PSHAPEl
0 0

PSHAPE2
0 0

PSHAPE3
0 0

PSHAPE4
0 1

PSHAPE5
0 3

PSHAPE6
0 7

PSHAPE7
OF

0 0 3 0 3 0
0 1
0 2
0 4
0 8
1 0
2 0
4 0
2 8 2 2 1 A 2 5 1 4

2 0 5 2 4 4 3 2 0 0

3 8 3 E 7 F 7 E 7 E 3 F 3 F 1 0

1 8 0 6 7 0 0 F 7 0 3 F 7 E 3 F

7 0 7 F 7 0 3 F 7 E 3 F 7 F 1 F

7 E 0 F 7 0 1 F 7 0 0 F 4 0 0 3

0 2 0 0 0 0 0 6 0 0 0 0 7 E 1 F 0 0

7 E 3 7 0 0 7 E 7 F 0 0

0 4 0 0 0 0 0 0 0 0 0 0 7 0 3 F O O

7 0 6 F 0 0 7 0 7 F 0 1

0 8 0 0 0 0 1 8 0 0 0 0 7 8 7 F 0 0

7 8 5 F 0 1 7 8 7 F 0 3

100000300000707F01

7 0 3 F 0 3 7 0 7 F 0 7

200000600000607F03

6 0 7 F 0 6 6 0 7 F 0 F

400000400100407F07

407F0D407F1F

000100000300007F0F

007F1B007F3F

;BULLET SHAPES

;EXPLOSION SHAPES - NO. 1

N O . 2

N O . 3

N O . 4

;PLANE SHAPES

B Y T E T B L
OFFSET
H I
L O

2 6 5 9 b y t e s

Hi-Res Graphics and Animation Using Assembi]/ Language

Symbol table - numerical order:

LOW =$1A H I G H =$1B M L I N E = $ 6 0 0 3 MLINEA =$6004
B L I N E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 M H O R I Z = $ 6 0 0 7 B H O R I Z = $ 6 0 0 8
H O R I Z B = $ 6 0 0 9 H O R I Z M = $ 6 0 0 A B U L O N = $ 6 0 0 B X O O U N T = $ 6 0 0 0
D E L AY = $ 6 0 0 0 BTEMP =$600E M T E M P = $ 6 0 0 F E L I N E = $ 6 0 3 6
E L I N E A = $ 6 0 3 7 E D E P T H =$6038 S U M = $ 6 0 3 9 OOUNTER =$603A
DE =$603B POOUNTER =$6030 P L I N E = $ 6 0 3 0 PLINEA =$603E
P B Y T E =$603F PDEPTH =$6040 PSHPNO =$6041 PTEMP =$6042
S T =$6051 MSHPADR = $ 6 0 5 2 BSHPAOR =$6060 PSHPAOR =$606E
PGM = $ 6 0 7 0 O L R l =$6090 O L R = $ 6 0 9 4 L N = $ 6 0 B 6
P I =$60CB B I = $ 6 0 0 E PADDLE =$6001 PSTART =$6007
P S T A R T l = $ 6 0 FA P S T A R T 2 = $ 6 1 0 2 B U L = $ 6 1 1 4 BULLETl =$6120
B U L L E T = $ 6 1 3 1 L O N G =$6153 M I N I T I A L = $ 6 1 5 6 BINITIAL=$6165
S I N I T I A L = $ 6 1 7 0 P R = $ 6 1 7 B P I N I T I A L = $ 6 1 8 4 POONT =$6196
PLOADSHP =$61AA PL0ADSHP1=$61BB P O L E = $ 6 1 0 6 P O L E l = $ 6 1 0 0
LOAD =$61F6 MDRAW =$6201 MDRAWl =$6206 PDRAW =$6248
PDRAWl =$6250 PXDRAW =$628F PXDRAWl =$6294 LOADBUL =$6209
BDRAW =$62FC NOHIT =$6318 00LLISI0N=$6320 L G = $ 6 3 3 9
BXDRAW =$6330 EXPLODE =$6354 SOUND =$6397 SOUNOl =$6399
DRAWEl =$63A5 DRAWE2 =$6304 I N I T E l = $ 6 4 11 I N I T E 2 = $ 6 4 2 5
I N I T E 3 =$6439 I N I T E 4 =$6440 SOORE =$6461 0 1 0 = $ 6 4 7 2
STOPl = $ 6 4 8 0 S T 0 P 2 = $ 6 4 A 6 P R I N T = $ 6 4 B 1 NSHAPE =$64E2
MSHAPEl = $ 6 5 3 2 M S H A P E 2 = $ 6 5 5 9 MSHAPE3 =$6580 MSHAPE4 =$65A7
M S H A P E 5 = $ 6 5 0 E M S H A P E 6 = $ 6 5 F 5 MSHAPE7 =$6610 BSHAPEl =$6643
BSHAPE2 =$6644 BSHAPE3 = $ 6 6 4 5 BSHAPE4 =$6646 BSHAPE5 =$6647
BSHAPE6 =$6648 BSHAPE7 =$6649 ESHAPE =$664A PSHAPEl =$6674
PSHAPE2 =$6683 PSHAPE3 =$6692 PSHAPE4 =$66A1 PSHAPE5 =$66B0
PSHAPE6 =$66BF PSHAPE7 =$660E BYTETBL =$6600 OFFSET =$67E0
H I =$68E3 LO =$69A3 SPEAKER =$0030 GRAPHICS=$0050
MIXOFF =$0052 P A G E l = $ 0 0 5 4 H I R E S = $ 0 0 5 7 BUTTON =$0061
PREAD =$FB1E W A I T =$F0A8

hawing in Color
A computer back uamed Midler
Redesigned a dull program for color,
But his technique was so bad
The result was quite sad
For even in co lor i t was dul ler.

TJL hose of you who have your Apple hooked up to a color TV or monitor,
consider yourself fortunate. There is hardly a game program, or any program for
that matter, that uses hi-res graphics, that is not enhanced by a color display. In
this chapter we'll look first at the mechanics of color production on the Apple
and then see how to animate color shapes. We'll also discuss special problems
that arise when testing color shapes for collisions. In the last chapter, I'll make
some specific suggestions about using color to enhance the game program.

A P P L E C O L O R

Apple advertises that the hi-res screen can display six colors, but two of
these are black and white. Pretty sneaky, eh? There are in fact only four colors
available and they are blue, green, violet, and orange. This is not a particular
drawback since, as you would see by examining commercial games, quite a lot
can be done with just these few colors. For example, one of the most popular
Apple games. Flight Simulator II, uses violet for water, blue for sky, green for
ground, orange and blue for instruments, and violet for runway lights in night
time simulation. This works so well that one hardly notices only four colors are
used, and this is the rule rather than the exception.

There are two principles involved in hi-res color production. One, if you
don't have a color TV or monitor, you won't see color. This point is of such
fundamental importance you should make sure you understand it before going
any further. Got it? OK. The second principle is that a color shape is produced by
plotting in alternate bit positions, that is, in every other column—bits next to
each other produce white. In fact, white is produced only by adjacent bits—a
single isolated bit is always in one of the four colors. The particular color pro-

Hi-Bes Graphics and Animation Using Assembly Language

duced depends on which columns are used, odd or even, and whether the high
b i t i s s e t .

Let's discuss these points in some detail. First, the high or most significant
bit, which is the left most bit in a byte, is the bit, you will remember, that is not
plotted on the screen. Up till now, we've always set the high bit to zero for all
our shapes. If the high bit is set to 1, the shape doesn't change, but the shape byte
does. For example:

HIGH BIT (BIT 7) NOT SET

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 1

S H A P E O N S C R E E N

1 2 4 8 1 2 4

1 0 1 0 1 0 0 (0)

HIGH BIT (BIT 7) SET

7 6 5 4 3 2 1 0

1 0 0 1 0 1 0 1

S H A P E O N S C R E E N

1 2 4 8 1 2 4 (8)

1 0 1 0 1 0 0 (1)

Thus, when the high bit is set, you use it to determine the hex value,
remembering that the bit itself does not appear in the shape (actually, if you look
carefully on a monochrome monitor, you'll see that dots plotted with a high bit
set byte appear about one-half bit position over). This is why #$80 is equivalent
to #$00 in terms of the shape produced, which in this case is no shape, i.e.,
black. Similarly, #$7F and #$FF will both produce the same white line. Apple
refers to these colors as White 1 and White 2 and Black 1 and Black 2 (now we
have eight hi-res colors, right?). Ordinarily, one uses black and white with the
high bit off to eliminate any problems with detecting collisions with colors that
have the high bit set.

As far as odd-even columns are concerned, we use the convention of num
bering the first screen bit position at the left of the screen as 0 or the start of the
even columns, and the second position as 1 or the start of the odd columns.

The four hi-res colors are produced by the following combinations:

Drawing in Color

Even columns—high bit not set—violet
high bit set—blue

Odd columns—high bit not set—green
high bit set—orange

Example

Shape on screet2 High bit not set High bit set

1 0 1 0 1 0 1 # $ 5 5 V i o l e t # $ D 5 B l u e
0 1 0 1 0 1 0 # $ 2 A G r e e n # $ A A O r a n g e

It should be emphasized that the odd-even column assignments always refer
to the leftmost screen byte (byte 0). Thus iflOlOlOl is plotted in screen byte 1,
the color will be green or orange, not violet or blue. That's all there is to it, but
before we go on to the animation routines, there are two points we must men
tion. First, because we're plotting shapes as whole bytes, certain color combina
t i o n s a r e n o t a l l o w e d . A n y c o n t i g u o u s l i n e c a n n o t c o n t a i n b o t h v i o l e t a n d b l u e 2 1 5
or green and orange because either the high bit is on or it isn't for the particular
shape byte. Second, because we're plotting in alternate columns, the 280 dot
horizontal resolution of the hi-res screen is reduced by half to 140 dots (the
vertical resolution is not affected). This is not as bad as it seems because drawing
shapes in different colors often produces an illusion of greater resolution than
there really is because of the color contrasts. However, on a black and white
monitor or TV, the loss of resolution is readily apparent as color shapes appear
to be composed of dotted lines.

COLOR ANIMATION

The major problem in animating color shapes is maintaining the color
throughout the screen range (you don't have to do this, but if you don't the
result is mighty strange). This is not a problem for vertical animation because
the shape bits always maintain their even or odd column assignments. The prob
lem arises, as you might expect, only when dealing with movement that involves
a horizontal vector; here, moving a shape in 1 -bit moves would result in the bits
occupying the wrong columns every other move. Fortunately, the solution to this
problem is easy—we simply move the shape 2-bit positions at a time rather than
1; in this way the correct column assignments are always retained. Before we go
on to discuss the details, it should be mentioned that 2-bit moves are also often
useful for animating non-color shapes if we want, for example, to speed up the
animation. The increase in jumpiness that results is generally acceptable. There
fore, the discussion that follows is applicable for both color and black and white
a n i m a t i o n .

In the next program (Program 11-1) we're going to move a blue plane shape
continuously across the screen at the same horizontal line position. The plane
shape tables and shape bytes are as follows:

Hi-Res Graphics and Animation Using Assembiy Language

B l u e P l a n e

2 4 8 1 2 4 1 2 4 8 1 2 4 1 2 4 8 1 2 4 1 2 4 8 1 2 4 S h a p e T a b l e~ I M I I 81 80 80 80
• ' 8 5 8 0 8 0 8 0
• • • D 5 8 2 8 0 8 0
• # ~ • • • D 5 8 A 8 0 8 0
• I i » l ! • ! I » M » I l » M I M I I I M M I I I I d s a a 8 0 8 0

~ 1 8 4 8 0 8 0 8 0
9 4 8 0 8 0 8 0
D 4 8 A 8 0 8 0
D 4 A A 8 0 8 0
D 4 A A 8 1 8 0

9 0 8 0 8 0 8 0
D O 8 0 8 0 8 0
D O A A 8 0 8 0
D O A A 8 1 8 0
D O A A 8 5 8 0

T T T

' I ! • ! ! • ! ^ • 1 ! • [

C O 8 0
C O 8 2
C O A A
C O A A

8 0 8 0
8 0 8 0
8 1 8 0
8 5 8 0
9 5 8 0

8 0 8 2
8 0 8 A
8 0 A A
8 0 A A
8 0 A A

8 0 8 0
8 0 8 0
8 5 8 0
9 5 8 0
D 5 8 0

T T T 8 0 8 8' 80 A8
8 0 A 8
8 0 A 8

I I I 80 A8

_ i i 1 i I i L

_ 8 0 A O
_ 8 0 A O
_ 8 0 A O
_ 8 0 A O
J 80 AO

There are several things that should be noted about these shape tables.
Because we want the plane to be blue, the dots are plotted in the even columns
only and the shape bytes represent the fact that the high bit is set. Also, note that
although the shape itself is 2-screen-bytes wide, the shape table is 4-bytes wide
to accommodate all seven shapes. Thus, a genera! principle—when moving a
shape horizontally 2-bit positions at a time, two extra screen bytes in the direc
tion of movement must be included in the shape tables instead of the one extra
that we use for 1-bit moves. This necessitates a change in our usual drawing
routine. In the MAIN PROGRAM of Program 11-I, when we've finished with all
seven shapes, we increment the screen byte by 2 (lines 68 and 69) so that the
next draw starts in the appropriate position. We can see this clearly in the shape
diagrams above. If shape 0 is drawn in screen byte 0, the next shape 0 must be
drawn in screen byte 2 and so on.

TTiat 's real ly al l there is. The rest of the program needs no further
explanation—we've seen it all before.

Drawing In Color

. O A D S H A P E A D D R E S S E S
I N T O S H P A D R

D I S P L A Y A N D C L E A R S C R E E N

SET INITIAL LINE NUMBER, BYTE
P O S I T I O N A N D D E P T H

F I R S T S H A P E

L O A D I N T O T E M P

D R A W

D E L A Y

E R A S E

NEXT SHAPE

A L L 7 S H A P E S ?

MOVE TWO SCREEN BYTES

N o I 1 Y e s
E N D O F S C R E E N ? h - —

]PROGRAM 11-1
: A S M

6 0 0 0 : 4 C 2 C 6 0

'1 SHAPE HORIZONTAL*COLOR - BLUE
* 2 B Y T E S W I D E ,

ORG
J M P

L I N E D S
L I N E A D S
B Y T E D S
D E P T H D S
X C O U N T D S
S H P N O D S
D E L A Y D S
T E M P D S
GRAPHICS =
M I X O F F =
H I R E S
P A G E l
H I G H
LOW

5 LINES DEEP
$6000
PGM

2 0
$0050
$0052
$0057
$0054
$1B
$1A

Hi-Res Graphics and Animation Using Assembiy Language

W A I T
* L O A D

$FCA8
S H A P E A D D R E S S E S INTO SHPADR. LOW BYTE FIRST

6 0 1 E OA 2 2 SHPADR D F B #<SHAPE1
6 0 1 F 6 1 2 3 D F B #>SHAPE1
6 0 2 0 I E 2 4 D F B #<SHAPE2
6 0 2 1 6 1 2 5 D F B #>SHAPE2
6 0 2 2 32 26 D F B #<SHAPE3
6 0 2 3 6 1 2 7 D F B #>SHAPE3
6 0 2 4 4 6 2 8 D F B #<SHAPE4
6 0 2 5 6 1 2 9 D F B #>SHAPE4
6 0 2 6 5 A 3 0 D F B #<SHAPE5
6 0 2 7 6 1 3 1 D F B #>SHAPE5
6 0 2 8 6 E 3 2 D F B #<SHAPE6
6 0 2 9 6 1 3 3 D F B #>SHAPE6
6 0 2 A 8 2 3 4 D F B #<SHAPE7
6 0 2 B 6 1 3 5 D F B #>SHAPE7
602C AD 50 CO 3 6 PGM LDA GRAPHICS ; H I R E S , P. l
6 0 2 F AD 5 2 CO 3 7 L D A MIXOFF
6 0 3 2 AD 5 7 CO 3 8 L D A H I R E S
6 0 3 5 A D 5 4 CO 3 9 L D A P A G E l
6 0 3 8 A 9 0 0 4 0 L D A #$00 ;CLEAR SCREEN 1
6 0 3 A 8 5 l A 4 1 S T A LOW
603C A 9 2 0 4 2 L D A #$20
603E 8 5 I B 4 3 S T A H I G H
6 0 4 0 AO 0 0 4 4 C L R l L D Y #$00
6 0 4 2 A 9 0 0 4 5 L D A #$00
6 0 4 4 9 1 l A 4 6 C L R S TA (LOW).Y
6 0 4 6 C8 4 7 I N Y
6 0 4 7 DO F B 4 8 BNE C L R
6 0 4 9 E 6 I B 4 9 I N C H I G H
604B A 5 I B 5 0 L D A H I G H
604D C 9 4 0 5 1 CMP #$40
604F 9 0 E F 5 2 B L T C L R l
6 0 5 1 A 9 6 0 5 3 L D A #$60 ;LOAD DELAY
6 0 5 3 8 D 0 9 6 0 5 4 S T A D E L AY

5 5 * * * * * * * * * * M A I N P R O G R A M * * * * * * * * * *

6 0 5 6 2 0 8 7 6 0 5 6 START J S R I N I T I A L ;SET INITIAL BYTE, LINE, DEPTH
6 0 5 9 A 9 0 0 5 7 START1 L D A #$00 ;FIRST SHAPE NUMBER
605B 8 D 0 8 6 0 5 8 STA SHPNO
605E 2 0 9 9 6 0 5 9 START2 J S R LOADSHP ;LOAD SHAPE INTO TEMP
6061 2 0 B 5 6 0 6 0 J S R DRAW ;DRAW
6 0 6 4 A D 0 9 6 0 6 1 L D A D E L AY ;DELAY
6 0 6 7 2 0 A 8 FC 6 2 J S R W A I T
606A 2 0 B 5 6 0 6 3 J S R DRAW ;ERASE
606D EE 0 8 6 0 6 4 INC SHPNO ;NEXT SHAPE NUMBER
6 0 7 0 A D 0 8 6 0 6 5 L D A SHPNO
6 0 7 3 C 9 0 7 6 6 CMP # $ 0 7 ;FINISHED ALL 7 SHAPES?
6 0 7 5 9 0 E 7 6 7 B L T S T A R T 2 ;IF NO, CONTINUE WITH NEXT SHAPE
6077 EE 0 5 6 0 6 8 I N C B Y T E ;IF YES, MOVE TWO BYTES
607A EE 0 5 6 0 6 9 I N C BYTE
607D A D 0 5 6 0 7 0 L D A B Y T E
6 0 8 0 C9 2 6 71 CMP #$26 ;END OF SCREEN?
6 0 8 2 9 0 D 5 7 2 BLT S TA RT l ;IF NO, CONTINUE DRAW
6 0 8 4 4 C 5 6 6 0 73 J M P S TA R T ;IF YES, START OVER

7 4 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

6 0 8 7 A 9 0 0 7 5 I N I T I A L L D A #$00
6 0 8 9 8 D 0 5 6 0 7 6 S TA B Y T E
608C 8 D 0 3 6 0 7 7 S T A L I N E
6 0 8 F 8 D 0 4 6 0 7 8 S T A L I N E A
6 0 9 2 1 8 7 9 C L C

Drawing In Color

6 0 9 3 ; 6 9 0 5 8 0 A D C # $ 0 5 ; D E P T H O F S H A P E
6 0 9 5 : 8 0 0 6 6 0 8 1 S T A D E P T H
6 0 9 8 : 6 0 8 2 R T S

8 3 *
6099: AD 08 60 84 LOADSHP IDA SHPNO ;LOAD SHAPE INTO TEMP
6 0 9 C : O A 8 5 A S L
6 0 9 D : A A 8 6 T A X
6 0 9 E : B D I E 6 0 8 7 L D A S H P A D R , X
6 0 A 1 : 8 5 l A 8 8 S T A L O W
6 0 A 3 : B D I F 6 0 8 9 L D A S H P A D R + 1 , X
6 0 A 6 : 8 5 I B 9 0 S T A H I G H
6 0 A 8 : A O 0 0 9 1 L D Y # $ 0 0
6 0 A A : B 1 l A 9 2 L O A D S H P l L D A (L O W) , Y
6 0 A C : 9 9 O A 6 0 9 3 S T A T E M P , Y
6 0 A F : 0 8 9 4 I N Y
6 0 B 0 : C O 1 4 9 5 C P Y # $ 1 4
6 0 B 2 : 9 0 F 6 9 6 B L T L O A D S H P l
6 0 B 4 : 6 0 9 7 R T S

g g *
6 0 B 5 : A 9 0 0 9 9 D R A W L D A # $ 0 0
6 0 B 7 : 8 0 0 7 6 0 1 0 0 S T A X C O U N T
6 0 B A : A C 0 5 6 0 1 0 1 D R A W l L D Y B Y T E
6 0 B D : A E 0 3 6 0 1 0 2 L D X L I N E
6 0 C 0 : B D 9 6 6 1 1 0 3 L D A H I , X
6 0 C 3 : 8 5 I B 1 0 4 S T A H I G H
6 0 C 5 : B D 5 6 6 2 1 0 5 L D A L O , X
6 0 C 8 : 8 5 l A 1 0 6 S T A L O W
6 0 C A : A E 0 7 6 0 1 0 7 L D X X C O U N T
6 0 C D : B 1 l A 1 0 8 L D A (L O W) , Y |
6 0 C F : 5 D O A 6 0 1 0 9 E O R T E M P . X
6 0 D 2 : 9 1 l A 1 1 0 S T A (L O W) , Y
6 0 D 4 : C 8 1 1 1 I N Y
6 0 D 5 : B 1 l A 1 1 2 L D A (L O W) , Y
6 0 D 7 : 5 D O B 6 0 1 1 3 E O R T E M P + 1 , X
6 0 D A : 9 1 l A 1 1 4 S T A (L O W) , Y
6 0 0 0 : C 8 1 1 5 I N Y
6 0 D D : B 1 l A 1 1 6 L D A (L O W) , Y
6 0 D F : 5 D O C 6 0 1 1 7 E O R T E M P + 2 , X
6 0 E 2 : 9 1 l A 1 1 8 S T A (L O W) , Y
6 0 E 4 : C 8 1 1 9 I N Y
6 0 E 5 : B 1 l A 1 2 0 L D A (L O W) , Y
6 0 E 7 : 5 D O D 6 0 1 2 1 E O R T E M P + 3 , X
6 0 E A : 9 1 l A 1 2 2 S T A (L O W) , Y
6 0 E C : E E 0 7 6 0 1 2 3 I N C X C O U N T
6 0 E F : E E 0 7 6 0 1 2 4 I N C X C O U N T
6 0 F 2 : E E 0 7 6 0 1 2 5 I N C X C O U N T
6 0 F 5 : E E 0 7 6 0 1 2 6 I N C X C O U N T
6 0 F 8 : E E 0 3 6 0 1 2 7 I N C L I N E
6 0 F B : A D 0 3 6 0 1 2 8 L D A L I N E
6 0 F E : C D 0 6 6 0 1 2 9 C M P D E P T H
6 1 0 1 : 9 0 B 7 1 3 0 B L T D R A W l
6 1 0 3 : A D 0 4 6 0 1 3 1 L D A L I N E A
6106: 80 03 60 132 STA LINE ;RESET LINE FOR NEXT CYCLE
6 1 0 9 : 6 0 1 3 3 R T S
610A: 81 80 80 134 SHAPEl HEX 8180808085808080D582 :SHAPE TABLES
610D: 80 85 80 80 80 D5 82
6114 : 80 80 05 135 HEX 8080D58A8080D5AA8080
6117: 8A 80 80 05 AA 80 80
61IE: 84 80 80 136 SHAPE2 HEX 8480808094808080D48A
6121: 80 94 80 80 80 04 8A
6 1 2 8 ; 8 0 8 0 0 4 1 3 7 H E X 8 0 8 0 D 4 A A 8 0 8 0 D 4 A A 8 1 8 0

Hi-Res Braphics and Animation Using Assembly Language-

6 1 2 B :
6 1 3 2 :
6 1 3 5 :
6 1 3 C :
6 1 3 F :
6 1 4 6 :
6 1 4 9 :
6 1 5 0 :
6 1 5 3 :
6 1 5 A :
6 1 5 D :
6 1 6 4 :
6 1 6 7 :
6 1 6 E :
6 1 7 1 :
6 1 7 8 :
6 1 7 B :
6 1 8 2 :
6 1 8 5 :
6 1 8 C :
6 1 8 F :

A A 8 0
9 0 8 0
8 0 D O
8 0 8 0
A A 8 1
CO 80
80 CO
8 1 8 0
A A 8 5
8 0 8 2
8 0 8 0
8 5 8 0
AA 95
8 0 8 8
8 0 8 0
9 5 8 0
A8 D5
80 AO
8 0 8 0
0 5 8 0
AO D5

8 0 0 4 A A
8 0 1 3 8
8 0 8 0 8 0
0 0 1 3 9
8 0 0 0 A A
8 0 1 4 0
82 80 80
C O 1 4 1
80 CO AA
8 0 1 4 2
8A 80 80
8 0 1 4 3
80 80 AA
8 0 1 4 4
A 8 8 0 8 0
8 0 1 4 5
8 0 8 0 A 8
8 0 1 4 6
A O 8 1 8 0
8 0 1 4 7
8 2 8 0 A O

8 1 8 0
SHAPE3
00 AA

8 5 8 0
SHAPE4
CO AA

9 5 8 0
SHAPE5
8 0 A A

0 5 8 0
S H A P E 6
8 0 A 8

0 5 8 2
SHAPE7
8 0 A O

0 5 8 A
H I

L O

H E X 9 0 8 0 8 0 8 0 0 0 8 0 8 0 8 0 0 0 A A

H E X 8 0 8 0 0 0 A A 8 1 8 0 0 0 A A 8 5 8 0

H E X C 0 8 0 8 0 8 0 C 0 8 2 8 0 8 0 C 0 A A

HEX 8180C0AA8580C0AA9580

H E X 8 0 8 2 8 0 8 0 8 0 8 A 8 0 8 0 8 0 A A

H E X 8 5 8 0 8 0 A A 9 5 8 0 8 0 A A 0 5 8 0

H E X 8 0 8 8 8 0 8 0 8 0 A 8 8 0 8 0 8 0 A 8

H E X 9 5 8 0 8 0 A 8 0 5 8 0 8 0 A 8 0 5 8 2

H E X 8 0 A 0 8 0 8 0 8 0 A 0 8 1 8 0 8 0 A 0

H E X 0 5 8 0 8 0 A 0 0 5 8 2 8 0 A 0 0 5 8 A

790 bytes

Symbol table - numerical order:

LOW =$1A H I G H =$1B L I N E =$6003 L I N E A =$6004
BYTE =$6005 D E P T H =$6006 XOOUNT =$6007 SHPNO =$6008
DELAY =$6009 TEMP =$600A S H PA O R =$601E PGM =$6020
C L R l =$6040 C L R =$6044 START =$6056 S TA R T 1 =$6059
START2 =$605E I N I T I A L =$6087 LOAOSHP =$6099 LOAOSHP1 =$60AA
DRAW =$60B5 O R A W l =$60BA S H A P E l =$610A S H A P E 2 =$611E
SHAPE3 =$6132 S H A P E 4 =$6146 S H A P E 5 =$615A SHAPE6 =$616E
SHAPE7 =$6182 H I =$6196 LO =$6256 GRAPHIOS=$0050
MIXOFF =$0052 PA G E l =$0054 H I R E S =$0057 WAIT =$F0A8

Without changing anything in Program II-1 except the shape bytes, we can
draw the plane in any of the other three hi-res colors. Shown on the opposite
page are the shapes and shape bytes for shape 0 for the plane in green, violet,
and orange.

Shapes with multiple colors can be drawn quite easily, remembering though
that a single byte can't contain two colors, one of which requires the high bit set
and the other the high bit not set. This precludes a line in a shape within a single
screen byte containing both violet and blue or green and orange. The line can,
however, contain combinations of violet and green or blue and orange and, of
course, dilBferent lines in the shape can contain any of the four colors. In addi
tion, black and white can be placed anywhere. Note however that when combin
ing colors, if two bits end up next to each other, white will be displayed in that
region. The use of multiple colors, and the contrast they provide, goes a long
way in mitigating the lower resolution of color displays.

Drawing in Coior

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

V i o l e t

Orange

0 2 0 0 0 0 0 0
O A 0 0 0 0 0 0

2 A 1 5 0 0 0 0

0 1 0 0 0 0 0 0
0 5 0 0 0 0 0 0
5 5 0 2 0 0 0 0
5 5 O A 0 0 0 0
5 5 2 A 0 0 0 0

8 2 8 0 8 0 8 0
8 A 8 0 8 0 8 0
A A 8 5 8 0 8 0
A A 9 5 8 0 8 0
A A D 5 8 0 8 0

Simple, yes? But of course for the privilege of drawing in color, there's a
price to be paid, and I don't mean the cost of a color TV or monitor (actually, I
don't know why this should be so but it seems to be a law of some kind—
something about a free lunch?). In any case, we've already discussed one draw
back, the lower resolution of color shapes. There is yet another that involves
problems in collision detection and we'll get to that next.

COLUSION DETECTION WITH COLOR SHAPES

Collision detection with color shapes is difficult for two reasons; first,
because such shapes contain "holes," and second, because of a problem relating
to the high bit. Let's discuss the "hole" problem first.

Suppose we want to test for the collision of a vertically moving green shape
w i t h a v i o l e t o n e :

Shape 1—violet
AND with shape 2—green

R e s u l t

7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

Shape on screen

1 0 1 0 1 0 1
0 1 0 1 0 1 0

The AND instruction returns a value of #$00 indicating no collision, but, of
course, a collision should occur. The same situation holds for collisions between
violet and orange shapes and between green and blue shapes, because they also
occupy different columns. This is not a problem for violet and blue or green and
orange shapes because here they occupy the same columns (on the other hand,
blue and orange shapes will always indicate a collision, even when there
shouldn't be one, because of the high bit problem we'll get to shortly). The same
"hole" problem arises with horizontal movement, because color shapes are
moved horizontally two bits at a time to maintain the alternate column assign
ments. We could get around the problem by changing colors, but this would
limit our program options and also violate a basic creed of us assembly language
programmers, to wit, "#$FF," or "Flexibility Forever," which translated means if
w e c a n o v e r c o m e a l i m i t a t i o n , l e t ' s d o i t .

Hi-Res Graphics and Animalion Using Assembiy Language

When dealing with bits in the "wrong" set of alternate columns, the instruc
tions that immediately come to mind are those that shift bits over one position;
e.g., ASL (Arithmetic Shift Left), LSR (Logical Shift Right), ROR (ROtate Right),
and ROL (ROtate Left).

7 6 5 4 3 2

R O L 7 6 5 4 3 2 1 0
I 4

When we do this kind of shifting, we have to make sure we can restore the
original shape and color in preparation for the next shape draw and erase. This is
done by storing the shape byte to be tested in the Accumulator, shifting the bits,
and then storing the shifted byte into a memory location labeled, let's say, SHIFT
(another clever nom de storage). Thus, the shape byte in the shape table is not
affected by the shifting. The AND test is then done with the contents of SHIFT
and the draw and erase with the shape byte from the shape table.

The instruction we're going to use is LSR because it's the only one that
ensures the high bit will contain 0 after the shift—pushing a 1 into the high bit
can present problems as we'll see below. Now suppose we want to collision-test
a violet with a green shape as in the example in the beginning of this section.
Let's see what happens if we LSR the violet shape before ANDing with the green
shape;

7 6 5 4 3 2 1 0

S h a p e 1 — v i o l e t 0 1 0 1 0 1 0 1
L S R 0 0 1 0 1 0 1 0
AND w i th shape 2—green 0 0 10 10 10

R e s u l t — n o n - z e r o 0 0 1 0 1 0 1 0

Drawing in Color

Voila! We've detected a collision where there should be one. Let's see how
this would look in a program (again, CMP #S00 is included to make the routine
easier to read—it is not needed before a BEQ):

L D A S H A P E , X
L S R

S T A S H I F T
L D A (L O W) , Y
A N D S H I F T
CMP #$00
B E Q N O H I T
J M P C O L L I S I O N

NOHIT Continue draw with SHAPE,X

: G E T S H A P E B Y T E T O B E T E S T E D
: S H I F T B I T S R I G H T
: S T O R E I N S H I F T
; G E T S C R E E N B Y T E
; A N D W I T H S H I F T C O N T E N T S

i J U M P T O N O H I T I F N O C O L L I S I O N

Note that some assemblers require A in the operand column for LSR (and
ASL, ROR, and ROL) when the bits in the Accumulator are to be shifted. The
exact same procedure can be used for testing violet against orange and green
against blue. When we get to blue vs. orange, however, we have a problem,
because both colors have the high bit set and thus an AND test will always return
a non-zero even when no collision is indicated. This occurs because both high
bits are 1. Consider the following:

Shape 1—orange
AND with shape 2—blue

R e s u l t — n o n - z e r o

7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Shape on screen

0 1 0 1 0 0 0
0 0 0 0 0 0 1

Obviously a collision should not be detected, but it is because of the high
bits. We might assume an LSR instruction would take rare of this, because it
places a zero in the high bit; but watch what happens:

7 6 5 4 3 2 1 0

Shape 1—orange
L S R
AND with shape 2—blue

1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
1 1 0 0 0 0 0 0

R e s u l t — n o n - z e r o 0 1 0 0 0 0 0 0

The high bit has been shifted into the shape byte and, in this case at least, an
erroneous collision detection has occurred. What we want to do then is mask
out the high bit before shifting. We do this by ANDing with #$7F. Thus:

n

Hi-Res Braphlcs and Animation Using Assembiy Language

7 6 5 4 3 2 1 0

Shape 1—orange
AND with #$7F

Result—high bit 0
L S R
AND with shape 2—blue

R e s u l t — z e r o

1 0 0 0 1 0 1 0
0 1 1 1 1 1 1 1

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

In a program, the routine would look like this;

LDA SHAPE,X
A N D # $ 7 F
L S R

S T A S H I F T
LDA {LOW),Y
A N D S H I F T
CMP #$00
B E Q N O H I T

Even when testing blue or orange against a high-bit-not-set color, such as
violet or green, it's still a good idea to mask out the high bit so that it doesn't get
pushed into the shape byte. To summarize then:

Color to be tested (ANDed)

v i o l e t

g r e e n
b l u e

o r a n g e
g r e e n
v i o l e t
b l u e

o r a n g e
white (high bit off)
a n y c o l o r

Target color

b l u e

o r a n g e
v i o l e t

g r e e n
v i o l e t o r b l u e

g r e e n o r o r a n g e
g r e e n o r o r a n g e
v i o l e t o r b l u e

any color
white (high bit off)

Shift instructions

n o n e

L S R
L S R
AND #$7F, LSR
AND #$7F. LSR

This is a fast and simple procedure, but not without its drawbacks. Because
we're shifting the shape bits, in certain circumstances a collision detection will
result when the shapes are not exactly at the collision site. For shapes moving
vertically, this displacement will not exceed one bit position and this should
certainly be tolerable in most circumstances. For shapes moving horizontally, the
displacement can be as large as three bit positions, because the protocol is
draw-erase-move two bit positions-LSR-AND test. We can reduce the displace
ment to one bit position by altering the protocol to the following; move two bit
positions-draw-LSR-AND test-erase. But as mentioned, this displaced collision is
not a problem in all cases—it depends on the shapes and which way they're
moving.

A second method of collision detection with color shapes is one that seems
to be favored by assembly language programmers, probably because the principle
is simple and it works; there is also no problem with displaced collisions. The
method involves setting up a second dummy shape table, identical to the first.

Drawing In Color

excq)t that the shape is drawn in white (high bit off), i.e., no "holes." The white
shape is ANDed with the screen byte, and the color shape is used to draw and
erase. For example, if the color shape is stored in COLOR and the white shape in
WHITE, the routine would be as follows:

LDA (LOW),Y
A N D W H I T E , X
CMP #$00
B E G N O H I T

J M P C O L L I S I O N

N O H I T C o n t i n u e d r a w w i t h C O L O R , X

This method works for any color combination and eliminates the problem of
the high bit. An obvious drawback, however, is that multiple shape tables have to
be constructed for each shape involved in collision detection. This can eat up a
lot of space for programs with many colliding shapes, not to mention the time
involved in writing the program. There can also be a significant increase in
execution time, depending on the type of animation involved. For vertical
animation, this is not a significant problem—a single shape would have only two
shape tables, one in color and the other in white, and the routine described
above can be used without any modification. For horizontal movement, however,
each shape would require 14 shape tables instead of 7, and if we use our usual
TEMP loading routine, we would have to load another TEMP with the white
shapes for each AND test. This could increase the execution time to intolerable
levels and if so, we would then have to use routines that do not involve TEMP
loading; that is, a separate draw routine for each shape as discussed in Chapter 5
(Program 5-2). This would further increase our program size, but then you can't
have everything.

There is yet a third method we can use, which is both simple and fast, but
has the limitation that the shape has to be all one color. What we do is use a
single white shape table and then mask the shape to color. For example:

7 6 5 4 3 2 1 0

W h i t e s h a p e 0 0 0 1 1 1 0 0
A N D w i t h # $ 5 5 0 1 0 1 0 1 0 1

R e s u l t — v i o l e t s h a p e 0 0 0 1 0 1 0 0
(even columns)

A program using this routine would look like this:

LDA (LOW),Y
A N D W H I T E S H A P E

CMP #$00
B E O N O H I T
J M P C O L L I S I O N

N O H I T L D A W H I T E S H A P E
AND #$55
S T A C O L O R S H A P E
LDA (LOW),Y
E O R C O L O R S H A P E

Hi-Res Graphics and Animation Using Assembiy Language

For a green shape, we would AND with *$2A, for orange with *$AA, and for
blue with #$D5. This routine requires only one (white) shape table, but
obviously can be used only with shapes of a single color, because each color
requires a different value to be ANDed. The only exception would be if we are
testing a vertically moving shape and expect no side collision. Here, only the top
or bottom line (white shape) need be collision-tested and then, if no collision,
the whole color shape can be drawn with a separate routine.

Which to use, LSR or white dummy shapes? That depends on the program
and your own proclivities. Use whichever is easier and more appropriate. On the
other hand, we could observe another assembly language credo, or "Easy
is Better"—just change the shape colors to those that don't involve alternate
c o l u m n s .

Finally, let's discuss the game program for a moment. Suppose we draw the
plane in blue. The bullet is a single dot and thus is either violet or green depend
ing on the column in which it is drawn. Thus, half the time a collision will be
missed, i.e., when the bullet is tested against a "hole" in the plane shape. Note
that this is a special situation—ordinarily shapes are not just single dots. What to
do? An LSR would be inappropriate—we would still miss collisions the other half
of the time and if the shape byte were #$01, an LSR would empty the shape byte
entirely. We could use a white dummy table—here the bullet would be 2-bits

—hut instead of going through all that trouble, why not just draw the bullet
as a 2-bit wide white shape to begin with? Why not indeed. It works and looks

226 fine—what more could we ask for?

12
Double Hi Res
Graphics and Animation
A computer artist from Lahore
Has only one problem; be can't draw.
H i - r e s d o u b l e
Gives him nothing but trouble,
Now he's twice as bad as before.

TJL hose of you with Apple He's or extended memory Apple He's have pro
bably sat up many a night wondering what to do with the extra memory these
machines contain. You can't use it for your BASIC programs (it can be done but
Apple won't tell you how) and only some commercial programs take advantage
of it. But we're assembly language programmers and no part of Apple memory is
inaccessible to us. In this chapter, we'll see how to use the extra memory to
display and animate graphics in the double hi res mode, both in color and black
a n d w h i t e .

DOUBLE HI-RES—WLUT IT IS AND WHAT'S REQUIRED

Not all Apples are capable of displaying double hi res graphics—at the very
least a minimum of 128K of memory is required. Apple lie's come with 128K
standard. Apple lie's can be upgraded to 128K by adding an extended memory
80-column card (available from Apple and other companies) but double hi res
graphics also require that you have a revision B or later motherboard. You can
tell what revision your motherboard is by checking the part number at the rear
of the main circuit board. If the letter following the numbers is B, you're all set.
If it is A, you have a revision A motherboard and double hi-res will not work. But
don't despair—your Apple dealer will sell you a B motherboard at a price you
can't refuse; all you have to do is learn how to program with one hand.

Another requirement, but one that is not absolutely essential, is a video
monitor rather than a TV. You can use a black and white or color TV, but much
detail will be lost, thus negating the increase in resolution and the details of
color contrasts. You don't have to spend a lot of money for fancy monitors—1
find the standard Apple monochrome monitor superb for double hi res displays
and even an inexpensive color monitor produces satisfactory results.

Hi-Res Graphics and Animation Using Assembiy Language

Double hi-res extends the hor izontal resolut ion of the hi-res screen from
280 to 560 dots on a monochrome monitor—the vertical resolution remains the
same at 192 lines. The 560 by 192 screen makes the Apple with double hi-res
roughly equivalent to the hi res mode on the IBM PC (600 by 200) and, as you
might imagine, this increase in resolution can produce startlingly detailed gra
phics that make single hi-res appear rather crude. With color, the horizontal
resolution is the same as single hi-res (140 dots), but with many more colors
available and without the single hi-res color mixture limitations.

DOUBLE HI-RES SCREEN

The extra 64K of memory in 128K machines is essentially a mirror of the
standard 64K memory block; that is, there are two of everything, including the
hi-res screens. Let's label a hi-res screen from the standard memory as MAIN and
the screen from the extra memory as AUX, for auxiliary. Each screen uses the
same addresses; i.e., $2000 is the first screen byte position for hi-res Page 1 for
both MAIN and AUX. For this reason, you have to specify which memory you're
using before sending shape bytes to a hi-res screen location. Now remember that
in single hi-res, 7 bits from a shape byte are plotted in a single screen byte. Thus,
a shape byte sent to $2000 will be displayed in the first screen byte of hi-res Page
1. In double hi-res, each screen byte displays 7 bits from a shape byte from AUX
and 7 bits from a shape byte from MAIN, the shape from AUX displayed in the
first half of the screen byte. Thus, a shape byte sent to $2000 in AUX will be
displayed in the first half of the first screen byte of Page 1 (byte 0) and a shape
byte sent to $2000 in MAIN will be displayed in the second half (assuming, of
course, that the double hi-res mode is selected).

S I N G L E H I - R E S $ 2 0 0 0 0 1 1 0 1 0 1 1

1 1 0 1 0 1 1

$2000 MAIN

1

D O U B L E H I - R E S

$2000 AUX 0 1 1 0 1 0 1 1

I \
1 1 0 1 0 1 1

S C R E E N

S C R E E N B Y T E 0

0 1 0 1 1 0 1 1

i \
1 1 0 1 1 0 1

b y t e o

Similarly, a shape byte sent to $2001 in AUX will be displayed in the first halfof screen byte 1, and a shape byte sent to $2001 in MAIN will be displayed in the
second half of screen byte 1, and so on. There are still just 40 screen bytes, but
each can display up to 14 dots, which accounts for the 560 dot resolution (14 X
40 = 560). All that needs to be done is to specify AUX or MAIN before sending
the shape byte to the particular hi-res screen address—the double hi-res mode

Double Hi-Res Graphics and Animation

takes care of the plotting. Note that, as in single hi res, the high bit does not
appear in the shape. Not only that, but in double hi res the high bit has nothing
to do with color selection as we'll see in a later section.

THE DOUBLE HI -RES MODE

Strange as it may seem, you cannot draw in double hi-res unless you first set
the double hi-res mode. The way to do this is buried deep within the Apple
reference manual and if you're fond of frustration, you're welcome to try to dig it
out, but why not just read on? The method, as you might suspect, involves
accessing certain soft switches, some of which you've seen before.

L a b e l A d d r e s s A c c e s s F u n c t i o n

G R A P H I C S $C050 L D A Turns on graphics mode
M I X O F F $C052 L D A Selects full page graphics
H I R E S $ C 0 5 7 L D A S e l e c t s h i - r e s m o d e

A N 3 $ C 0 5 E L D A T u r n s o f f a n n u n c i a t o r 3

C O L 8 0 $ C O O D S T A S e l e c t s 8 0 c o l u m n m o d e

S T O R E 8 0 $ C 0 0 1 S T A C h a n g e s f u n c t i o n s o f n e x t s w i t c h e s
A U X $ C 0 5 5 L D A S e l e c t s A U X w h e n S T O R E 8 0 a n d H I R E S o n

M A I N $ C 0 5 4 L D A S e l e c t s M A I N

229

T h e r o u t i n e f o r s e l e c t i n g d o u b l e h i r e s i s a s f o l l o w s ; ■
L D A G R A P H I C S
L D A M I X O F F

L D A H I R E S

S T A S T O R E 8 0

S T A C O L 8 0

L D A A N 3

Once this is done, LDA AUX selects the Page 1 hi-res screen from the auxiliary
memory and LDA MAIN selects the same page from main memory. Thus, to clear
both screens, we do:

L D A M A I N

J S R C L E A R

L D A A U X

J S R C L E A R

where CLEAR is our usual clear screen subroutine. It's simple when you know
which switch to pull (push?), thus attesting to the old adage (which 1 just
thought of) that computers imitate life.

D R A W I N G S H A P E S

Drawing a shape on the double hi-res screen is relatively easy— all we have to do
is determine in which half of the screen byte, AUX or MAIN, the shape bits are to
be plotted and modify the draw routine accordingly. For example, let's look at

Hi-Res Graphics and Animation Using Assembiy Language-

how we would plot some simple shapes of varying lengths. To keep it really
simple, we'll just plot some lines. For most of the programs in this chapter we'll
be using single lines to illustrate the principles involved; however, the programs
are designed in the usual way (i.e., XCOUNT, DEPTH, etc.) to allow the drawing
of shapes with multiple lines, so our examples are applicable not just to lines,
but to any shape.

Screen byte 12

A U X M A I N
0 1 1 1 1 0 0 0 0 0 0 0 0 0

Here we're plotting shape byte 1E just in the AUX portion of the screen
byte. The draw routine would look like this (we're using the EOR method for
illustration);

L D A A U X
LDA Screen byte
EOR #$1E
STA Screen byte

Suppose now we want to draw a line extending into the MAIN section:

Screen byte 12

A U X
0 0 0 0 1 1 1

M A I N
1 1 1 0 0 0 0

The draw rout ine would then be:

L D A A U X
LDA Screen byte
EOR #$70
STA Screen byte
L D A M A I N
LDA Screen byte
E O R # $ 0 7
STA Screen byte

; S A M E S C R E E N B Y T E

Now let's extend a line into the next screen byte:

Screen byte 12 Screen byte 13

A U X
0 0 0 0 1 1 1

M A I N
1 1 1 1 1 1

A U X
1 1 0 0 0 0 0

Double Hi-Res Braphlcs and Animation

The draw routine would be:

L D A A U X

L D A S c r e e n b y t e
E O R # $ 7 0
STA Screen byte
L D A M A I N

L D A S c r e e n b y t e
EOR #$7F
S TA S c r e e n b y t e
i n y ; n e x t s c r e e n b y t e
L D A A U X

L D A S c r e e n b y t e
EOR #$03
STA Screen byte

Note that we use INY to get to the next screen byte, because this is how we have
always done it in our programs: Y is loaded with the value in BYTE and it is
manipulated to access different screen bytes within the draw routine instead of
BYTE itself to make erasing easier.

We can use a kind of shorthand to describe our double hi res drawing rou
tines. Thus, for the example above, A-M-INY-A. The same line starting in the
MAIN section would use M-INY-A-M. A line extending over two whole screen
bytes and starting in AUX would use A-M-INY-A-M, and so on. For a shape with
multiple lines, we simply plot out the shape and design the draw routine based
on the overall maximum shape width.

Now that we know how to display shapes on the double hi res screen, let's
see how to animate them.

ANIMATING

Vertical animation, as usual, presents no problems. We just draw and erase
the shape and change line positions; the shape bits always retain their column
assignments. Non-vertical movement always contains a horizontal vector, and
here things get more complicated, but not much more than with single hi-res
horizontal movement. First of all, for greater simplicity, all our double hi-res
horizontal animation will use 2-bit moves. One-bit moves are possible but
involve greater complexity (14 shapes are required with different draw routines
for each group of 7), and they are completely unnecessary because a 2-bit move
in double hi-res is equivalent to a 1 -bit move in single hi-res and this is certainly
sat isfactory.

With 2-bit moves, we need only 7 shapes. The technique is to examine the
shape tables and devise the appropriate draw routine. Most everything else is the
same as in our previous single hi-res programs. Let's consider the simplest exam
ple, a line occupying only half a screen byte and starting in the AUX section.
Shown below are the shape tables for this line moving in 2-bit moves. (Note that
as usual with 2-bit moves, 2 extra bytes have to be included in the shape tables
in the direction of movement, but here the extra bytes are really half screen
bytes, i.e., either a MAIN or AUX.)

Hi-Res Braphics and Animalion Using Assemtiy Language

B Y T E 1

A U X

I I I
I I I

I I I I I I

I E 0 0 0 0

7 8 0 0 0 0

6 0 0 3 0 0

0 0 O F 0 0

0 0 3 C 0 0

0 0 7 0 01

0 0 4 0 0 7

Examination of the tables tells us the draw routine needed is A-M-INY-A. The
tables also tell us that after seven shapes are drawn, we start over with the first
shape in AUX in the next screen byte, and so we do an INC BYTE. This is in
contrast to 2-bit moves in single hi-res where we have to move 2 bytes over after
every seven shapes. Thus the protocol can be represented by A-M-INY-A—next
screen byte—A-M-INTf-A.

Let's now use these shapes in a program. The following program (Program
12-1) moves the line left to right across the screen in the same way that we
moved the plane shape in previous programs. There is very little change from a
single hi-res program, the major alteration being in the draw routine. The flow
chart for Program 12-1 is on page 235.

]PROGRAM
: A S M

6 0 0 0 :

6 0 0 D : 0 9
6 0 0 E : 6 1
6 0 0 F : O C
6 0 1 0 : 6 1

* * D O U B L E H I - R E S * * 2 B I T H O R I Z O N TA L M O V E
O R G $ 6 0 0 0
J M P P G M

L I N E O S 1
L I N E A O S 1
B Y T E D S 1
D E P T H D S 1
X C O U N T D S 1
S H P N O D S 1
D E L A Y D S 1
T E M P D S 3
G R A P H I C S = $ 0 0 5 0
M I X O F F = $ 0 0 5 2
H I R E S = $ 0 0 5 7
A N 3 = $ 0 0 5 E
0 0 L 8 0 = $ 0 0 0 0
S T 0 R E 8 0 = $ 0 0 0 1
A U X = $ 0 0 5 5
M A I N = $ 0 0 5 4
H I G H = $ 1 B
L O W = $ 1 A
W A I T = $ F 0 A 8
*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
♦CONTINUE FOR ALL 7 SHAPES
S H P A D R D F B # < S H A P E 1

D F B # > S H A P E 1
D F B # < S H A P E 2
D F B # > S H A P E 2

Double Hi-Res Graphics and Animation

6 0 1 1 : O F 2 9 D F B #<SHAPE3
6 0 1 2 : 6 1 3 0 D F B #>SHAPE3
6 0 1 3 : 1 2 3 1 D F B #<SHAPE4
6 0 1 4 : 6 1 3 2 D F B #>SHAPE4
6 0 1 5 : 1 5 3 3 D F B #<SHAPE5
6 0 1 6 : 6 1 3 4 D F B #>SHAPE5
6 0 1 7 : 1 8 3 5 D F B #<SHAPE6
6 0 1 8 : 6 1 3 6 D F B #>SHAPE6
6 0 1 9 : I B 3 7 D F B #<SHAPE7
6 0 1 A : 6 1 3 8 D F B #>SHAPE7
6 0 1 B : A O 5 0 CO 3 9 PGM L D A G R A P H I C S
6 0 1 E : A O 5 2 CO 4 0 L D A M I X O F F

6 0 2 1 : A O 5 7 CO 4 1 L D A H I R E S
6 0 2 4 : 8 0 0 1 CO 4 2 S T A S T 0 R E 8 0

6 0 2 7 : 8 0 0 0 CO 4 3 S TA C 0 L 8 0

6 0 2 A : A O 5 E CO 4 4 L D A A N 3

6 0 2 0 : A O 54 CO 4 5 L D A MAIN
6 0 3 0 : 2 0 3C 6 0 4 6 J S R C L E A R ;CLEAR MAIN SCREEN
6 0 3 3 : A O 5 5 CO 4 7 L D A A U X

6 0 3 6 : 2 0 3C 6 0 4 8 J S R CLEAR ;CLEAR AUX SCREEN
6 0 3 9 : 4 C 5 6 6 0 4 9 J M P DE

6 0 3 C : A 9 0 0 5 0 C L E A R L D A # 0 0 ;CLEAR SCREEN SUBROUTINE
6 0 3 E : 8 5 l A 5 1 S TA LOW

6 0 4 0 : A 9 2 0 5 2 L D A #$20
6 0 4 2 : 8 5 I B 5 3 S TA H I G H

6 0 4 4 : A O 0 0 5 4 C L R l L D Y # 0 0
6 0 4 6 : A 9 0 0 5 5 LDA # 0 0
6 0 4 8 : 9 1 l A 5 6 CLR S T A (LOW),Y
6 0 4 A : C 8 5 7 I N Y

6 0 4 B : 0 0 F B 5 8 BNE C L R

6 0 4 0 : E 6 I B 5 9 INC H I G H

6 0 4 F : A 5 I B 6 0 L D A H I G H
6 0 5 1 : C 9 4 0 6 1 CMP #$40
6 0 5 3 : 9 0 E F 6 2 BCC C L R l

6 0 5 5 : 6 0 63 RT S

6 0 5 6 : A 9 6 0 6 4 DE L D A #$60 ;LOAD DELAY
6 0 5 8 : 8 0 0 9 6 0 6 5 S TA D E L AY

6 6 * * * * * * * * * * m a i n p r o g r a m * * * * * * * * * *

6 0 5 B : 2 0 8 9 6 0 6 7 START JSR I N I T I A L ;SET INITIAL BYTE, LINE, DEPTH
6 0 5 E : A 9 0 0 68 STARTl LDA #$00 ;FIRST SHAPE NUMBER
6 0 6 0 : 8 0 0 8 6 0 6 9 STA SHPNO

6 0 6 3 : 2 0 9 B 6 0 7 0 START2 J S R LOADSHP ;LOAD SHAPE INTO TEMP
6 0 6 6 : 2 0 B7 6 0 71 J S R DRAW ;DRAW
6 0 6 9 : A O 0 9 6 0 7 2 L D A D E L AY ; DELAY
6 0 6 C : 2 0 A 8 FC 73 J S R W A I T

6 0 6 F : 2 0 B 7 6 0 7 4 J S R DRAW ;ERASE
6 0 7 2 : E E 0 8 6 0 7 5 I N C SHPNO ;NEXT SHAPE NUMBER
6 0 7 5 : A O 0 8 6 0 7 6 L D A S H P N O

6 0 7 8 : C 9 0 7 7 7 CMP #$07 ;FINISHED ALL 7 SHAPES?
6 0 7 A : 9 0 E7 7 8 B LT START2 ;IF NO, CONTINUE WITH NEXT SHAPE
6 0 7 C : E E 0 5 6 0 7 9 I N C B Y T E ;IF YES, NEXT BYTE
6 0 7 F : A O 0 5 6 0 8 0 LDA BYTE

6 0 8 2 : C 9 26 81 CMP #$26 ;END OF SCREEN?
6 0 8 4 : 9 0 08 82 B LT S TA R T l ;IF NO, CONTINUE DRAW
6 0 8 6 : 4 C 5B 6 0 8 3 JMP START ;IF YES, START OVER

8 4 * * * * * * * * * * S U B R O U T I N E S
A 9 0 0 8 5 I N I T I A L I D A # $ 0 0
8 0 0 5 6 0 8 6 S T A B Y T E
8 0 0 3 6 0 8 7 S T A L I N E
8 0 0 4 6 0 8 8 S T A L I N E A
1 8 8 9 C L C

★★★★★★★★★★

Hi-Res Graphics and Animation Using Assembiy Language

6 0 9 5 : 6 9 0 1
6 0 9 7 : 8 0 0 6 6 0
6 0 9 A : 6 0

6 0 9 B : A D 0 8 6 0
6 0 9 E : O A
6 0 9 F : A A
60A0: BD 00 60
6 0 A 3 : 8 5 l A
60A5: BO OE 60
6 0 A 8 : 8 5 I B
6 0 A A : A O 0 0
6 0 A C : B 1 l A
60AE: 99 OA 60
6 0 B 1 : C 8
60B2: CO 03
60B4: 90 F6
6 0 8 6 : 6 0

: A 9 0 0
80 07 60
AC 05 60
A E 0 3 6 0
B O I E 6 1
8 5 I B
BO OE 61
8 5 l A
A E 0 7 6 0
AO 55 CO
B 1 l A
5 0 O A 6 0
9 1 l A
AO 54 CO
B 1 l A
5 0 O B 6 0
9 1 l A
C 8
AO 55 CO
B 1 l A
5 0 O C 6 0
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A O 0 3 6 0
C O 0 6 6 0
9 0 B A
A O 0 4 6 0
8 0 0 3 6 0
6 0
IE 00 00
78 00 00
60 03 00
00 OF 00
0 0 3 C 0 0
0 0 7 0 0 1
0 0 4 0 0 7

AOC #$01
S T A D E P T H
R T S

L O A O S H P L O A S H P N O
A S L
T A X
LOA SHPAOR.X
S T A L O W
LOA SHPA0R+1,X
S T A H I G H
L O Y # $ 0 0

LOAOSHPl LOA (LOW),Y
S TA T E M P, Y
I N Y
C P Y # $ 0 3
B L T L O A O S H P l
R T S

* * D R AW S U B R O U T I N E * *
** AUX-MAIN-NEXT BYTE-AUX

S H P N O

;OEPTH OF SHAPE

;LOAO SHAPE INTO TEMP

L O A O S H P l

SHPAOR.X
LOW

SHPA0R+1,X
H I G H
#$00
(LOW),Y
TEMP,Y

#$03
LOAOSHPl

O R A W l

S H A P E l
S H A P E 2
S H A P E S
S H A P E 4
S H A P E 5
S H A P E 6
S H A P E 7
H I
L O

#$00
X C O U N T
B Y T E
L I N E

H I , X
H I G H
LO,X
LOW
XCOUNT
AUX
(LOW).Y
TEMP,X
(LOW),Y

M A I N
(LOW).Y
TEMP+1,X
(LOW).Y

A U X

(LOW).Y
TEMP+2,X
(LOW),Y
XCOUNT
X C O U N T
X C O U N T
L I N E
L I N E
D E P T H
O R A W l
L I N E A
L I N E

lEOOOO
7 8 0 0 0 0
6 0 0 3 0 0
OOOFOO
0 0 3 C 0 0
0 0 7 0 0 1
0 0 4 0 0 7

;RESET LINE FOR NEXT CYCLE

Double Hi-Res Graphics and Animation

6 7 0 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

LOW
B Y T E
D E L AY
C L E A R
START
L O A D S H P
S H A P E l
S H A P E 5
L O
M I X O F F
A N 3

=$1A
=$6005
=$6009
=$6030
=$6058
= $ 6 0 9 8
= $ 6 1 0 9
= $ 6 11 5
=$61DE
=$0052
=$005E

H I G H
DEPTH
TEMP
O L R l
S T A R T l
L O A D S H P l
S H A P E 2
S H A P E 6
S TO R E B O
M A I N
W A I T

=$18
=$6006
=$600A
=$6044
=$605E
=$60A0
=$6100
=$6118
=$0001
=$0054
=$F0A8

L I N E
XOOUNT
S H PA D R
O L R
START2
DRAW
S H A P E 3
S H A P E ?
0 0 L 8 0
A U X

=$6003
=$6007
=$6000
=$6048
=$6063
= $ 6 0 8 7
=$610F
=$6118
=$0000
= $ 0 0 5 5

L I N E A
SHPNO
PGM
D E

= $ 6 0 0 4
=$6008
=$6018
=$6056

IN IT IAL =$6089
D R A W l
S H A P E 4
H I

=$6080
= $ 6 11 2
=$611E

GRAPHI0S=$0050
H I R E S = $ 0 0 5 7

L O A D S H A P E A D D R E S S E S
I N T O S H P A D R

S E T D O U B L E H I - R E S M O D E

D I S P L A Y A N D C L E A R
SCREEN, AUX & MAIN

SET INITIAL LINE NUMBER, BYTE
P O S I T I O N A N D D E P T H

F I R S T S H A P E

L O A D I N T O T E M P

D R AW ; A U X - M A I N - I N Y- A U X

E R A S E

N E X T S H A P E

N o I ^
ALL 7 SHAPES?

N E X T S C R E E N B Y T E

N o I ' 1 Y e s
E N D o f S C R E E N ?

Hi-ffes Graphics and Animation Using Assembiy Language

The program can be modified easily to move lines of any length by altering
the draw routine. For a line occupying both AUX and MAIN of one screen byte,
the protocol is A-M-INY-A-M — next screen byte—A-M-INY-A-M. For a line
occupying AUX and MAIN of one screen byte and AUX of the next, we would
use A-M-INY-A-M-INY-A—next screen byte—A-M-INY-A-M-INY-A, and so on.

To demonstrate how to draw complicated shapes, I've included the follow
ing program, which moves a spaceship vertically. Running this program will illus
trate how neat double hi-res is compared to single hi-res.

]PROGRAM 12-
: A S M

6000: 4C 09

AD 50
A D 5 2
A D 5 7
8D 01
8 D 0 0
A D 5 E
A D 5 4
2 0 2 A
A D 5 5
2 0 2 A
4 C 4 4
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
DO FB
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
6 0
A 9 6 0
8 D 0 8

1 * * D O U B L E H I -■R E S * V E R T I C A L S P A C E S H I P
2 ORG $ 6 0 0 0
3 J M P PGM
4 L I N E OS 1
5 L I N E A OS 1
6 B Y T E OS 1
7 D E P T H DS 1
8 XCOUNT OS 1
9 D E L AY DS 1
1 0 G R A P H I C S = $C050
1 1 M I X O F F $C052
1 2 H I R E S $C057
1 3 A N 3 = $C05E
1 4 C 0 L 8 0 = $COOD
1 5 ST0RE80 = $C001
1 6 A U X = $C055
1 7 M A I N = $C054
1 8 H I G H = $1B
1 9 LOW = $1A
2 0 W A I T = $FCA8
2 1 PGM L D A G R A P H I C S

C O 2 2
C O 2 3
C O 2 4
C O 2 5
C O 2 6
C O 2 7
6 0 2 8
C O 2 9
6 0 3 0
6 0 3 1

3 2
3 3
3 4
3 5
3 6
37
38
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6

6 0 4 7

C L E A R

M I X O F F
H I R E S
S T 0 R E 8 0
C 0 L 8 0
A N 3
M A I N
C L E A R
AUX
C L E A R
DE
0 0
LOW
#$20
H I G H
0 0
0 0
(LOW).Y

C L E A R M A I N S C R E E N

C L E A R A U X S C R E E N

CLEAR SCREEN SUBROUTINE

#$60
D E L AY

;LOAD DELAY

1

4 8 * * * * * * * * * *) ^ y \ ; [N PROGRAM **********
6 0 4 9 : 2 0 6 B 6 0 4 9 S T A R T J S R INITIAL ;SET INITIAL BYTE, LINE, DEPTH
6 0 4 C : 2 0 7 0 6 0 5 0 S T A R T l J S R DRAW
6 0 4 F : AO 0 8 6 0 5 1 L D A D E L AY
6 0 5 2 : 2 0 A 8 F C 5 2 J S R W A I T

6 0 5 5 : 2 0 7 0 6 0 5 3 J S R DRAW

6 0 5 8 : E E 0 6 6 0 5 4 I N C D E P T H

6 0 5 B : EE 0 4 6 0 5 5 I N C L I N E A

6 0 5 E : AO 04 6 0 5 6 LDA LINEA
6 0 6 1 : 8 0 0 3 6 0 5 7 S T A L I N E
6 0 6 4 : C 9 8 8 5 8 CMP #$B8
6 0 6 6 : BO E l 5 9 BGE S TA R T
6 0 6 8 : 4 C 4 C 6 0 6 0 J M P S T A R T l

6 1 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *

6 0 6 B : A 9 0 0 6 2 I N I T I A L L D A #$00
6 0 6 D : 8 0 0 5 6 0 6 3 S TA B Y T E

6 0 7 0 : 8 0 0 3 6 0 6 4 S TA L I N E

6 0 7 3 : 8 0 0 4 6 0 6 5 S T A L I N E A
6 0 7 6 : 1 8 6 6 C L C

6 0 7 7 : 6 9 0 0 6 7 ADC # $ 0 D ; D E P T H O F S H A P E
6 0 7 9 : 8 0 0 6 6 0 6 8 S T A D E P T H

6 0 7 C : 6 0 6 9 RT S
7 0 *

7 1 ** DRAW SUBROUTINE **

6 0 7 D : A 9 0 0 7 2 D R A W L D A # $ 0 0
6 0 7 F : 8 0 0 7 6 0 7 3 S T A XCOUNT

6 0 8 2 : A C 0 5 6 0 7 4 D R A W l L D Y B Y T E 2 3 7
6 0 8 5 : AE 0 3 6 0 7 5 LDX L I N E

6 0 8 8 : BO 2 5 6 1 76 LDA H I , X m
6 0 8 B : 8 5 I B 77 S T A H I G H

6 0 8 0 : BO E 5 6 1 7 8 L D A LO,X
6 0 9 0 : 8 5 l A 7 9 STA LOW

6 0 9 2 : A E 0 7 6 0 8 0 L D X XCOUNT

6 0 9 5 : AO 5 5 CO 8 1 L D A A U X

6 0 9 8 : B 1 l A 8 2 L D A (LOW),Y
6 0 9 A : 5 0 E 4 6 0 8 3 EOR SHAPE,X
6 0 9 0 : 9 1 l A 8 4 STA (LOW),Y
6 0 9 F : AO 5 4 CO 8 5 L D A M A I N

6 0 A 2 : B1 l A 8 6 LDA (LOW),Y
6 0 A 4 : 5 0 E 5 6 0 8 7 EOR SHAPE+1,X
6 0 A 7 : 9 1 l A 8 8 S TA (LOW),Y
6 0 A 9 : C8 8 9 I N Y

6 0 A A : AO 5 5 CO 9 0 LDA AUX

6 0 A 0 : B 1 l A 9 1 L D A (LOW),Y
6 0 A F : 5 0 E 6 6 0 9 2 EOR SHAPE+2,X
6 0 B 2 : 9 1 l A 9 3 S T A (LOW),Y
6 0 B 4 : AO 5 4 CO 9 4 L D A M A I N

6 0 B 7 : B 1 l A 9 5 L D A (L0W),Y
6 0 B 9 : 5 0 E 7 6 0 9 6 EOR SHAPE+3,X
6 0 B C : 9 1 l A 9 7 S T A (LOW),Y
6 0 B E : C 8 9 8 I N Y

6 0 B F : AO 55 CO 9 9 L D A A U X

6 0 C 2 : B1 l A 1 0 0 LDA (LOW),Y
6 0 C 4 : 5 0 E 8 6 0 1 0 1 EOR SHAPE+4,X
6 0 C 7 : 91 l A 1 0 2 STA (L0W),Y
6 0 C 9 : AO 0 7 6 0 1 0 3 LDA XCOUNT
6 0 C C : 1 8 104 CLC
6 0 C 0 : 6 9 0 5 1 0 5 A D C #$05
6 0 C F : 8 0 0 7 6 0 1 0 6 S TA XCOUNT
6 0 0 2 : EE 0 3 6 0 1 0 7 I N C L I N E
6 0 0 5 : AO 0 3 6 0 1 0 8 L D A L I N E

Hi-Res Graphics and Animation Using Assembly Language

6 0 D 8 :
6 0 D B :
6 0 D D :
6 0 E 0 :
6 0 E 3 :
6 0 E 4 :
6 0 E 7 :
6 0 E 9 :
6 0 E C :
6 0 E E :
6 0 F 1 :
6 0 F 3 :
6 0 F 6 :
6 0 F 8 :
6 0 F B :
6 0 F D :
6 1 0 0 :
6 1 0 2 :
6 1 0 5 :
6 1 0 7 :
6 1 0 A :
6 1 0 C :
6 1 0 F :
6 1 1 1 :
6 1 1 4 :
6 1 1 6 :
6 1 1 9 :
6 11 B :
6 11 E :
6 1 2 0 :
6 1 2 3 :

C D 0 6 6 0
9 0 A 5
A D 0 4 6 0
8 0 0 3 6 0
6 0
0 0 6 0 3 F
0 0 0 0
0 0 5 0 5 6
0 0 0 0
0 0 7 8 7 F
0 1 0 0
0 1 0 7 0 0
O E 0 8
7E 40 3B
7 0 0 7
7 E 5 C 5 2
7 3 0 7
4 1 5 4 4 9
1 2 0 8
4 0 5 C 4 8
1 3 0 0
4 0 0 0 0 0
1 0 0 0
4 0 7 F 7 F
I F 0 0
2 0 O C 0 0
2 3 0 0
1 0 O C 0 0
4 3 0 0
I C 3 F 6 0
4 F 0 3

1 0 9
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4 S H A P E

C M P D E P T H
B L T D R A W l
L D A L I N E A
S T A L I N E
R T S
H E X 0 0 6 0 3 F 0 0 0 0

H E X 0 0 5 0 5 6 0 0 0 0

H E X 0 0 7 8 7 F 0 1 0 0

H E X 0 1 0 7 0 0 0 E 0 8

H E X 7 E 4 0 3 B 7 0 0 7

H E X 7 E 5 C 5 2 7 3 0 7

H E X 4 1 5 4 4 9 1 2 0 8

H E X 4 0 5 C 4 8 1 3 0 0

H E X 4 0 0 0 0 0 1 0 0 0

H E X 4 0 7 F 7 F 1 F 0 0

H E X 2 0 0 C 0 0 2 3 0 0

H E X 1 0 0 C 0 0 4 3 0 0

H E X 1 C 3 F 6 0 4 F 0 3

;RESET LINE FOR NEXT CYCLE

677 bytes

S y m b o l t a b l e - n u m e r i c a l o r d e r :

LOW =$1A H I G H =$1B L I N E =$6003 L I N E A =$6004
B Y T E =$6005 DEPTH =$6006 XCOUNT =$6007 D E L AY =$6008
PGM =$6009 C L E A R =$602A C L R l =$6032 C L R =$6036
DE =$6044 S T A R T = $ 6 0 4 9 S T A R T l =$6040 I N I T I A L =$606B
DRAW = $ 6 0 7 0 D R A W l =$6082 S H A P E = $ 6 0 E 4 H I =$6125
LO =$61E5 S T 0 R E 8 0 =$0001 C 0 L 8 0 =$0000 G R A P H I C S =$0050
M I X O F F =$0052 M A I N =$0054 A U X =$0055 H I R E S =$0057
A N 3 =$C05E W A I T =$FCA8

We've seen that drawing and animating shapes in double hi res is relatively
simple—just by examining the shape tables we can tell what kind of draw rou
tine is required. The only difficulty is that the extra resolution afforded puts
greater demands on our artistic talents, whatever they may be. But with this
greater demand comes a greater opportunity and the extra work required is well
worth the resul ts.

Double Hi-Res Braphics and Animation

D O U B L E H I - R E S C O L O R S H A P E S

Displaying color in double hi-res requires quite a different procedure from
single hi-res. First, the high bit has nothing to do with color selection—it is
simply ignored. Second, colors are not produced by plotting dots in alternate
rows, but rather are determined by the particular combination of 4 dots or bits
displayed at particular positions on the screen. For example, if we were to place
0 0 0 1 in AUXl, the first screen position at the left of the screen, magenta
would be displayed. If instead we plotted 0 10 0, we would get a dark green,
0 111a yellow, and so on. As there are 16 combinations of 4 bits, 16 colors are
available. However, one is white, one is black, and there are two greys, and so
actually we have 13 colors to choose from, quite an improvement over the 4
colors in single hi-res. Because the horizontal resolution in double hi-res is 560
dots and we use 4 for each color, the resolution in double hi-res color is 560/4 =
140 or the same as in single hi-res color. But, with more colors to choose from,
we can display more interesting graphics and with more apparent resolution
because of color contrasts. Also, as we'll see, there ts no limitation to color
combinations within lines as there is in single hi-res.

Because the high bit of the shape byte is not plotted, this presents a problem
when we want to repeat a particular dot pattern on the screen, which we would
do, for example, in plotting a line of a single color. Suppose we want to display a
dark blue line. The repeated dot pattern we ŵ t on the screen is 1 0 0 0. ff we
plot shape byte in AUXl, we will get the desired pattern, but * 11 is also
plotted in the next byte, MAINl, see what happens:

A U X l

#$11
1 0 0 0 1 0 0

M A I N l

#$11
1 0 0 0 1 0 0

Obviously, the desired pattern is not repeated. The pattern is repeated, however,
by plotting #$22 in MAINl and to continue the pattern, we would plot #$44 in
AUX2 and #$08 (or #$88) in MAIN2, the next two positions over.

A U X l M A I N l
$ 1 1 # $ 2 2

1 0 0 0 1 0 0 0 1 0 0 0 1 0

A U X 2
#$44

0 0 1 0 0 0 1

M A I N 2

#$08
0 0 0 1 0 0 0

After these 4 bytes, the pattern repeats itself, starting with #$11 in AUX3,
#$22 in MAIN3, etc. If we were to plot a dark blue line from AUX2, for example,
the bytes would be #$44, #$08, #$11, #$22, #$44, etc. Thus, each color has its
own sequence of 4 bytes, the particular starting byte required depending on the
distance from the left screen border. The dot pattern and the 4-byte sequence
for each of the 16 colors is shown in Table 12-1.

Hi-Res Graphics and Animation Using Assembiy Language

C o l o r B i t P a t t e r n

Ta b l e 1 2 - 1

A U X l M A I N I A U X 2 M A I N 2

B l a c k 0 0 0 0 # $ 0 0 # $ 0 0 # $ 0 0 # $ 0 0
Magen ta 0 0 0 1 # $ 0 8 # $ 11 # $ 2 2 # $ 4 4
B r o w n 0 0 1 0 # $ 4 4 # $ 0 8 # $ 11 # $ 2 2
Orange 0 0 1 1 # $ 4 0 #$19 # $ 3 3 #$66
D a r k G r e e n 0 1 0 0 #$22 #$44 #$08 #$11
Grey 1 0 1 0 1 #$2A #$55 # $ 2 A #$55
G r e e n 0 1 1 0 # $ 6 6 # $ 4 C #$19 # $ 3 3
Y e l l o w 0 1 1 1 # $ 6 E # $ 5 D # $ 3 B # $ 7 7
D a r k B l u e 1 0 0 0 #$11 # $ 2 2 # $ 4 4 #$08
V i o l e t 1 0 0 1 # $ 1 9 # $ 3 3 # $ 6 6 # $ 4 C
Grey 2 1 0 1 0 # $ 5 5 # $ 2 A # $ 5 5 # $ 2 A
P i n k 1 0 1 1 # $ 5 D # $ 3 B # $ 7 7 # $ 6 E
M e d i u m B l u e 1 1 0 0 # $ 3 3 # $ 6 6 # $ 4 0 # $ 1 9
Light Blue 1 1 0 1 # $ 3 B #$77 #$6E #$5D
A q u a 1 1 1 0 #$77 #$6E #$5D #$3B
W h i t e 1 1 1 1 #$7F #$7F #$7F #$7F

This table is useful for drawing any color line anywhere on the screen. The
particular starting point determines which byte is used first, then the other bytes
are plotted in sequence. This is fine for a line of a single color but what if we
want to plot a line with two or more colors? If the new color starts at a 4-byte
boundary, we continue with the next sequence of 4 bytes for the new color.
Thus, to plot a line in dark blue and magenta, with each color containing 4 bytes,
the sequence would be 11,22,44,08,08,11,22,44. If the new color starts in the
middle of a 4-byte sequence, we have to calculate a new byte at the color shift
point by inspection. Let's say we want to plot a line containing 2 bytes of dark
blue and 2 bytes of magenta. From Table 12-1 we get the values 11 and 22 for
the dark blue in AUXl and MAINI, and 22 and 44 for the magenta in AUX2 and
MAIN2. See what happens when we plot these bytes;

A U X l M A I N I A U X 2 M A I N 2
$ 1 1 # $ 2 2 # $ 2 2 # $ 4 4

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
I I I I I I I I I I I I I I

b l u e b l u e b l u e v i o l e t m a g e n t a m a g e n t a m a g e n t a

Obviously, a different byte is required to turn that fourth position into either
blue or magenta. Let's change it to a dark blue. The byte to be plotted in AUX2 is
« 2 0 :

A U X l M A I N I A U X 2 M A I N 2
$ 1 1 # $ 2 2 # $ 2 0 # $ 4 4

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
I I ' ' I I I I I I I I I I

b l u e b l u e b l u e b l u e m a g e n t a m a g e n t a m a g e n t a

Similarly, if we want to change the fourth position to magenta, the order of
bytes would be 11, 02, 22, 44. 1 wish 1 could think of some formula to make this
kind of change easier but 1 can't—1 think it just has to be done by inspection, but
this is not so bad. You just decide what colors you want, inspect the dot patterns,
and choose the bytes accordingly.

Double Hi-Res Graphics and Animation

Note that there is no limitation for color combinations within a line—any of
the 16 colors can be placed next to any other. This provides for much greater
flexibility than is available in single hi-res color, over and above the larger
n u m b e r o f c o l o r s a v a i l a b l e .

Drawing a shape in double hi-res color takes some getting used to. What you
have to do is imagine that every 4 bits plot a single dot, so there are seven
possible dot plots for every two screen bytes, just as in single hi-res color. The
shape is plotted out, the shape bytes assembled into the usual shape tables, and
the shape can then be drawn with the double hi res routines described in the
beginning of this chapter. We'll see an example in the next section.

I say "imagine" every 4 bits plot a single dot because in actuality, each bit
that's "on" in the set of 4 is plotted. This is most easily seen on a monochrome
monitor, but it does have implications for the color display as well. To see what
this is all about, run the following program, which displays all 16 colors as lines,
each directly below the other, and observe the display on both a color and
m o n o c h r o m e m o n i t o r .

DPROGRAM
: A S M

6 0 0 0 : 4 C 0 6 6 0

6 0 0 6 : A D
6 0 0 9 : A D
6 0 0 C : 8 D
6 0 0 F : 8 D
6 0 1 2 : A D
6 0 1 5 : A D
6 0 1 8 : A D
6 0 1 B : 2 0
6 0 1 E : A D
6 0 2 1 : 2 0
6 0 2 4 : 4 C

6 0 2 7 : A 9
6 0 2 9 : 8 5
6 0 2 B : A 9
6 0 2 D : 8 5
6 0 2 F : A O
6 0 3 1 : A 9
6 0 3 3 : 9 1
6 0 3 5 : C 8
6 0 3 6 : D O
6 0 3 8 : E 6

1
2
3

0 6 6 0 4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

5 0 C O 1 8
5 7 C O 1 9
01 CO 20
OD CO 21
5E CO 22
5 2 C O 2 3
5 4 C O 2 4
2 7 6 0 2 5
5 5 C O 2 6
2 7 6 0 2 7
4 1 6 0 2 8

♦D O U B L E H I - R E S C O L O R B A R S
* *

ORG $6000
J M P P G M

L I N E O S 1
B Y T E D S 1
X C O U N T D S 1
G R A P H I C S = $ C 0 5 0
H I R E S = $ C 0 5 7
M I X O F F = $ C 0 5 2
S T O R E = I C O O l
A N 3 = $ C 0 5 E
C O L = $ C O O D
A U X = $ C 0 5 5
M A I N = $ C 0 5 4
H I G H = $ 1 B
L O W = $ 1 A
P G M L D A G R A P H I C S

L D A H I R E S
S TA S T O R E
S T A C O L
L D A A N 3
L D A M I X O F F
L D A M A I N
J S R C L E A R ; C L E A R M A I N
L D A A U X
JSR CLEAR - .CLEAR AUX I
J M P S T A R T

-.CLEAR MAIN P.l

-.CLEAR AUX P.l

CLEAR ;CLEAR SCREEN 1

(LOW).Y

Hi-Res Graphics and Animation Using Assembiy Language

6 0 3 A : A 5 I B 4 0 L O A H I G H
6 0 3 C : C 9 4 0 4 1 CMP #$40
6 0 3 E : 9 0 E F 4 2 B I T C L R l
6 0 4 0 : 6 0 4 3 RT S

4 4 * * * * * * * * M A I N P R O G R A M * * * * * * * *
6 0 4 1 : A 9 0 0 4 5 S T A R T L O A #$00
6 0 4 3 : 8 0 0 5 6 0 4 6 S T A X C O U N T
6 0 4 6 : A E 0 3 6 0 47 S TA R T l L O X L I N E
6049: AC 04 60 4 8 L O Y B Y T E
6 0 4 C : B D 0 4 6 0 4 9 L O A H I , X
6 0 4 F : 8 5 I B 5 0 S T A H I G H
6 0 5 1 : B O 9 4 6 1 5 1 L O A LO,X
6 0 5 4 : 8 5 l A 5 2 S T A LOW
6 0 5 6 : A E 0 5 6 0 5 3 L O X X C O U N T
6059: AO 55 CO 5 4 L O A A U X
605C: BO 94 60 5 5 L O A COLOR,X
6 0 5 F : 9 1 l A 5 6 S TA (LOW),Y
6061: AO 54 CO 5 7 L O A M A I N
6064: BO 95 60 5 8 L O A C0L0R+1,X
6 0 6 7 : 9 1 l A 5 9 S T A (LOW).Y
6069: C8 6 0 I N Y
606A: AO 55 CO 6 1 L O A A U X
6060: BO 96 60 6 2 L O A C0L0R+2,X
6 0 7 0 : 9 1 l A 6 3 S T A (LOW),Y
6072: AO 54 CO 6 4 L O A M A I N
6 0 7 5 : B O 9 7 6 0 6 5 L O A C0L0R+3,X
6 0 7 8 : 9 1 l A 6 6 S TA (LOW),Y
6 0 7 A : E E 0 5 6 0 6 7 I N C XCOUNT
6 0 7 0 : E E 0 5 6 0 6 8 I N C X C O U N T
6 0 8 0 : E E 0 5 6 0 6 9 I N C XCOUNT
6 0 8 3 : E E 0 5 6 0 7 0 I N C X C O U N T
6 0 8 6 : E E 0 3 6 0 7 1 I N C L I N E
6 0 8 9 : E E 0 3 6 0 7 2 I N C L I N E
6 0 8 C : A O 0 3 6 0 7 3 L O A L I N E
6 0 8 F : C 9 I F 7 4 CMP #$1F
6 0 9 1 : 9 0 8 3 7 5 B L T S T A R T l
6 0 9 3 : 6 0 7 6 R T S
6 0 9 4 : 0 0 0 0 0 0 7 7 COLOR H E X 0 0 0 0 0 0 0 0
6 0 9 7 : 0 0
6 0 9 8 : 0 8 1 1 2 2 7 8 HEX 0 8 1 1 2 2 4 4
6 0 9 B : 4 4
6 0 9 C : 4 4 0 8 1 1 7 9 HEX 4 4 0 8 1 1 2 2
6 0 9 F : 2 2
6 0 A 0 : 4 C 1 9 3 3 8 0 H E X 4 C 1 9 3 3 6 6
6 0 A 3 : 6 6
6 0 A 4 : 2 2 4 4 0 8 8 1 HEX 2 2 4 4 0 8 1 1
6 0 A 7 : 1 1
6 0 A 8 : 2 A 5 5 2 A 8 2 HEX 2 A 5 5 2 A 5 5
6 0 A B : 5 5
6 0 A C : 6 6 4 C 1 9 8 3 H E X 6 6 4 C 1 9 3 3
6 0 A F : 3 3
6 0 B 0 : 6 E 5 0 3 B 8 4 HEX 6 E 5 0 3 B 7 7
6 0 B 3 : 7 7
6 0 B 4 : 1 1 2 2 4 4 8 5 HEX 11 2 2 4 4 0 8
6 0 B 7 : 0 8
6 0 B 8 : 1 9 3 3 6 6 8 6 H E X 1 9 3 3 6 6 4 C
6 0 B B : 4 C
6 0 B C : 5 5 2 A 5 5 8 7 HEX 5 5 2 A 5 5 2 A
6 0 B F : 2 A
6 0 C 0 : 5 0 3 B 7 7 8 8 HEX 5 D 3 B 7 7 6 E
6 0 C 3 : 6 E

Double Hi-Res Braphlcs and Animation

6 0 C 4 : 3 3 6 6 4 C 8 9 H E X 3 3 6 6 4 C 1 9
6 0 C 7 : 1 9
6 0 C 8 : 3 B 7 7 6 E 9 0 H E X 3 B 7 7 6 E 5 D
6 0 C B : 5 D
6 0 C C : 7 7 6 E 5 0 9 1 H E X 7 7 6 E 5 D 3 B
6 0 C F : 3 B
6 0 D 0 : 7 F 7 F 7 F 9 2 H E X 7 F 7 F 7 F 7 F
6 0 D 3 : 7 F

L O

596 bytes

S y m b o l t a b l e - n u m e r i c a l o r d e r :

LOW =$1A H I G H =$1B L I N E =$6003
XCOUNT =$6005 PGM =$6006 CLEAR =$6027
C L R =$6033 START =$6041 S TA R T l =$6046
H I =$6004 LO =$6194 STORE =$0001
GRAPHICS =$0050 M I X O F F =$0052 M A I N =$0054
H I R E S =$0057 A N 3 = $ 0 0 5 E

BYTE
C L R l
COLOR
COL
AUX

On a monochrome monitor, preferably with the aid of a magnifying glass,
you would observe the following dot patterns, but of course much closer than
s h o w n ;

M a g e n t a 0 0 0 1
B r o w n 0 0 1 0

O r a n g e 0 0 1 1
D a r k B l u e 1 0 0 0

A q u a 1 1 1 0

This is why double hi-res colors are distinguishable on a monochrome
monitor—they all have a different dot pattern. On a color monitor, at least on
mine, the individual dots are not seen; continuous color lines are.

There is a problem, however, in the color dispiay. Look at the color monitor.
Although each line is plotted starting from the first screen position (AUXl), not
all line up exactly. The most extreme example is magenta and dark blue as you
might suspect, because the dot patterns are 0001 and 1000; i.e., the "on" bits are
at opposite ends of the 4-bit group. Other color combinations also have this
alignment problem to a degree depending on the particular dot patterns—the
closer the "on" bits are to each other, the lesser the problem. Thus, the 4-bit
pattern not only selects a particular color, but also changes slightly exactly
where the color is drawn. This presents the only limitation I can think of regard
ing double hi-res color combinations. If you want lines to align themselves
closely, there are certain color combinations that should not be used. Thankfully,
most combinations result in only a minor misalignment, so this is not a big prob
lem but is one you should be aware of when designing your shapes.

Hi-Res Graphics and Animation Using Assembly Language

A N I M AT I N G D O U B L E H I - R E S C O L O R S H A P E S

Is there a problem with vertical animation? Boo and hiss to those who
answer yes. As there is no change in column assignments, the shape is just drawn
once and moved up or down by changing screen line positions. Is there a prob
lem with horizontal animation? Does Apple make computers?

Let's consider a program (Program 12-4) that moves a single dark blue line
across the screen. The line length is just 2 bytes, so the first shape, at the left
screen border, contains bytes #$11 and #$22 from Table 12-1. The line could be
moved in whole screen-byte intervals, but this makes for rather jerky movement,
so we'll use half screen-byte jumps. As with other types of horizontal movement,
here too we use seven shape tables, but the particular bytes required cannot be
taken from Table 12-1 except for the first shape. To illustrate this, let's look at
the seven shape tables and see what bytes are required to obtain the desired dot
p a t t e r n .

A U X 1 M A I N 1 A U X 2 M A I N 2 A U X 3 M A I N 3
$ 1 1 # $ 2 2 # $ 0 0 # $ 0 0 # $ 0 0 # $ 0 0

S h a p e 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0

$ 1 0 # $ 2 2 # $ 0 4 # $ 0 0 # $ 0 0 # $ 0 0
Shape2 0000100 0100010 0010000 0000000 0000000 0000000

$ 0 0 # $ 2 2 # $ 4 4 # $ 0 0 # $ 0 0 # $ 0 0
Shape3 0000000 0100010 0010001 0000000 0000000 0000000

$ 0 0 # $ 2 0 # $ 4 4 # $ 0 8 # $ 0 0 # $ 0 0
Shape4 0000000 0000010 0010001 0001000 0000000 0000000

$ 0 0 # $ 0 0 # $ 4 4 # $ 0 8 # $ 0 1 # $ 0 0
Shape5 0000000 0000000 0010001 0001000 1000000 0000000

$ 0 0 # $ 0 0 # $ 4 0 # $ 0 8 # $ 1 1 # $ 0 0
Shape6 0000000 0000000 0000001 0001000 1000100 0000000

$ 0 0 # $ 0 0 # $ 0 0 # $ 0 8 # $ 1 1 # $ 0 2
Shape 7 0000000 0000000 0000000 0001000 1000100 0100000

Once the seven shapes are drawn, the pattern is repeated, but with the first
shape now drawn 2 screen bytes over, i.e., #$11 in AUX3 and #$22 in MAIN3,
etc. Thus, in the MAIN PROGRAM, we do INC BYTE twice after each seven
shapes. Each shape table consists of 6 bytes and the draw routine is A-M-INY-A-
M-INY-A-M—2 bytes over—A-M-INY-A-M-INY-A-M, etc. The remainder of the
program needs no further explanation, except to remind you that it can easily be
adapted to multiple line shapes by extending the shape tables and modifying
TEMP and the load shape routine accordingly. Thus, to draw two blue lines of
the same length, one under the other, the shape 1 table would be 11, 22, 00, 00,
00, 00, II, 22, 00, 00, 00, 00, TEMP would be changed to DS 12, and in the

Oouble Hi-Res Braphics and Animation

D take into

245

*DOUBLE HI-RES COLOR * 1 BLUE LINE

★ ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★•A

ORG $6000
J M P P G M

L I N E O S 1
L I N E A O S 1
B Y T E O S 1

Hi-Res Graphics and Animation Using Assembly Language

37
6 1
3 D
6 1
4 3
6 1
4 9
6 1
4 F
6 1
5 5
6 1
5 B
6 1
A D 5 0
A D 5 7
8 D 0 1
8 D O D
A D 5 E
A D 5 2
A 9 7 0
80 OF
A D 5 4
2 0 4 4
A D 5 5
2 0 4 4
4 C 5 E

A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
6 0

2 0 8 F

1 0 D E P T H D S 1
1 1 X C O U N T D S 1
1 2 S H P N O D S 1
1 3 TEMP D S 6
1 4 D E L A Y D S 1
1 5 G R A P H I C S = $C050
1 6 H I R E S = $C057
1 7 M I X O F F = $C052
1 8 STORE = $C001
1 9 A N 3 = $C05E
2 0 C O L = $COOD
2 1 A U X = $ C 0 5 5
2 2 M A I N = $ C 0 5 4
2 3 H I G H = $1B
2 4 LOW = $ 1 A
2 5 W A I T = $FCA8
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
36
37
3 8
39
4 0

C O 4 1
C O 4 2
C O 4 3
C O 4 4
C O 4 5
C O 4 6

4 7
6 0 4 8
C O 4 9
6 0 5 0
C O 5 1
6 0 5 2
6 0 5 3

5 4
5 5
5 6
5 7
5 8
5 9
6 0
61
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9

6 0 7 0

*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
S H P A D R D F B # < S H A P E 1

D F B # > S H A P E 1
D F B # < S H A P E 2
D F B # > S H A P E 2
D F B # < S H A P E 3
D F B # > S H A P E 3
D F B # < S H A P E 4
D F B # > S H A P E 4
D F B # < S H A P E 5
D F B # > S H A P E 5
D F B # < S H A P E 6
D F B # > S H A P E 6
D F B # < S H A P E 7
D F B # > S H A P E 7

P G M L D A G R A P H I C S
I D A H I R E S
S T A S T O R E
S T A C O L
L D A A N 3
L D A M I X O F F
L D A # $ 7 0
S T A D E L A Y
L D A M A I N
J S R C L E A R ; C L E A R M A I N P . l
L D A A U X
J S R C L E A R ; C L E A R A U X P . l
J M P S T A R T

C L E A R L D A # $ 0 0 i C L E A R S C R E E N 1

* * * * * * * *

S TA R T

L D A # $ 0 0 ; C L E A P
S T A L O W
L D A # $ 2 0
S T A H I G H
L D Y # $ 0 0
L D A # $ 0 0
STA (LOW).Y
I N Y
B N E C L R
I N C H I G H
L D A H I G H
C M P # $ 4 0
B L T C L R l
R T S
M A I N P R O G R A M * * * * * * * *
J S R I N I T I A L

;CLEAR SCREEN 1

Double Hi-Des Graphics and Animation

S T A R T l L D A # $ 0 0
S T A S H P N O

S T A R T 2 J S R L O A D S H P
J S R D R A W
L D A D E L A Y
J S R W A I T
J S R D R AW
I N C S H P N O
L D A S H P N O
CMP #$07
B L T S T A R T 2
I N C B Y T E
I N C B Y T E
L D A B Y T E
C M P # $ 2 6
B L T S T A R T l
J M P S TA R T

* * * * * * * S U B R O U T I N E S * * * * * * *

I N I T I A L L D A # $ 0 0
S T A B Y T E
S T A L I N E
S T A L I N E A
n r

A D C # $ 0 1
S T A D E P T H

** LOAD SHAPE TABLE INTO TEMP * *

LOADSHP LDA SHPNO
ASL
TA X
LDA SHPADR.X
S TA L O W
LDA SHPADR+1,X
S T A H I G H
LDY #$00

LOADSHPl LDA (LOW),Y
STA TEMP.Y
I N Y
CPY #$06
B LT L O A D S H P l
RTS

* *

D R AW l

#$00
XCOUNT
BYTE
L I N E

H I , X
H I G H

LO,X
LOW
XCOUNT
AUX

aow),Y
TEMP.X
(L0W),Y
MAIN
(LOW),Y
TEMP+1,X
(LOW),Y

Hi-Res Graphics and Animation Using Assembiy Language

B 1 l A
5 D O B 6 0
9 1 l A
A D 5 4 C O
B 1 l A
5 0 O C 6 0
9 1 l A
0 8
AD 55 CO
B 1 l A
5D OD 60
9 1 l A
AD 54 CO
B 1 l A
5D OE 60
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A D 0 3 6 0
C D 0 6 6 0
9 0 9 2
A D 0 4 6 0
8 D 0 3 6 0
6 0
1 1 2 2 0 0
0 0 0 0 0 0
1 0 2 2 0 4
0 0 0 0 0 0
0 0 2 2 4 4
0 0 0 0 0 0
0 0 2 0 4 4
0 8 0 0 0 0
0 0 0 0 4 4
0 8 0 1 0 0
0 0 0 0 4 0
0 8 1 1 0 0
0 0 0 0 0 0
0 8 1 1 0 2

S H A P E l

S H A P E 4

(LOW),Y
TEMP+2,X
(LOW),Y

M A I N

(LOW),Y
TEMP+3,X
(LOW).Y

A U X
(LOW),Y
TEMP+4,X
(LOW),Y

M A I N

(LOW).Y
TEMP+5,X
(LOW).Y
XCOUNT
XCOUNT
XCOUNT
XCOUNT
X C O U N T
X C O U N T
L I N E
L I N E
D E P T H
D R A W l
L I N E A
L I N E

11 2 2 0 0 0 0 0 0 0 0

S H A P E 2 H E X 1 0 2 2 0 4 0 0 0 0 0 0

S H A P E 3 H E X 0 0 2 2 4 4 0 0 0 0 0 0

H E X 0 0 2 0 4 4 0 8 0 0 0 0

S H A P E 5 H E X 0 0 0 0 4 4 0 8 0 1 0 0

S H A P E 6 H E X 0 0 0 0 4 0 0 8 1 1 0 0

S H A P E 7 H E X 0 0 0 0 0 0 0 8 1 1 0 2

7 3 7 b y t e s

Symbol tab le - numer ica l o rder :

L O W = $ 1 A H I G H = $ 1 B L I N E = $ 6 0 0 3
B Y T E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 X C O U N T = $ 6 0 0 7
T E M P = $ 6 0 0 9 D E L A Y = $ 6 0 0 F S H P A D R = $ 6 0 1 0
C L E A R = $ 6 0 4 4 C L R l = $ 6 0 4 0 C L R = $ 6 0 5 0
S T A R T l = $ 6 0 6 1 S T A R T 2 = $ 6 0 6 6 I N I T I A L = $ 6 0 8 F
L 0 A D S H P 1 = $ 6 0 B 2 D R A W = $ 6 0 B D D R A W l = $ 6 0 0 2
S H A P E 2 = $ 6 1 3 0 S H A P E 3 = $ 6 1 4 3 S H A P E 4 = $ 6 1 4 9
S H A P E 6 = $ 6 1 5 5 S H A P E 7 = $ 6 1 5 B H I = $ 6 1 6 1
S T O R E = $ 0 0 0 1 C O L = $ 0 0 0 0 G R A P H I C S = $ C 0 5 0
M A I N = $ 0 0 5 4 A U X = $ 0 0 5 5 H I R E S = $ 0 0 5 7
W A I T = $ F C A 8

L I N E A = $ 6 0 0 4
SHPNO =$6008
P G M = $ 6 0 1 E
S TA RT = $ 6 0 5 E
LOADSHP =$60A1
SHAPEl =$6137
SHAPES =$614F
L O = $ 6 2 2 1
MIXOFF =$0052
A N 3 = $ C 0 5 E

Double Hi-Res Graphics and Animation

This is a simple program, but it illustrates the basic principles of horizontal
animation in double hi-res color. For more complicated shapes with multiple
colors, all one has to do is map out the shape to get the proper shape bytes and
to design the proper draw routine. To see double hi-res color in action, run the
following program, which moves a wildly colored spaceship vertically (I don't
have an extra month to draw the seven shapes for horizontal movement).

]PROGRAM 12-
: A S M

1 * * D O U B L E H I - R E S C O L O R * VERTICAL SPACESHIP
2 ORG $ 6 0 0 0

6 0 0 0 : 4 C 0 9 6 0 3 J M P PGM
4 L I N E DS 1
5 L I N E A DS 1
6 B Y T E DS 1
7 DEPTH DS 1
8 XCOUNT DS 1
9 D E L AY DS 1
1 0 G R A P H I C S = $C050
1 1 M I X O F F $C052
1 2 H I R E S = $C057
1 3 A N 3 = $C05E
1 4 C 0 L 8 0 = $COOD
1 5 S T 0 R E 8 0 = SCOOl
1 6 A U X = $C055
17 M A I N = $C054
1 8 H I G H = $1B
1 9 LOW = $1A
2 0 WAIT = $FCA8

6 0 0 9 : A D 5 0 CO 2 1 PGM L D A GRAPHICS
6 0 0 C : A D 5 2 CO 2 2 L D A MIXOFF
6 0 0 F : A D 5 7 CO 2 3 L D A H I R E S

6 0 1 2 : 8 D 0 1 CO 2 4 S T A S T 0 R E 8 0

6 0 1 5 : 8 D OD CO 2 5 S T A C 0 L 8 0

6 0 1 8 : A D 5 E CO 2 6 L D A A N 3

6 0 1 B : A D 5 4 CO 2 7 L D A M A I N

6 0 1 E : 2 0 2 A 6 0 2 8 J S R C L : ^ R ;CLEAR MAIN SCREEN
6 0 2 1 : A D 5 5 CO 2 9 LDA AUX
6 0 2 4 : 2 0 2 A 6 0 3 0 J S R CLEAR ;CLEAR AUX SCREEN
6 0 2 7 : 4 C 4 4 6 0 3 1 J M P DE

60 2A : A 9 0 0 3 2 CLEAR L D A # 0 0 ;CLEAR SCREEN SUBROUTINE
6 0 2 C : 8 5 l A 3 3 S TA LOW

6 0 2 E : A 9 2 0 3 4 L D A #$20
6 0 3 0 : 8 5 I B 3 5 S T A H I G H

6 0 3 2 : A O 0 0 3 6 C L R l L D Y # 0 0
6 0 3 4 : A 9 0 0 3 7 L D A # 0 0
6 0 3 6 : 9 1 l A 3 8 C L R S TA (LOW).Y
6 0 3 8 : C 8 3 9 I N Y

6 0 3 9 : DO F B 4 0 BNE C L R

6 0 3 B : E 6 I B 4 1 I N C H I G H

6 0 3 D : A 5 I B 4 2 LDA HIGH
6 0 3 F : C9 4 0 4 3 CMP #$40
6 0 4 1 : 90 EF 4 4 BCC C L R l
6 0 4 3 : 6 0 45 RTS

6 0 4 4 : A 9 6 0 4 6 DE LDA #$60 ;L0AD DELAY
6 0 4 6 : 8 D 0 8 6 0 4 7 STA DELAY

Hi-Res Braphics and Animation Using Assembiy Language

2 0 6 8 6 0
2 0 7 0 6 0
A D 0 8 6 0
2 0 A S F C
2 0 7 0 6 0
E E 0 6 6 0
E E 0 4 6 0
A O 0 4 6 0
8 0 0 3 6 0
C 9 8 8
8 0 E l
4 C 4 C 6 0

A 9 0 0
8 0 0 5 6 0
80 03 60
8 0 0 4 6 0
18
6 9 0 9
8 0 0 6 6 0
6 0

A 9 0 0
8 0 0 7 6 0
A C 0 5 6 0
A E 0 3 6 0
8 0 4 8 6 1
8 5 1 8
8 0 0 8 6 2
8 5 l A
A E 0 7 6 0
A O 5 5 C O
8 1 l A
5 0 0 3 6 1
9 1 l A
AO 54 CO
8 1 l A
5 0 0 4 6 1
9 1 l A
C 8
AO 55 CO
8 1 l A
5 0 0 5 6 1
9 1 l A
A O 5 4 C O
8 1 l A
5 0 0 6 6 1
9 1 l A
C 8
AO 55 CO
8 1 l A
5 0 0 7 6 1
9 1 l A
A O 5 4 C O
8 1 l A
5 0 0 8 6 1
9 1 l A
C 8
A O 5 5 C O

* * * * * * * * * * M A I N P R O G R A M * * * * * * * * * *
S T A R T J S R I N I T I A L ; S E T I N I T
S T A R T l J S R D R A W

L O A D E L A Y
J S R W A I T
J S R D R A W
I N C D E P T H
I N C L I N E A
L O A L I N E A
S T A L I N E
C M P # $ 8 8
8 G E S T A R T
J M P S T A R T l

* * * * * * * * * * S U 8 R 0 L) T I N E S * * * * * * * * * *

;SET INITIAL 8YTE, LINE, DEPTH

I N I T I A L # $ 0 0
8 Y T E
L I N E
L I N E A

#$09
D E P T H

★ ★

* * D R A W S U 8 R 0 U T I N E * *

D R A W L O A # $ 0 0
S TA X C O U N T

O R A W l L O Y B Y T E
L O X L I N E
L O A H I , X
S T A H I G H
L O A L O , X
S T A L O W
L O X X C O U N T
L O A A U X
LOA (LOW),Y
EOR SHAPE,X
STA (LOW),Y
L O A M A I N
LOA (LOW),Y
EOR SHAPE+1,X
STA (LOW),Y
I N Y
L O A A U X
LOA {LOW),Y
EOR SHAPE+2,X
S TA (L O W) , Y
L O A M A I N
LOA (LOW),Y
EOR SHAPE+3,X
STA (LOW),Y
I N Y
L O A A U X
LOA (LOW),Y
EOR SHAPE+4,X
STA (LOW),Y
L O A M A I N
LOA (LOW),Y
EOR SHAPE+5,X
STA (LOW),Y

lOEPTH OF SHAPE

Double Hi-Res Graphics and Animation

6 0 D 7 :
6 0 D 9 :
6 0 D C :
6 0 D E :
6 0 E 1 :
6 0 E 3 :
6 0 E 6 :
6 0 E 8 :
6 0 E B :
6 0 E C :
6 0 E E :
6 0 F 1 :
6 0 F 4 :
6 0 F 7 :
6 0 F A :
6 0 F C :
6 0 F F :
6 1 0 2 :
6 1 0 3 :
6 1 0 6 :
6 1 0 B :
6 1 0 E :
6 1 1 3 :
6 1 1 6 :
6 1 1 B :
6 1 1 E :
6 1 2 3 :
6 1 2 6 :
6 1 2 B :
6 1 2 E :
6 1 3 3 :
6 1 3 6 :
6 1 3 B :
6 1 3 E :
6 1 4 3 :
6 1 4 6 :

B 1 l A
5 0 0 9
9 1 l A
A D 5 4
B 1 l A
5 0 O A
9 1 l A
A O 0 7
1 8
6 9 0 8
8 0 0 7
E E 0 3
A O 0 3
C O 0 6
9 0 8 6
A O 0 4
8 0 0 3
6 0
0 0 0 0
5C 3B
0 0 0 0
3 3 6 6
0 0 3 2
4 0 1 9
1 1 2 2
0 8 1 1
1 1 1 0
7 0 I E
3 3 6 6
1 9 3 3
0 0 1 8
1 0 0 2
0 0 5 0
6 8 0 0
0 0 1 0
7 0 O E

S H A P E
0 0 0 0 0 0
1 8 1 2 8
4 0 0 0 0 0
6 6 1 2 9
3 3 6 6 0 0
4 4 1 3 0
2 2 4 4 0 8
4 6 1 3 1
0 2 7 3 0 8
4 0 1 3 2
6 6 4 0 1 9
0 3 1 3 3
0 0 11 0 0
0 3 1 3 4
0 0 2 2 0 0
0 2 1 3 5
0 0 3 3 0 0

LOA (LOW),Y
EOR SHAPE+6,X
STA (LOW),Y
L O A M A I N
LOA (LOW),Y
EOR SHAPE+7,X
STA (LOW),Y
LOA XOOUNT
OLO
AOC #$08
S TA X O O U N T
I N O L I N E
L O A L I N E
OMP DEPTH
B L T O R A W l
L O A L I N E A
S T A L I N E ; R E S E T
RT S
HEX OOOO4O503BOO0OOO

H E X 0 0 0 0 1 8 3 3 6 6 4 0 0 0 0 0

H E X 0 0 3 2 6 6 4 0 1 9 3 3 6 6 0 0

H E X 1 1 2 2 4 4 0 8 1 1 2 2 4 4 0 8

H E X 111 0 4 6 7 0 1 E 0 2 7 3 0 8

H E X 3 3 6 6 4 0 1 9 3 3 6 6 4 0 1 9

H E X 0 0 1 8 0 3 1 0 0 2 0 0 11 0 0

H E X 0 0 5 0 0 3 6 8 0 0 0 0 2 2 0 0

H E X 0 0 1 0 0 2 7 0 0 E 0 0 3 3 0 0

;RESET LINE FOR NEXT CYCLE

715 bytes

Symbol table - numerical order:
LOW =$1A H I G H =$1B L I N E =$6003
B Y T E =$6005 D E P T H =$6006 XOOUNT =$6007
PGM =$6009 C L E A R =$602A O L R l =$6032
OE =$6044 S TA R T =$6049 S TA R T l =$6040
DRAW =$6070 O R A W l =$6082 S H A P E =$6103
LO =$620B S T 0 R E 8 0 =$0001 0 0 L 8 0 =$0000
MIXOFF =$0052 MAIN =$0054 AUX =$0055
AN3 =$C05E WAIT =$FCA8

Curved and
Diagonal Movement
Moving up and doivn and to and fro
Is easy enough as you well know,
But moving at an angle
Can cause quite a tangle
As you change each column and row.

a until now we've only considered shapes moving either vertically or
horizontally, but sometime in your career as a graphics computer programmer
you might want to display other types of movements without having to tilt or
rotate the monitor. The principle is easy. For vertical movement, we keep the
screen byte constant and alter the line position; for horizontal movement, the
line position is kept constant while the screen byte is changed (stop me if I'm
going too fast). For diagonal or curved movement we change both the screen
byte and line position for each draw. I told you it was easy.

Armed with this information we can now move shapes around in any kind of
meandering path but, in general, pleasant results are obtained only if shapes
move in some kind of recognizable pattern, either diagonally or in a curve
described by some type of simple equation (don't worry, we're not going to get
into quantum mechanics or even calculus, but keep in mind that E = mc^). An
exception to this is when movement in all directions is controlled by a joystick
or paddles as we saw in Chapter 6 (Program 6-3).

D I A G O N A L M O V E M E N T

For any kind of non-vertical movement, there is always a horizontal vector
and so we have to use the horizontal protocol, i.e., seven preshifted shapes. To
illustrate diagonal movement, we're going to use Program 5-1 as a starting
point—it moves a plane shape across the screen.

For our first example, let's move the plane down one line for each horizontal
1 bit move (see Program 13-1)■ After each draw and erase, we do an INC LINEA
(remember, we don't INC LINE because LINE is altered in the draw routine).
Before going on, we test to see if we've reached the bottom of the screen (line

Curved and Diagonal Movement

#$BA). If we have, we start over. If not, we continue by loading LINE with
LINEA, adding the shape depth to LINE, and storing in DEPTH (DEPTH has to be
changed each time the line position is changed). We then continue with the
usual routine, i.e., next shape number, etc., and also test for the end of the
screen. In this particular example, the plane will reach the bottom first before
reaching the end of the screen because there are only 192 lines but 280
horizontal bit positions. However, we're testing for both bottom and end of
screen to make the program more generally applicable.

L O A D S H A P E A D D R E S S E S
I N T O S H P A D R

D I S P L A Y A N D C L E A R S C R E E N

SET INITIAL LINE NUMBER, BYTE
P O S I T I O N A N D D E P T H

F I R S T S H A P E

L O A D I N T O T E M P

D R A W

D E L A Y

E R A S E

N E X T L I N E

R E A C H E D B O T T O M ?

N E X T S H A P E

A L L 7 S H A P E S ?

NEXT SCREEN BYTE

N o I 1 Y e s
E N D O F S C R E E N ?

Hi-Res Graphics and Animation Using Assembiy Language

]PROGRAM 13-
: A S M

1 * 1 S H A P E D I A G O N A L
2 * 2 B Y T E S W I D E , 5 LINES D E E P
3 ORG $6000

6 0 0 0 : 4 C 2 7 6 0 4 J M P PGM
5 L I N E OS 1
6 L I N E A D S 1
7 B Y T E D S 1
8 D E P T H D S 1
9 XCOUNT D S 1
1 0 SHPNO D S 1
1 1 D E L AY D S 1
1 2 TEMP D S 1 5
1 3 G R A P H I C S = $C050
1 4 M I X O F F = $C052
1 5 H I R E S = $C057
1 6 P A G E l $C054
1 7 H I G H $1B
1 8 LOW - $1A
1 9 W A I T = $FCA8
2 0 *LOAD SHAPE ADDRESSES INTO SHPADR, LOW
2 1 * C O N T I N U E F O R A L L 7 S H A P E S

6 0 1 9 : 0 0 2 2 S H PA D R D F B #<SHAPE1
60 lA: 6 1 2 3 D F B #>SHAPE1
6 0 1 B : I C 2 4 D F B #<SHAPE2
6 0 1 C : 6 1 2 5 D F B #>SHAPE2
6 0 1 D : 2 B 2 6 D F B #<SHAPE3
6 0 1 E : 6 1 2 7 D F B #>SHAPE3
6 0 1 F : 3A 2 8 D F B #<SHAPE4
6 0 2 0 : 6 1 2 9 D F B #>SHAPE4
6 0 2 1 : 4 9 3 0 D F B #<SHAPE5
6 0 2 2 : 6 1 3 1 D F B #>SHAPE5
6 0 2 3 : 5 8 3 2 D F B #<SHAPE6
6 0 2 4 : 6 1 3 3 D F B #>SHAPE6
6 0 2 5 : 6 7 3 4 D F B #<SHAPE7
6 0 2 6 : 6 1 3 5 D F B #>SHAPE7
6 0 2 7 : A D 5 0 CO 3 6 PGM L D A G R A P H I C S ; H I R E S , P. l
6 0 2 A : A D 5 2 CO 3 7 L D A M I X O F F
6 0 2 D : A D 5 7 CO 3 8 L D A H I R E S
6 0 3 0 : A D 5 4 CO 3 9 L D A P A G E l
6 0 3 3 : A 9 0 0 4 0 L D A #$00 ;CLEAR SCREEN
6 0 3 5 : 8 5 l A 4 1 S T A LOW
6 0 3 7 : A 9 2 0 4 2 L D A #$20
6 0 3 9 : 8 5 I B 4 3 S T A H I G H
6 0 3 B : AO 0 0 4 4 C L R l L D Y # $ 0 0
6 0 3 D : A 9 0 0 4 5 L D A # $ 0 0
6 0 3 F : 9 1 l A 4 6 C L R S T A (LOW),Y
6 0 4 1 : C B 4 7 I N Y
6 0 4 2 : DO F B 4 8 BNE C L R
6 0 4 4 : E 6 I B 4 9 I N C H I G H
6 0 4 6 : A 5 I B 5 0 L D A H I G H
6 0 4 8 : C 9 4 0 5 1 CMP #$40
6 0 4 A : 9 0 E F 5 2 B L T C L R l
6 0 4 C : A 9 6 0 5 3 L D A #$60 ;LOAD DELAY
6 0 4 E : 8 D 0 9 6 0 5 4 S TA D E L AY

5 5 * * * * * * * * * * M A I N P R O G R A M * * * * * * * * * *

6 0 5 1 : 2 0 9 5 6 0 5 6 S TA R T J S R I N I T I A L ;SET INITIAL
6 0 5 4 : A 9 0 0 5 7 S T A R T l L D A #$00 ;FIRST SHAPE
6 0 5 6 : 8 D 0 8 6 0 5 8 S TA S H P N O
6 0 5 9 : 2 0 A 7 6 0 5 9 S TA R T 2 J S R L O A D S H P ;LOAD SHAPE I

B Y T E F I R S T

NUMBER

Curved and Diagonal Movement

Hi-Bes Graphics and Animation Using Assembiy Language

6 0 E 5 : 5 D O B 6 0 1 2 1
6 0 E 8 : 9 1 l A 1 2 2
6 0 E A : C 8 1 2 3
6 0 E B : 3 1 l A 1 2 4
6 0 E D : 5 D O C 6 0 1 2 5
6 0 F 0 : 9 1 l A 1 2 6
6 0 F 2 : E E 0 7 6 0 1 2 7
60F5: EE 07 60 128
60F8: EE 07 60 129
60FB: EE 03 60 130
60FE: AD 03 60 131
6101: CD 06 60 132
6 1 0 4 : 9 0 0 2 1 3 3
6106 : AD 04 60 134
6 1 0 9 : 8 0 0 3 6 0 1 3 5
6 1 0 0 : 6 0 1 3 6
610D: 02 00 00 137 SHAPEl
6110: 06 00 00 7E IF 00
6 11 6 : 7 E 3 7 0 0 1 3 8
6119: 7E 7F 00
5110 : 04 00 00 139 SHAPE2
511F: 00 00 00 70 3F 00
5 1 2 5 : 7 0 6 F 0 0 1 4 0
5 1 2 8 : 7 0 7 F 0 1
5 1 2 B : 0 8 0 0 0 0 1 4 1 S H A P E 3
i l 2 E : 1 8 0 0 0 0 7 8 7 F 0 0
i l 3 4 : 7 8 5 F 0 1 1 4 2
i l 3 7 : 7 8 7 F 0 3
' 1 3 A : 1 0 0 0 0 0 1 4 3 S H A P E 4
1 3 0 : 3 0 0 0 0 0 7 0 7 F 0 1
1 4 3 : 7 0 3 F 0 3 1 4 4
1 4 6 : 7 0 7 F 0 7
1 4 9 : 2 0 0 0 0 0 1 4 5 S H A P E 5
1 4 0 : 6 0 0 0 0 0 6 0 7 F 0 3
1 5 2 : 6 0 7 F 0 6 1 4 6
1 5 5 : 6 0 7 F O F
1 5 8 : 4 0 0 0 0 0 1 4 7 S H A P E 6
1 5 B : 4 0 0 1 0 0 4 0 7 F 0 7
1 6 1 : 4 0 7 F O D 1 4 8
1 6 4 : 4 0 7 F I F
1 6 7 : 0 0 0 1 0 0 1 4 9 S H A P E 7
L 6 A : 0 0 0 3 0 0 0 0 7 F O F
1 7 0 : 0 0 7 F I B 1 5 0
L 7 3 : 0 0 7 F 3 F

TEMP+1,X
(LOW),Y

(LOW),Y
TEMP+2,X
(LOW),Y
XOOUNT
XCOUNT
XOOUNT
L I N E
L I N E
D E P T H
D R A W l
L I N E A
L I N E ;RESET LINE FOR NEXT CYCLE

0200000600007E1F00 ;SHAPE TABLES

7 E 3 7 0 0 7 E 7 F 0 0

0 4 0 0 0 0 0 0 0 0 0 0 7 0 3 F O O

7 0 6 F 0 0 7 0 7 F 0 1

0 8 0 0 0 0 1 8 0 0 0 0 7 8 7 F O O

7 8 5 F 0 1 7 8 7 F 0 3

1 0 0 0 0 0 3 0 0 0 0 0 7 0 7 F 0 1

7 0 3 F 0 3 7 0 7 F 0 7

2 0 0 0 0 0 6 0 0 0 0 0 6 0 7 F 0 3

6 0 7 F 0 6 6 0 7 F 0 F

4 0 0 0 0 0 4 0 0 1 0 0 4 0 7 F 0 7

4 0 7 F 0 D 4 0 7 F 1 F

0 0 0 1 0 0 0 0 0 3 0 0 0 0 7 F 0 F

0 0 7 F 1 B 0 0 7 F 3 F

7 5 8 b y t e s

Symbol tab le - numer ica l o rder :

LOW
BYTE
DELAY
O L R l
S T A R T 2 =
L 0 A D S H P 1 =
S H A P E 2 =
S H A P E 6 =
GRAPHIOS=
W A I T

=$1A
=$6005
=$6009
=$603B
=$6059
=$6088
=$6110
=$6158
=$0050
=$F0A8

HIGH
D E P T H
TEMP
C L R
STARTS
DRAW
S H A P E S
S H A P E 7
M I X O F F

=$1B
=$6006
=$600A
=$603F
=$6075
=$6003
=$612B
= $ 6 1 6 7
=$0052

L I N E
XCOUNT
SHPADR
START

=$6003
=$6007
=$6019
=$6051

I N I T I A L = $ 6 0 9 5
D R A W l
S H A P E 4
H I
P A G E l

=$6008
=$613A
=$6176
=$0054

L INEA =$6004
S H P N O = $ 6 0 0 8
P G M = $ 6 0 2 7
S TA R T l = $ 6 0 5 4
LOADSHP =$60A7
SHAPEl =$6100
SHAPE5 =$6149
L O = $ 6 2 3 6
H I R E S = $ 0 0 5 7

F

Curved and Diagonal Movement

We can make the plane drop at an even steeper angle simply by increasing
the line positions more often than once every horizontal move. We would do
INC LINEA twice, or three times, or however many we want before going on to
the next draw, but keep in mind that we want to keep the line jumps to a
reasonably small number to maintain smooth animation. We could, with a more
complicated protocol, draw the shape at each line position instead of after each
every two or three line moves, but this results in a rather noticeable jerky
motion. Line jumps between draws result in a more acceptable animation as
long as the distance between draws is kept small (large jumps are okay for fast
moving shapes, as we'll see below).

Suppose now we want the plane to drop at a shallower angle, let's say one
line for every two horizontal moves. The next program (13-2) illustrates how
this is done. We set up a counter labeled DE and set it to zero in the INITIAL
subroutine. After the first draw and erase, DE is incremented by I. If DE is less
than 2 (line 67), we continue drawing on the same line. After the shape has
been drawn and erased two times, DE = 2 and the branch at line 68 is not
taken; DE is zeroed, LINEA is incremented and, if the bottom has not yet been
reached, drawing continues, now one line down. Note that each time LINEA is
changed, LINE is loaded with LINEA and DEPTH is adjusted (line 76). We can
easily make the shape fall in a shallower angle by changing the CMP value in line
67. Thus, if we do a CMP #«03, the shape will move three horizontal positions
between each line change.

257

L O A D S H A P E A D D R E S S E S I H
INTO SHPADR |

Hi-Res Graphics and Animation Using Assembiy Language

]PROGRAM 13-2
: A S M

6 0 1 A :
6 0 1 B :
6 0 1 C :
6 0 1 D :
6 0 1 E :
6 0 1 F :
6 0 2 0 :
6 0 2 1 :
6 0 2 2 :
6 0 2 3 :
6 0 2 4 :
6 0 2 5 :
6 0 2 6 :
6 0 2 7 :
6 0 2 8 :
6 0 2 B :
6 0 2 E :
6 0 3 1 :
6 0 3 4 :
6 0 3 6 :
6 0 3 8 :
6 0 3 A :
6 0 3 C :
6 0 3 E :
6 0 4 0 :
6 0 4 2 :
6 0 4 3 :
6045 :
6 0 4 7 :
6 0 4 9 :
6 0 4 B :
6 0 4 0 :
6 0 4 F :

1 *1 SHAPE O I A G O N A L 2 H O R I Z . 1 V E R T.
2 *2 BYTES W I O E , 5 LINES D E E P
3 ORG $6000

4 C 2 8 6 0 4 J M P PGM
♦

5 L I N E OS 1
6 L I N E A OS 1
7 B Y T E OS 1
8 O E P T H OS 1
9 X C O U N T OS 1
1 0 S H P N O OS 1
1 1 O E L A Y OS 1
1 2 OE OS 1
1 3 T E M P OS 1 5
1 4 G R A P H I C S = $C050
1 5 MIXOFF = $C052
1 6 H I R E S = $C057
1 7 PA G E l = $C054
1 8 H I G H = $1B
1 9 LOW = $1A
2 0 W A I T $FCA8
2 1 *LOAD SHAPE AOORESSES I NTO SHPADR. LOW BYTE FIRST
2 2 ♦C O N T I N U E F O R A L L 7 S H A P E S

2 0 2 3 S H PA O R D F B # < S H A P E 1
6 1 2 4 D F B #>SHAPE1
2F 2 5 D F B #<SHAPE2
6 1 2 6 D F B #>SHAPE2
3E 2 7 D F B #<SHAPE3
6 1 2 8 D F B #>SHAPE3
4 0 2 9 D F B #<SHAPE4
6 1 3 0 D F B #>SHAPE4
5 C 3 1 D F B # < S H A P E 5
6 1 3 2 D F B #>SHAPE5
6 B 3 3 D F B # < S H A P E 6
6 1 3 4 D F B #>SHAPE6
7 A 3 5 D F B #<SHAPE7
6 1 3 6 DFB #>SHAPE7
A O 50 C O 3 7 PGM LDA GRAPHICS ; H I R E S . P. l
A O 5 2 CO 3 8 L D A M I X O F F
AO 5 7 C O 3 9 L D A H I R E S
A O 5 4 C O 4 0 L D A P A G E l
A 9 0 0 4 1 L D A #$00 ;CLEAR SCREEN 1
8 5 l A 4 2 S T A LOW
A 9 2 0 4 3 L D A #$20
8 5 I B 4 4 S T A H I G H
AO 0 0 4 5 C L R l L D Y #$00
A 9 0 0 4 6 L D A # $ 0 0
9 1 l A 4 7 C L R S T A (LOW),Y
C 8 4 8 I N Y
0 0 F B 4 9 B N E C L R
E6 I B 5 0 INC HIGH
A 5 I B 5 1 L D A H I G H
C9 4 0 5 2 CMP #$40
9 0 E F 5 3 B L T C L R l
A 9 6 0 5 4 L D A #$60 ;LOAD DELAY
8 0 0 9 6 0 5 5 S T A D E L A Y

Curved and Diagonal Movement

Hi-Res Graphics and Animation Using Assembiy Language

1 1 4 *
6 0 D 6 : A 9 0 0 1 1 5 D R A W L D A # $ 0 0
6 0 D 8 : 8 0 0 7 6 0 1 1 6 S T A X C O U N T
6 0 D B ; A C 0 5 6 0 1 1 7 D R A W l L D Y B Y T E
6 0 D E : A E 0 3 6 0 1 1 8 L D X L I N E
6 0 E 1 : B D 8 9 6 1 1 1 9 L D A H I , X
6 0 E 4 ; 8 5 I B 1 2 0 S T A H I G H
6 0 E 6 : B D 4 9 6 2 1 2 1 L D A L O , X
6 0 E 9 : 8 5 l A 1 2 2 S T A L O W
6 0 E B : A E 0 7 6 0 1 2 3 L D X X C O U N T
6 0 E E : B 1 l A 1 2 4 L D A (L O W) , Y
60F0: 5D OB 60 125 EOR TEMP.X
6 0 F 3 : 9 1 l A 1 2 6 S T A (L O W) , Y
6 0 F 5 : C 8 1 2 7 I N Y
6 0 F 6 : B 1 l A 1 2 8 L D A (L O W) , Y
60F8: 5D OC 60 129 EOR TEMP+1,X
6 0 F B : 9 1 l A 1 3 0 S TA (L O W) , Y
6 0 F D : C 8 1 3 1 I N Y
6 0 F E ; B 1 l A 1 3 2 L D A (L O W) . Y
6100: 5D OD 60 133 EOR TEMP+2,X
6 1 0 3 : 9 1 l A 1 3 4 S T A (L O W) , Y
6 1 0 5 : E E 0 7 6 0 1 3 5 I N C X C O U N T
6 1 0 8 : E E 0 7 6 0 1 3 6 I N C X C O U N T
6 1 0 B : E E 0 7 6 0 1 3 7 I N C X C O U N T
6 1 0 E : E E 0 3 6 0 1 3 8 I N C L I N E
6 1 1 1 : A D 0 3 6 0 1 3 9 L D A L I N E

2 6 0 6 1 1 4 : C D 0 6 6 0 1 4 0 C M P D E P T H
_ 6 1 1 7 : 9 0 C 2 1 4 1 B L T D R A W l
■ 6 1 1 9 : A D 0 4 6 0 1 4 2 L D A L I N E A

6 11 C : 8 D 0 3 6 0 1 4 3 S TA L I N E ; R E S E T L I N E F O R N E X T C Y C L E
6 1 1 F : 6 0 1 4 4 R T S
6120: 02 00 00 145 SHAPEl HEX 0200000600007E1F00 ;SHAPE TABLES
6 1 2 3 : 0 6 0 0 0 0 7 E I F 0 0
6 1 2 9 : 7 E 3 7 0 0 1 4 6 H E X 7 E 3 7 0 0 7 E 7 F 0 0
6 1 2 C : 7 E 7 F 0 0
612F: 04 00 00 147 SHAPE2 HEX 0400000C00007C3F00
6132: OC 00 00 7C 3F 00
6 1 3 8 : 7 0 6 F 0 0 1 4 8 H E X 7 C 6 F 0 0 7 C 7 F 0 1
6 1 3 B : 7 C 7 F 0 1
613E: 08 00 00 149 SHAPE3 HEX 080000180000787F00
6 1 4 1 : 1 8 0 0 0 0 7 8 7 F 0 0
6 1 4 7 : 7 8 5 F 0 1 1 5 0 H E X 7 8 5 F 0 1 7 8 7 F 0 3
6 1 4 A : 7 8 7 F 0 3
614D: 10 00 00 151 SHAPE4 HEX 100000300000707F01
6 1 5 0 : 3 0 0 0 0 0 7 0 7 F 0 1
6 1 5 6 : 7 0 3 F 0 3 1 5 2 H E X 7 0 3 F 0 3 7 0 7 F 0 7
6 1 5 9 : 7 0 7 F 0 7
615C: 20 00 00 153 SHAPE5 HEX 200000600000607F03
615F: 60 00 00 60 7F 03
6 1 6 5 : 6 0 7 F 0 6 1 5 4 H E X 6 0 7 F 0 6 6 0 7 F 0 F
6168: 60 7F OF
6168: 40 00 00 155 SHAPE6 HEX 400000400100407F07
616E: 40 01 00 40 7F 07
6 1 7 4 : 4 0 7 F O D 1 5 6 H E X 4 0 7 F 0 D 4 0 7 F 1 F
6 1 7 7 : 4 0 7 F I F
617A: 00 01 00 157 SHAPE7 HEX 000100000300007F0F
617D: 00 03 00 00 7F OF

Curved and Diagonal Movement

6 1 8 3 : 0 0 7 F I B 1 5 8
6 1 8 6 : 0 0 7 F 3 F

7 7 7 b y t e s

H E X 0 0 7 F 1 B 0 0 7 F 3 F

Symbol table - numerical order:

L O W = $ 1 A H I G H = $ 1 B L I N E = $ 6 0 0 3 L I N E A = $ 6 0 0 4
B Y T E = $ 6 0 0 5 D E P T H = $ 6 0 0 6 X C O U N T = $ 6 0 0 7 S H P N O = $ 6 0 0 8
D E L A Y = $ 6 0 0 9 D E = $ 6 0 0 A T E M P = $ 6 0 0 B S H P A D R = $ 6 0 1 A
P G M = $ 6 0 2 8 C L R l = $ 6 0 3 0 C L R = $ 6 0 4 0 S T A R T = $ 6 0 5 2
S TA RT l = $ 6 0 5 5 S TA RT 2 = $ 6 0 5 A S TA RT 4 = $ 6 0 8 5 S TA RT 3 = $ 6 0 8 E
INITIAL =$60A5 LOADSHP =$60BA L0ADSHP1=$60CB DRAW =$60D6
DRAWl =$60DB SHAPEl =$6120 SHAPE2 =$612F SHAPE3 =$613E
SHAPE4 =$6140 SHAPE5 =$6150 SHAPE6 =$6168 SHAPE7 =$617A
H I = $ 6 1 8 9 L O = $ 6 2 4 9 G R A P H I 0 S = $ 0 0 5 0 M I X O F F = $ 0 0 5 2
PAGEl =$0054 HIRES =$0057 WAIT =$F0A8

C U R V E D M O V E M E N T

In general, when moving shapes that are meant to represent some object in
the real world, such as planes, bullets, bombs, or what have you, realism is jH
effected only when the path represents how such shapes actually move. This
usually means the path must follow some sort of defined curve such as a circle,
parabola, etc. Of course, if you're moving a shape that looks like a snigglehof, you
can twist it around any way you want, but the example I m going to use is falling
bombs, not only because it fits in well with the game program, but also because
it expresses my militaristic aggression (you'll get this way, too, after a few bouts
with assembly language programming).

Actually, the falling bomb example is applicable to any falling object. When
something falls as a result of the force of gravity, S :s constantly accelerating; that
is, its vertical drop per constant horizontal displacement continually increases
until it hits something or is slowed by air resistance. Let's put this in the form of
equations to see how it works. We calculate new line positions as follows:

vx = VX + 1

LINE = LINE + VX

L

Hi-Res Graphics and Animation Using Assembiy Language

The following table illustrates how line positions change for each constant
h o r i z o n t a l m o v e .

H o r i z o n t a l P o s i t i o n L i n e V X N e w L i n e

0 0 0 0
1 0 1 1
2 1 2 3
3 3 3 6
4 6 4 1 0
5 1 0 5 1 5
6 1 5 6 2 1

Obviously what's happening is that the distance between lines is constantly
increasing by a value equal to VX and the resulting path describes a falling object
exactly. Now let's see how we can put this to work in a program.

First of all, I've decided to draw the bomb at each new line position rather
than continuously at each screen line; i.e., the bomb is drawn only after each line
jump regardless of the distance involved. What this means is that as the bomb
approaches the bottom of the screen, there will be rather large line intervals
between draws, but this is just what we want. The bomb should be moving faster
as it approaches the bottom and the larger line jumps provide just this illusion.
Large jumps are appropriate for fast moving shapes. Look at the bullet moves in
the game program—here, too, the shape is moving 1 byte (eight lines) at a time.
Note also that if the bomb were drawn at every line position and not just at the
new lines, the large jumps from new line to new line would be eliminated, but
the result would be jerky animation and the illusion of increasing speed would
be destroyed—the bomb would appear to be moving at a constant (jerky)
speed all the way down. The only way to increase the apparent velocity in this
case would be to shorten the delay times as the bomb falls, a tricky and unneces
sary exercise, and one that wouldn't eliminate the jerky animation anyway.

The horizontal displacement of the bomb as it falls can vary from 1 bit to 1
byte or any other value you want. The displacement will not affect the
acceleration illusion (this depends on the line changes), but only the steepness
or shallowness of the fall. I've chosen a 1-byte move because it looks right. A
1-byte horizontal move also simplifies the program considerably because we
need only one shape and not seven. The same shape is plotted at each new
screen byte position. For shorter moves, we would have to use the seven
preshifted shapes and change line positions after testing SHPNO for the desired
v a l u e s .

Curved and Diagonal Movement

In the MAIN PROGRAM of Program 13-3, we draw and erase, INC BYTE, add
1 to VX, then add the value in LINE to VX and store the result in LINE and
LINEA. We adjust DEPTH for the new line, test for the bottom of the screen, and
then continue drawing.

D I S P L A Y A N D
C L E A R S C R E E N

]PROGRAM
: A S M

6000: 4C OA 60

6 0 0 A : A D
6 0 0 D : A D
6 0 1 0 : A D
6 0 1 3 : A D
6 0 1 6 : A 9

50 CO
52 CO
57 CO
54 CO
0 0

1 * FA L L I N G B O M B S *
2 *

3 ORG $ 6 0 0 0
4 J M P PGM
5 XCOUNT D S 1
6 BYTE D S 1
7 L I N E D S 1
8 L I N E A D S 1
9 D E P T H D S 1
1 0 D E L AY D S 1
1 1 VX D S 1
1 2 G R A P H I C S $C050
1 3 M I X O F F = $C052
1 4 H I R E S = $C057
1 5 P A G E l = $C054
1 6 H I G H $1B
17 LOW = $1A
1 8 WAIT = $FCA8
19 PGM LDA GRAPHICS ;H IRES,P. l
2 0 LDA MIXOFF
2 1 L D A H I R E S
2 2 L D A PA G E l
2 3 L D A # 0 0 ;CLEAR SCREEN 1

H i - R p j i R r a n h i r . a a n r i A n i m a fi n n l l ^ i n n i l c c p m A i / i / ! a n n u a n a . . , « w w . . . ^ . . . w w w

6 0 1 8 : 8 5 2 6 2 4 S T A $26
6 0 1 A : A 9 2 0 2 5 L O A #$20
6 0 1 C : 8 5 2 7 2 6 S T A $ 2 7
6 0 1 E : AO 0 0 2 7 C L R l L D Y # 0 0
6 0 2 0 : A 9 0 0 2 8 L O A # 0 0
6 0 2 2 : 9 1 2 6 2 9 C L R S T A ($26) ,Y
6 0 2 4 : 0 8 3 0 I N Y
6 0 2 5 : 0 0 F B 31 B N E C L R
6 0 2 7 : E 6 2 7 3 2 I N C $27
6 0 2 9 : A 5 2 7 3 3 L O A $27
6 0 2 B : 0 9 4 0 3 4 CMP #$40
6 0 2 D : 9 0 E F 3 5 B L T C L R l
6 0 2 F : A 9 BO 3 6 L O A # $ B 0 : LOAD TIME DELAY
6 0 3 1 : 8 0 0 8 6 0 3 7 S T A D E L A Y

6 0 3 4 :
3 8 * * * * * M AI N P R O G R A M * * * * * 1

2 0 6 4 6 0 3 9 S T A R T J S R I N I T I A L SETUP BYTE,LINE & DEPTH
6 0 3 7 : 2 0 70 6 0 4 0 S TA R T l JSR DRAW D R AW S H A P E
6 0 3 A : AO 0 8 6 0 41 L O A DELAY DELAY
6 0 3 0 : 2 0 A 8 FC 4 2 J S R W A I T
6 0 4 0 : 2 0 70 6 0 4 3 JSR DRAW ERASE SHAPE
6 0 4 3 : EE 0 4 6 0 4 4 I N C B Y T E N E X T B Y T E
6 0 4 6 : A D 0 9 6 0 4 5 L O A VX S E T N E W L I N E
6 0 4 9 : 1 8 4 6 C L C
6 0 4 A : 6 9 0 1 4 7 A D C # 0 1
6 0 4 C : 8 0 0 9 6 0 4 8 S T A V X

264
6 0 4 F : 6 0 0 5 6 0 4 9 AOC L I N E
6 0 5 2 : 80 0 5 6 0 5 0 STA L I N E :NEW LINE
6055: 8 0 0 6 6 0 5 1 STA L I N E A
6 0 5 8 : 69 0 3 5 2 A O C # 0 3 :A00 DEPTH OF SHAPE TO NEW LINE
6 0 5 A : 8 0 0 7 6 0 5 3 S T A D E P T H
6 0 5 0 : 0 9 B A 5 4 CMP #$BA IS LINE AT BOTTOM OF SCREEN?
6 0 5 F : BO 0 3 5 5 B G E S T A R T IF YES, DRAW FROM INITIAL VALUES
6 0 6 1 : 4 0 3 7 6 0 5 6 J M P S T A R T l IF NO. DRAW NEXT LINE, NEXT BYTE

5 7 * * * * * S U B R O U T I N E S * * * * *
6 0 6 4 : A 9 0 0 5 8 I N I T I A L L O A #$00
6 0 6 6 : 8 0 0 4 6 0 5 9 S T A B Y T E
6 0 6 9 : A 9 0 0 6 0 L O A # 0 0
6 0 6 B : 8 0 0 5 6 0 6 1 S TA L I N E
6 0 6 E : 8 0 0 6 6 0 6 2 STA L I N E A
6 0 7 1 : 18 6 3 C L C
6 0 7 2 : 6 9 0 3 6 4 AOC # 0 3
6 0 7 4 : 8 0 0 7 6 0 6 5 S T A D E P T H
6 0 7 7 : A 9 0 0 6 6 L O A # 0 0
6 0 7 9 : 8 0 0 9 6 0 6 7 S T A V X
6 0 7 C : 6 0 6 8 R T S

6 9 *

6 0 7 0 : A 9 0 0 7 0 DRAW L O A # 0 0
6 0 7 F : 8 0 0 3 6 0 7 1 S T A X C O U N T
6 0 8 2 : AO 0 4 6 0 7 2 O R A W l L O Y B Y T E
6 0 8 5 : AE 0 5 6 0 7 3 L O X L I N E
6088 : BO B 4 6 0 7 4 LOA H I , X
6 0 8 B : 8 5 I B 7 5 STA HIGH
6 0 8 0 : BO 7 4 6 1 7 6 L O A LO,X
6 0 9 0 : 8 5 l A 7 7 S TA LOW
6 0 9 2 : A E 0 3 6 0 7 8 L O X XCOUNT
6 0 9 5 : B 1 l A 7 9 L O A (LOW),Y
6 0 9 7 : 5 0 B 1 6 0 8 0 EOR SHAPE,X
6 0 9 A : 9 1 l A 8 1 S T A (LOW),Y
6 0 9 C : E E 0 3 6 0 8 2 I N C X C O U N T
6 0 9 F : E E 0 5 6 0 8 3 I N C L I N E
6 0 A 2 : A O 0 5 6 0 8 4 L O A L I N E

Curved and Diagonal Movement

6 0 A 5 : C D 0 7 6 0 8 5 C M P D E P T H
6 0 A B : 9 0 D B 8 6 B L T D R A W l
6 0 A A : A D 0 6 6 0 8 7 I D A L I N E A
6 0 A D : 8 D 0 5 6 0 8 8 S T A L I N E
6 0 B 0 : 6 0 8 9 R T S
6 0 B 1 : 0 7 I E 0 7 9 0 S H A P E H E X 0 7 1 E 0 7 ; S H A P E T A B L E

H I
L O

564 by tes

Symbol table - numerical order:

LOW =$1A H I G H =$1B XCOUNT = $ 6 0 0 3 B Y T E =$6004
L I N E =$6005 L I N E A =$6006 D E P T H =$6007 D E L A Y =$6008
VX =$6009 PGM =$600A O L R l =$601E OLR =$6022
START =$6034 S TA R T l =$6037 I N I T I A L =$6064 DRAW =$6070
D R A W l =$6082 S H A P E =$6081 H I =$60B4 L O = $ 6 1 7 4
G R A P H I C S =$0050 MIXOFF =$0052 P A G E l =$0054 H I R E S =$0057
W A I T =$FCA8

In this program, once the bomb has reached the bottom, we start over, but
we can insert any other routine here, such as an explosion, decrement score, etc.
If we want an explosion—for example, when the bomb reaches the screen
bottom—we need only test for the bottom line of the screen and jump to an 265
explosion routine. If we want to test for the bomb hitting the man in the game
program, we would have to include a collision test for the bomb itself, being
careful to calculate just which line or group of lines the bomb would reach
when hitting the man. To distinguish between hitting bottom or hitting the man,
we need only determine at which line the collision occurred, as the bottom line
and the man occupy different line positions.

Finally, one can add more realism to falling shapes by simulating the eflfect of
air resistance. At some point in an object's fall, air resistance will cause the
acceleration to cease and the object will fall at a constant speed. We can effect
this simulation by not allowing VX to go above a certain value-when VX
remains constant, the line intervals will then also be constant. A routine to
accomplish this would be:

L D A V X

CMP #$04
B G E C O N T

C L C

ADC #$01
S T A V X

C O N T C L C
A D C L I N E
e t c .

Drawing over Backgrounds
A computer ar t is t named Pound
Drew a woman shape nicely round.
Her repute was not well.
And just so you could tell,
He used an unsavory background.

j y-*-/ackgroimds can enhance any program displaying hi res graphics, not only
game programs. A background can consist of stationary shapes (clouds or stars
for a sky scene, for example) or moving shapes where collisions are not desired
(shapes passing in the night?). Drawing a shape behind or in front of another
shape can create the illusion of depth. In addition, one can use the whole screen
as a background. For example, if we load the Accumulator with #$7F instead of
^$00 in the clear screen routine, we can draw black shapes on a white
background. Similarly, we can produce whole screen color backgrounds with the
clear screen routine by LDAing with the appropriate bytes; *$55 in the even col
umns and *$2A in the odd columns will produce a violet screen, and so on.

W H I T E S H A P E S A N D B A C K G R O U N D S

The trick to drawing over backgrounds is to have the object and the
background retain their original shapes following draw-erase cycles. The easiest
way to do this is to use FOR for both drawing and erasing, i.e., the usual DRAW-
ERASE protocol. Let's see what happens when we EOR a shape with a
background:

1 1 1 1 1 1 1
0 0 1 1 0 0 0

1 1 0 0 1 1 1
0 0 1 1 0 0 0

1 1 1 1 1 1 1

B a c k g r o u n d
EOR Shape

Background with shape in black
EOR Shape (erase)

B a c k g r o u n d r e s t o r e d

Drawing over Backgrounds

The result is a black shape surrounded by the white background, producing
what might be called a "negative." This actually works quite well if we want the
object to appear to be in front of the background as opposed to behind it. The
effect is illustrated in the following figure.

To see how this looks in a program, run Program 14-1, which is the same as
Program 4-1, except a box has been drawn in the path of the person shape.

]PROGRAM 14-1
: A S M

1 * * W H I T E SHAPE: & BACKROUND * NEGATIVE EFFECT
2
3 * S H A P E I S; 1 B Y T E W I D E B Y 6 BYTES DEEP
4 * " * I t *

5 ORG $6000
6000: 4C OA 6 0 6 J M P PGM

7 XCOUNT D S 1
8 B Y T E D S 1
9 L I N E D S 1
1 0 L I N E A D S 1

1 1 D E P T H DS 1
1 2 D E L A Y DS 1
1 3 S D E P T H DS 1
1 4 GRAPHICS = $C050
1 5 M I X O F F = $C052
1 6 H I R E S $C057
1 7 P A G E l = $C054
1 8 H I G H = $1B
1 9 LOW = $1A
2 0 WAIT = $FCA8

6 0 0 A : A D 50 CO 21 PGM LDA GRAPHICS ;HIRES,P. l
6 0 0 0 : A D 52 CO 22 LDA MIXOFF
6 0 1 0 : A D 57 CO 2 3 LDA HIRES
6 0 1 3 : A D 54 CO 2 4 LDA PA G E l
6 0 1 6 : A 9 0 0 2 5 L D A #$00 ;CLEAR SCREEN 1
6 0 1 8 : 8 5 l A 2 6 S T A LOW
6 0 1 A : A 9 2 0 2 7 L D A #$20
6 0 1 C : 8 5 I B 2 8 S TA H I G H

Hi-Res Graphics and Animation Using Assembly Language

6 0 1 E : A O 0 0 2 9 O L R l LDY #$00
6 0 2 0 : A 9 0 0 3 0 L D A # $ 0 0
6 0 2 2 : 9 1 l A 3 1 OLR S T A (LOW),Y
6 0 2 4 : 0 8 3 2 I N Y
6 0 2 5 : D O F B 3 3 BNE O L R
6 0 2 7 : E 6 I B 3 4 I NO H I G H
6 0 2 9 : A 5 I B 35 L D A H I G H
6 0 2 B : 0 9 4 0 3 6 OMP #$40
6 0 2 D : 9 0 E F 3 7 B L T O L R l
6 0 2 F : A 9 8 0 38 L D A #$80
6 0 3 1 : 8 0 0 8 6 0 39 S TA D E L A Y

4 0 * * D R A W W H I T E B O X
6 0 3 4 : A 9 5 A 4 1 L D A #$5A
6 0 3 6 : 8 D 0 9 6 0 4 2 S T A SDEPTH
6 0 3 9 : A O 1 0 4 3 L D Y #$10
6 0 3 B : A 9 5 0 4 4 L D A #$50
603D: 80 05 60 4 5 S TA L I N E
6040: AE 05 60 4 6 S T L D X L I N E
6043: BD 00 60 4 7 L D A H I , X
6046 ; 85 IB 4 8 S T A H I G H
6048: BD 80 61 4 9 L D A L 0 , X
604B: 85 lA 5 0 S T A LOW
604D: A9 7F 5 1 L D A #$7F
604F: 91 lA 5 2 S T A (LOW),Y
6051: EE 05 60 5 3 I N O L I N E
6054: AD 05 60 54 LDA L I N E
6057: OD 09 60 5 5 OMP SDEPTH
605A: 90 E4 5 6 B L T S T

5 7 * * * * * * * * * * M A I N P R O G R A M
6050: 20 84 60 5 8 S T A R T J S R I N I T I A L
605F: 20 98 60 5 9 S T A R T l J S R DRAW
6062: AD 08 60 6 0 L D A D E L A Y
6065: 20 A8 FO 6 1 J S R W A I T
6068: AD 06 60 6 2 L D A L I N E A
6 0 6 B : 8 D 0 5 6 0 6 3 S T A L I N E
606E: 20 98 60 6 4 J S R DRAW
6071: EE 07 60 6 5 I N O D E P T H
6074: EE 06 60 6 6 I N O L I N E A
6 0 7 7 : A D 0 6 6 0 6 7 L D A L I N E A
6 0 7 A : 8 0 0 5 6 0 6 8 S T A L I N E
6 0 7 D : 0 9 B B 6 9 OMP #$BB
6 0 7 F : B O D B 7 0 BGE S T A R T
6 0 8 1 : 4 0 5 F 6 0 7 1 J M P S T A R T l

7 2 * * * * * * * * * * S U B R O U T I N E S ■
6 0 8 4 : A 9 1 0 7 3 I N I T I A L L D A #$10
6 0 8 6 : 8 0 0 4 6 0 7 4 S TA B Y T E
6 0 8 9 : A 9 0 0 7 5 L D A #$00
6 0 8 B : 8 0 0 5 6 0 7 6 S TA L I N E
6 0 8 E : 8 0 0 6 6 0 7 7 S T A L I N E A
6 0 9 1 : 1 8 7 8 CLC
6 0 9 2 : 6 9 0 6 79 ADO #$06
6 0 9 4 : 8 D 0 7 6 0 8 0 STA D E P T H

6 0 9 7 : 6 0 81 RTS
6 0 9 8 : A 9 0 0 8 2 DRAW L D A #$00
6 0 9 A : 8 0 0 3 6 0 8 3 S T A XOOUNT
6 0 9 D : A O 0 4 6 0 8 4 D R A W l L D Y B Y T E
6 0 A 0 : A E 0 5 6 0 8 5 L D X L I N E
6 0 A 3 : B D 0 0 6 0 8 6 L D A H I , X
6 0 A 6 : 8 5 I B 8 7 S TA H I G H
6 0 A 8 : B D 8 0 6 1 8 8 L D A L 0 , X
6 0 A B : 8 5 l A 8 9 S T A LOW

;LOAD TIME DELAY

;SETUP BYTE,LINE & DEPTH
D R AW S H A P E

D E L A Y

;ERASE SHAPE
;NEXT DEPTH

& NEXT LINE

IS LINE AT BOTTOM OF SCREEN?
IF YES, DRAW FROM INITIAL VALUES
IF NO, DRAW NEXT LINE

;SET STARTING BYTE

;SET STARTING LINE

;ADD DEPTH OF SHAPE TO LINE

ZERO XCOUNT
LOAD BYTE
L O A D L I N E
LOAD LINE ADDRESS INTO HIGH,LOW

r

Drawing over Backgrounds

6 0 A D : A E 0 3 6 0 9 0 L D X X C O U N T ; L O A D X W I T H X C O U N T
6 0 B 0 : B 1 l A 9 1 L D A (L O W) , Y ; G E T B Y T E F R O M S C R E E N
6 0 B 2 : 5 0 C 6 6 0 9 2 E O R S H A P E , X ; E O R B Y T E F R O M S H A P E A D D R E S S + X
6 0 B 5 : 9 1 l A 9 3 S T A (L O W) , Y ; P L O T B Y T E
6 0 B 7 : E E 0 3 6 0 9 4 I N C X C O U N T
6 0 B A : E E 0 5 6 0 9 5 I N C L I N E ; N E X T L I N E
6 0 B D : A D 0 5 6 0 9 6 L D A L I N E
6 0 C 0 : C D 0 7 6 0 9 7 C M P D E P T H ; F I N I S H S H A P E ?
6 0 C 3 : 9 0 D 8 9 8 B L T D R A W l ; I F N O , D R A W N E X T L I N E
6 0 C 5 : 6 0 9 9 R T S ; I F Y E S , N E X T D R A W C Y C L E
60C6: 08 3E 5D 100 SHAPE HEX 083E5D1C1422 ;SHAPE TABLE
6 0 C 9 : I C 1 4 2 2

H I

L O

588 bytes

Symbol table - numerical order:
LOW =$1A H I G H =$1B XCOUNT =$6003 BYTE =$6004
L I N E =$6005 L I N E A =$6006 D E P T H =$6007 DELAY =$6008
S D E P T H =$6009 PGM =$600A C L R l =$601E C L R =$6022
S T =$6040 S TA R T =$605C S TA R T 1 =$605F I N I T I A L = $ 6 0 8 4
DRAW =$6098 D R AW l =$6090 S H A P E =$6006 H I =$6000
LO =$618C G R A P H I C S=$0050 M I X O F F =$0052 P A G E l =$0054
HIRES =$C057 WAIT =$FCA8

As you may have already guessed, the DRAW-DRAW protocol is inappropriate
for drawing over backgrounds, because whatever background is in the screen
byte will be erased by the shape byte, as there is no, restoring function. Try
Program 14-2, which is the same as Program 4-3 (DRAW-DRAW) except for a box
in the person's path—the box is erased as the person shape passes through it.

]PR06RAM 14-2
•ASM

1 ** WHITE SHAPE & BACKkCJND * DRAW-DRAW
2
3 *SHAPE IS 1 BYTE WIDE BY 7 BYTES DEEP

5 O R G $ 6 0 0 0
6 0 0 0 : 4 C O A 6 0 6 J M P P G M

7 XCOUNT D S 1

8 B Y T E OS 1

9 L I N E DS 1

1 0 L I N E A DS 1
1 1 D E P T H D S 1
1 2 D E L AY D S 1
1 3 S D E P T H D S 1

14 GRAPHICS = $0050
15 MIXOFF = $C052
16 H I R E S = $C057
17 PAGEl = $C054
1 8 H I G H = $1B
1 9 LOW = $1A
2 0 WAIT = $FCA8

6 0 0 A : A D 5 0 C O 2 1 PGM L D A GRAPHICS
6 0 0 D : A D 5 2 C O 2 2 L D A M I X O F F

Hi-Res Graphics and Animation Using Assembly Language

A D 5 7 I
A D 5 4 i
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 8 0
8D 08 I

A 9 5 A
8D 09 (
AO 10
A 9 5 0
8 0 0 5 I
AE 05 (
B D F 5 I

8 5 I B
BD B5 I
8 5 l A
A 9 7 F
9 1 l A
E E 0 5 I
A D 0 5 (
CD 09 I
9 0 E 4

2 0 7 B I
2 0 8 F I
AD 08 (
2 0 A 8 I
E E 0 7 I
E E 0 6
A D 0 6
8 D 0 5
0 9 B A
B O 4 3
4 0 5 F

A 9 1 0
8 D 0 4
A 9 0 0
8 D 0 5
8 D 0 6
1 8
6 9 0 7
8 D 0 7
6 0
A 9 0 0
8 0 0 3
A C 0 4
A E 0 5
B D F 5

* * D R A W

L D A
L D A
L D A
S T A
L D A
S T A
L D Y
L D A
S T A
I N Y
B N E
I N C
L D A
C M P
B L T
LDA
S T A

W H I T E
L D A

S T A
L D Y
L D A
S T A
L D X
L D A
S TA
L D A
S T A
L D A
S T A
I N C
L D A
CMP
B L T

H I R E S
P A G E l
$ 0 0
LOW
#$20
H I G H

#$00
#$00
(LOW),Y

O L R
H I G H
H I G H
$ 4 0
O L R l
#$80
D E L A Y
B O X
#$5A
S D E P T H
$ 1 0
$ 5 0
L I N E
L I N E

H I , X
H I G H

LO,X
LOW

#$7F
(LOW),^
L I N E
L I N E
S D E P T H
S T

;OLEAR SCREEN 1

;LOAD TIME DELAY

S TA RT
S TA R T l

I N I T I A L

D R A W l

MAIN PROGRAM
i R I N I T I A L
i R D R A W
) A D E L A Y
; r w a i t
\ C D E P T H
^ C L I N E A
) A L I N E A
F A L I N E
I P # $ B A
I E E R A S E
I P S T A R T l

S U B R O U T I N E S ^
D A # $ 1 0
l A B Y T E
D A # $ 0 0
l A L I N E
T A L I N E A
LC
D C # $ 0 7
T A D E P T H
T S
D A # $ 0 0
T A X C O U N T
D Y B Y T E
D X L I N E
D A H I , X

D E P T H

* * * * * * * * * *

•.SETUP BYTE,LINE ,
;DRAW SHAPE
;DELAY

;NEXT DEPTH
& NEXT L INE

;IS LINE AT BOTTOM OF SCREEN?
;IF YES, ERASE SHAPE, START OVER
;IF NO, DRAW NEXT LINE

* * * * * * * * * *

;SET STARTING BYTE

;SET STARTING LINE

;ADD DEPTH OF SHAPE TO LINE

Z E R O X C O U N T
L O A D B Y T E
L O A D L I N E
LOAD LINE ADDRESS INTO HIGH,LOW

Drawing over Backgrounds

6 0 9 D :
6 0 9 F :
6 0 A 2 :
6 0 A 4 :
6 0 A 7 :
6 0 A A :
6 0 A C :
6 0 A F :
6 0 B 2 :
6 0 B 5 :
6 0 B 8 :
6 0 B A :
6 0 B B :
6 0 B E :
6 0 C 0 :
6 0 C 3 :
6 0 C 6 :
6 0 C 9 :
6 0 C C :
6 0 C E :
6 0 D 1 :
6 0 D 3 :
6 0 D 6 :
6 0 D 8 :
6 0 D B :
6 0 D D :
6 0 E 0 :
6 0 E 3 :
6 0 E 6 :
6 0 E 9 :
6 0 E B :
6 0 E E :
6 0 F 1 :

8 5 I B
B D B 5 6 1
8 5 l A
A E 0 3 6 0
B D E E 6 0
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
CD 07 60
90 DA
6 0
C E 0 5 6 0
A 9 0 0
8 0 0 3 6 0
A C 0 4 6 0
A E 0 5 6 0
B D F 5 6 0
8 5 I B
BD B5 61
8 5 l A
A E 0 3 6 0
B 1 l A
5 0 E E 6 0
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
C D 0 7 6 0
9 0 0 8
4C 5C 60
0 0 0 8 3 E
5 0 I C 1 4

E R A S E l

8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5
9 6 E R A S E
9 7
9 8
9 9 E R A S E]
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9
1 1 0
1 1 1
11 2
11 3
11 4
11 5 S H A P E

H I G H
LO,X
LOW
XCOUNT

SHAPE,X
(L0W),Y
XCOUNT
L I N E
L I N E
D E P T H
D R AW l

L O A D X W I T H X C O U N T
L O A D S H A P E B Y T E
P L O T B Y T E

;NEXT LINE

F I N I S H S H A P E ?
IF NO, DRAW NEXT LINE
IF YES, NEXT DRAW CYCLE
R E S E T L I N E
Z E R O X C O U N T

L I N E ; R E S E T L I N E
$ 0 0 ; Z E R O X C O U N T
XCOUNT
B Y T E
L I N E

H I , X
H I G H

LO,X
LOW
XCOUNT

(LOW),Y
SHAPE,X
(L O W) , Y ; E R A S E
XCOUNT
L I N E
L I N E
D E P T H
E R A S E l
START
00083E5D1C1422 ;SHAPE TABLE

629 by tes

Symbol table - numerical order:
LOW =$1A H I G H =$1B XCOUNT =$6003
L I N E =$6005 L I N E A =$6006 D E P T H =$6007
SDEPTH =$6009 PGM =$600A C L R l =$601E
S T =$6040 S T A R T =$605C S T A R T l =$605F
DRAW =$608F D R A W l =$6094 E R A S E =$60BB
SHAPE =$60EE H I = $ 6 0 F 5 L O =$61B5
MIXOFF =$C052 P A G E l =$C054 H I R E S =$C057

The "negative" effect is sometimes inappropriate. For example, when we
want a shape to appear to go behind the background or when the background is
very simple, such as a single line, the shape should merge with the background
as illustrated here.

Hi-Res Graphics and Animation Using Assembiy Language

i n s t e a d o f

To accomplish this, we need to use a different type of draw routine, one that
u s e s A N D a n d O R A .

We've seen the AND instruction before in the chapter on collisions, but it
won't hurt to review it. AND compares each bit in the Accumulator with the
corresponding bit of a byte, either a direct value or the contents of a memory
location, and returns a value of 1 if both bits are 1. Otherwise, the result is 0.
The result is stored in the Accumulator.

Example

A c c u m u l a t o r

A N D b y t e

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

R e s u l t 0 0 0 1 0 0 0 1

ORA does the same kind of comparison, but here the result is 1 if either or
both bits are 1, and 0 if both bits are 0. The result is stored in the Accumulator.

Example
A c c u m u l a t o r

O R A b y t e

R e s u l t

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 1 0 1 1 1

Let's see how we use these instructions to produce a shape merged with a
background. First, we obtain a complement of the shape by EORing with #$7F.
We then AND the background with the complement, and ORA the shape:

Shape
EGR #$7F

R e s u l t

AND backg round

R e s u l t

O R A s h a p e

R e s u l t

0 0 1 1 0 0 0

1 1 1 1 1 1 1

1 1 0 0 1 1 1

1 1 1 1 0 0 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 Shape + Backgr o u n d

I

Drawing over Backgrounds

A problem arises when we now want to erase the shape and restore the
background. If we EOR the shape, a flawed background results:

S h a p e + b a c k g r o u n d 1 1 1 1 0 0 0
E O R s h a p e 0 0 1 1 0 0 0

R e s u l t 1 1 0 0 0 0 0

We get around this by storing the background in a temporary location
labeled BACK, and erase the shape by redrawing the stored background using
the protocol LDA byte, STA screen b)te. We can see how this works in the next
program (Program l4-3), which is the same as Program 14-1 except for the
d r a w a n d e r a s e r o u t i n e s .

First, we reserve memory for the background by BACK DS 6, because the
shape contains 6 bytes. In the DRAW routine, we load the screen byte by LDA
(LOW),Y (line 92) and store the byte (i.e., the background) in BACK with STA
BACK,X (line 93). We then continue drawing with EOR *S7F to obtain the
shape complement; AND BACK,X to AND the background; ORA SHAPE,X to ORA
the shape byte; and STA (LOW),Y to plot the result. X is used as the counter for
the BACK "table" the same way it's used as a counter for the SHAPE table. For
multiple byte shapes, we would use BACK+1,X, BACK+2,X, etc. in the same way
that we use SHAPE+1,X, etc. In the MAIN PROGRAM, after the shape is drawn,
we erase by calling an XDRAW routine. Here the background is restored by LDA
BACK,X, STA (LOW),Y; i.e., we redraw the background directly over the merged
shape + background.

]PROGRAM 14-3
: A S M

1
2
3
4
5

6000: 4C 10 60 6
7
8
9
1 0
1 1
1 2
1 3
1 4
15
16
1 7
18
1 9
2 0
2 1

6010: AD 50 CO 22
6013: AD 52 CO 23

**WHITE SHAPE & BACKROUND * NO NEGATIVE EFFECT
* *

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP
* *

XCOUNT
B Y T E
L I N E
L I N E A
D E P T H
D E L AY
SDEPTH
B A C K
GRAPHICS =
M I X O F F =
H I R E S
PAGEl
H I G H
LOW
WAIT
PGM

ORG
J M P
DS
D S
DS
D S
DS
D S
DS
D S

$6000
PGM

L D A
L D A

6
$C050
$C052
$0057
$0054
$1B
$1A
$FCA8
G R A P H I C S
M I X O F F

; H I R E S , P. l

Hi-Res Graphics and Animation Using Assembly Language

A D 5 7
A D 5 4
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8
D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 8 0
8D 08

A 9 5 A
8 D 0 9
AO 10
A 9 5 0
8 0 0 5
A E 0 5
BD OF
8 5 I B
BD CF
8 5 l A
A 9 7 F
9 1 l A
EE 05
AD 05
CD 09
9 0 E 4

2 0 8 A
2 0 9 E
AD 08
2 0 A 8
AD 06
8 0 0 5
20 D7
EE 07
EE 06
AD 06
8 0 0 5
09 BB
BO DB
40 65

A9 10
8 0 0 4
A9 00
8 0 0 5
80 06
1 8
6 9 0 6
8 0 0 7
6 0
A 9 0 0
8 0 0 3

0 0 2 4
0 0 2 5

2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9

6 0 4 0
4 1
4 2

6 0 4 3
4 4
4 5

6 0 4 6
6 0 4 7
6 1 4 8

4 9
6 1 5 0

5 1
5 2
5 3

6 0 5 4
6 0 5 5
6 0 5 6

5 7
5 8

6 0 5 9
6 0 6 0
6 0 6 1
F O 6 2
6 0 6 3
6 0 6 4
6 0 6 5
6 0 6 6
6 0 6 7
6 0 6 8
6 0 6 9

7 0
7 1

6 0 7 2
73
7 4

6 0 7 5
7 6

6 0 7 7
6 0 7 8

7 9
8 0

6 0 8 1
8 2
8 3

6 0 8 4

L D A H I R E S
L D A P A G E l
L D A # $ 0 0
S T A L O W
L D A # $ 2 0
S T A H I G H

O L R l L D Y # $ 0 0
L D A # $ 0 0

O L R S T A (L O W) , Y
I N Y
B N E O L R
I N O H I G H
L D A H I G H
OMR #$40
B L T O L R l
L D A # $ 8 0
S T A D E L A Y

** DRAW WHITE BOX

L D A # $ 5 A
S T A S D E P T H
L D Y # $ 1 0
L D A # $ 5 0
S T A L I N E

S T L D X L I N E
L D A H I , X
S T A H I G H
L D A L O , X
S T A L O W
L D A # $ 7 F
STA (LOW),Y
I N O L I N E
L D A L I N E
O M P S D E P T H
B L T S T

* * * * * * * * * * m a i n p r o g r a m

S T A R T J S R I N I T I A L
S T A R T l J S R D R A W

L D A D E L A Y
J S R W A I T
L D A L I N E A
S T A L I N E
J S R X D R A W
I N O D E P T H
I N O L I N E A
L D A L I N E A
S T A L I N E
O M P # $ B B
B G E S T A R T
J M P S T A R T l

* * * * * * * * * * S U B R O U T I N E S ^

: O L E A R S C R E E N 1

;LOAD TIME DELAY

* * * * * * * * * *

SETUP BYTE,LINE & DEPTH
DRAW SHAPE
D E L A Y

;ERASE SHAPE
;NEXT DEPTH

& N E X T L I N E

IS LINE AT BOTTOM OF SCREEN?
IF YES, DRAW FROM INITIAL VALUES
IF NO, DRAW NEXT LINE

* * * * * * * * * *

I N I T I A L #$10
B Y T E

#$00
L I N E
L I N E A

$ 0 6
D E P T H

#$00
X O O U N T

;SET STARTING BYTE

;SET STARTING LINE

;ADD DEPTH OF SHAPE TO LINE

;ZERO XOOUNT

Drawing over Backgrounds

6 0 A 3 :
6 0 A 6 :
6 0 A 9 :
6 0 A C :
6 0 A E :
6 0 B 1 :
6 0 B 3 :
6 0 B 6 :
6 0 B 8 :
6 0 B B :
6 0 B E :
6 0 C 0 :
6 0 C 3 :
6 0 C 6 :
6 0 C 8 :
6 0 C B :
6 0 C E :
6 0 D 1 :
6 0 D 4 :
6 0 D 6 :
6 0 D 7 :
6 0 D 9 :
6 0 D C :
6 0 D F :
6 0 E 2 :
6 0 E 5 :
6 0 E 7 :
6 0 E A :
6 0 E C :
6 0 E F :
6 0 F 2 :
6 0 F 4 :
6 0 F 7 :
6 0 F A :
6 0 F D :
6 1 0 0 :
6 1 0 2 :
6 1 0 5 :
6 1 0 8 :
6 1 0 9 :
6 1 0 C :

A C 0 4 6 0
A E 0 5 6 0
B D O F 6 1
8 5 I B
B D O F 6 1
8 5 l A
A E 0 3 6 0
B 1 l A
9D OA 60
B D 0 9 6 1
4 9 7 F
3 D O A 6 0
I D 0 9 6 1
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
C D 0 7 6 0
90 CD
6 0
A 9 0 0
8 D 0 3 6 0
A E 0 5 6 0
A C 0 4 6 0
B D O F 6 1
8 5 I B
BD CF 61
8 5 l A
A E 0 3 6 0
BD OA 60
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
C D 0 7 6 0
9 0 D A
A D 0 6 6 0
8 D 0 5 6 0
60
0 8 3 E 5 D
I C 1 4 2 2

8 5 D R A W l
8 6
8 7
8 8
8 9
9 0
9 1
9 2
93
9 4
9 5
9 6
9 7
9 8
9 9
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5 X D R AW
1 0 6
1 0 7 X D R A W]
1 0 8
1 0 9
1 1 0
1 1 1
11 2
11 3
11 4
11 5
1 1 6
11 7
1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4 S H A P E

X D R AW l

LOAD BYTE
L O A D L I N E
LOAD LINE ADDRESS INTO HIGH,LOW

LOAD X WITH XCOUNT
GET BYTE FROM SCREEf
S T O R E B A C K R O U N D

B Y T E
L I N E

H I , X
H I G H
LO,X
LOW
XCOUNT

(LOW).Y
BACK,X
SHAPE,X
#$7F
BACK,X
SHAPE,X
(LOW),Y
XCOUNT
L I N E
L I N E
DEPTH
DRAWl

#$00
XCOUNT
L I N E
B Y T E

H I , X
H I G H

LO,X
LOW
XCOUNT
BACK,X
(L0W),Y
XCOUNT
L I N E
L I N E
D E P T H
X D R AW l
L I N E A
L I N E

083E5D1C1422 ;SHAPE TABLE

;NEXT LINE

F I N I S H S H A P E ?
IF NO, DRAW NEXT LINE
IF YES, NEXT DRAW CYCLE

;GET BACKROUND
AND PLOT

6 5 5 b y t e s

Symbol table - numerical order:
L O W = $ 1 A
L I N E = $ 6 0 0 5
SDEPTH =$6009
C L R = $ 6 0 2 8
INITIAL =$608A
XDRAWl =$60DC
GRAPHICS=$C050
W A I T = $ F C A 8

H I G H =$1B XCOUNT =$6003 B Y T E =$6004
L I N E A =$6006 D E P T H =$6007 D E L A Y =$6008
B A C K =$600A PGM =$6010 C L R l =$6024
ST =$6046 START =$6062 S TA R T l =$6065
DRAW =$609E DRAWl =$60A3 XDRAW =$6007
SHAPE =$6109 H I =$610F LO =$61CF
MIXOFF =$C052 PA G E l =$C054 HIRES =$C057

Hi-Res Graphics and Animation Using Assembly Language

O R W H I T E B A C K G R O U N D S

Drawing color shapes over color or white backgrounds using the usual EOR
DRAW-ERASE routine produces a variety of strange results. For example, if we
plot a violet shape over a violet background or a green shape over a green
background, the shape turns to black:

10 10 10 1 Background v io le t
0 0 1 0 1 0 0 EOR violet shiape

1 0 0 0 0 0 1 Shape is black

Plotting blue over blue or orange over orange yields even stranger results.
Here the shape not only turns to black but the background turns to the
non-high-bit-set color (blue to violet or orange to green), because when the
hî bit is EORed, it sets to 0 (remember even though the high bit is not plotted,it is still affected by assembly language instructions):

H i g h

1 0 1 0 1 0 1 1 B a c k g r o u n d b l u e
0 0 1 0 1 0 0 1 EOR blue shape

1 0 0 0 0 0 1 0 B l a c k s h a p e , v i o l e t b a c k g r o u n d

If we plot alternate column colors, say a green shape over a violet
background, the shape turns to white:

1 0 1 0 1 0 1 B a c k g r o u n d v i o l e t
0 0 0 1 0 1 0 EOR green shape

1 0 1 1 1 1 1 S h a p e i s w h i t e

Similarly, if we plot a blue shape over orange, the shape also turns to white
and, in addition, the background turns to the non-high-bit-set color.

If we plot color shapes over a white background using EOR, the color
changes to the complement:

1 1 1 1 1 1 1 W h i t e b a c k g r o u n d
1 0 1 0 1 0 1 E O R v i o l e t s h a p e

0 1 0 1 0 1 0 S h a p e i s g r e e n

To see the effect of all this, run the following program (Program l4-4),
which draws a violet and green shape over a violet background using EOR. What
you will see is that the violet part of the shape will turn to black and the green
part to white as the shape passes over the background.

I

Drawing over Backgrounds

]PROGRAM 14-4
: A S M

1 *COLOR SHAPE & BACKROUND WITH EOR
2
3 * S H A P E I S 1 B Y T E W I D E B Y 6 B Y T E S D E E P
4 *
5 O R G $ 6 0 0 0

6 0 0 0 : 4 C O A 6 0 6 J M P P G M
7 X C O U N T D S 1
8 B Y T E D S 1
9 L I N E D S 1
1 0 L I N E A D S 1
1 1 D E P T H D S 1
1 2 D E L A Y D S 1
1 3 S D E P T H D S 1
1 4 G R A P H I C S = $ 0 0 5 0
1 5 M I X O F F = $ 0 0 5 2
1 6 H I R E S = $ 0 0 5 7
1 7 P A G E l = $ 0 0 5 4
1 8 H I G H = $ 1 B
1 9 L O W = $ 1 A
2 0 W A I T = $ F 0 A 8

6 0 0 A : A D 5 0 0 0 2 1 P G M L D A G R A P H I C S ; H I R E S , P . l
6 0 0 D : A D 5 2 0 0 2 2 L D A M I X O F F
6 0 1 0 : A D 5 7 0 0 2 3 L D A H I R E S
6 0 1 3 : A D 5 4 0 0 2 4 L D A P A G E l
6 0 1 6 : A 9 0 0 2 5 L D A # $ 0 0 ; O L E A R S C R E E N 1 2 1 7
6 0 1 8 : 8 5 l A 2 6 S T A L O W _
6 0 1 A : A 9 2 0 2 7 L D A # $ 2 0 ■
6 0 1 0 : 8 5 I B 2 8 S T A H I G H
6 0 1 E : A O 0 0 2 9 O L R l L D Y # $ 0 0
6 0 2 0 : A 9 0 0 3 0 L D A # $ 0 0
6 0 2 2 : 9 1 l A 3 1 O L R S T A (L O W) , Y
6 0 2 4 : 0 8 3 2 I N Y
6 0 2 5 : D O F B 3 3 B N E O L R
6 0 2 7 : E 6 I B 3 4 I N O H I G H
6 0 2 9 : A 5 I B 3 5 L D A H I G H
6 0 2 B : 0 9 4 0 3 6 O M P # $ 4 0
6 0 2 D : 9 0 E F 3 7 B L T O L R l
6 0 2 F : A 9 8 0 3 8 L D A # $ 8 0 ; L O A D T I M E D E L AY
6 0 3 1 : 8 D 0 8 6 0 3 9 S T A D E L A Y

4 0 * * D R A W V I O L E T B O X
6 0 3 4 : A 9 5 A 4 1 L D A # $ 5 A
6 0 3 6 : 8 D 0 9 6 0 4 2 S T A S D E P T H
6 0 3 9 : A O 1 0 4 3 L D Y # $ 1 0
6 0 3 B : A 9 5 0 4 4 L D A # $ 5 0
6 0 3 D : 8 D 0 5 6 0 4 5 S T A L I N E
6 0 4 0 : A E 0 5 6 0 4 6 S T L D X L I N E
6 0 4 3 : B D 0 0 6 0 4 7 L D A H I , X
6 0 4 6 : 8 5 I B 4 8 S T A H I G H
6 0 4 8 : B D 8 0 6 1 4 9 L D A L O , X
6 0 4 8 : 8 5 l A 5 0 S T A L O W
6 0 4 D : A 9 5 5 5 1 L D A # $ 5 5
6 0 4 F : 9 1 l A 5 2 S T A (L 0 W) , Y
6 0 5 1 : E E 0 5 6 0 5 3 I N O L I N E
6 0 5 4 : A D 0 5 6 0 5 4 L D A L I N E
6 0 5 7 : C D 0 9 6 0 5 5 O M P S D E P T H
6 0 5 A : 9 0 E 4 5 6 B L T S T

5 7 * * * * * * * * * * M A I N P R O G R A M * * * * * * * * * *
6050: 20 7E 60 58 START JSR INITIAL ;SETUP BYTE.LINE & DEPTH
605F : 20 92 60 59 START l JSR DRAW ;DRAW SHAPE

r

Hi-Res Graphics and Animalion Using Assembly Language

A D 0 8 6 0
2 0 A S F C
2 0 9 2 6 0
E E 0 7 6 0
E E 0 6 6 0
A D 0 6 6 0
8 D 0 5 6 0
C9 BB
B O E l
4 C 5 F 6 0

A 9 1 0
8 D 0 4 6 0
A 9 0 0
8 D 0 5 6 0
8D 06 60
18
6 9 0 6
8 D 0 7 6 0
6 0
A 9 0 0
8D 03 60
A C 0 4 6 0
A E 0 5 6 0
B D C O 6 0
8 5 I B
B D 8 C 6 1
8 5 l A
A E 0 3 6 0
B 1 l A
5 D 0 6 6 0
9 1 l A
E E 0 3 6 0
E E 0 5 6 0
A D 0 5 6 0
C D 0 7 6 0
9 0 D 8
A D 0 6 6 0
8 D 0 5 6 0
6 0
1 4 2 A 2 A
2 A 1 4 1 4

* * * * * * * * * *

I N I T I A L L I

D R A W l

l A D E L A Y
; r w a i t
R D R A W
I C D E P T H
I C L I N E A
l A L I N E A
A L I N E
IP #$BB
I E S T A R T
I P S T A R T l
S U B R O U T I N E S
l A # $ 1 0
A B Y T E
l A # $ 0 0
A L I N E
A L I N E A
,C
I C # $ 0 6
A D E P T H
S
l A # $ 0 0
A X C O U N T
l Y B Y T E
I X L I N E
l A H I , X
" A H I G H
l A L O , X
A L O W
I X X C O U N T
lA (LOW),Y
IR SHAPE, X
A (LOW) ,Y
I C X C O U N T
I C L I N E
l A L I N E
I P D E P T H
J D R A W l
l A L I N E A
" A L I N E
" S D R A W

;DELAY

;ERASE SHAPE
;NEXT DEPTH

& N E X T L I N E

; I S L I N E
; IF YES,
; IF NO,

* * * * * * * * * *

LINE AT BOTTOM OF SCREEN?
YES, DRAW FROM INITIAL VALUES
NO, DRAW NEXT LINE

;SET STARTING BYTE

;SET STARTING LINE

;ADD DEPTH OF SHAPE

X C O U N T
L O A D B Y T E
L O A D L I N E
L O A D L I N E

L I N E
LINE ADDRESS INTO HIGH,LOW

;LOAD X WITH XCOUNT
;GET BYTE FROM SCREEN
;EOR BYTE FROM SHAPE ADDRESS+X
;PLOT BYTE

;NEXT LINE

;FINISH SHAPE?
;IF NO, DRAW NEXT LINE
;IF YES, RESET LINE

AND GO TO NEXT
C Y C L E

S H A P E 142A2A2A1414 ;SHAPE TABLE

588 bytes

Symbol table - numerical order:

LOW =$1A H I G H =$1B XCOUNT =$6003 BYTE =$6004
L I N E =$6005 L I N E A =$6006 DEPTH =$6007 DELAY =$6008
SDEPTH =$6009 PGM =$600A C L R l =$601E CLR =$6022
S T =$6040 START =$605C S TA R T l =$605F I N I T I A L =$607E
DRAW =$6092 D R A W l =$6097 S H A P E =$60C6 H I =$60CC
LO =$618C GRAPHICS=$C050 M I X O F F =$C052 P A G E l =$C054
H I R E S = $ C 0 5 7 W A I T =$FCA8

i

Drawing over Backgrounds

In all these cases, the background can be restored by EORing the shape byte,
but clearly we need to modify the draw routine to allow the shapes to retain
their colors. The technique we're going to use is a slight modification of the
protocol presented in Program 14-3. We load the background byte with LDA
(LOW),Y and s tore i t in BACK wi th STA BACK,X. Next , we load the
Accumulator, not with the shape byte but rather with a white dummy shape, and
use this for the EOR ^$7¥ and AND BACK,X. We then ORA the color shape and
plot. The background is restored from BACK in the XDRAW routine. This
technique is used in the following program (Program 14-5) to draw a green
shape over a violet background.

3PR0GRAM 14-5
: A S M * COLOR SHAPE & BACKROUND * COLOR RETAINED

* *

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP
* *

5 ORG $6000
6 0 0 0 : 4 C 1 0 6 0 6 J M P PGM

7 XCOUNT DS 1
8 B Y T E DS 1
9 L I N E D S 1
1 0 L I N E A D S 1
1 1 D E P T H D S 1
12 D E L AY DS 1
1 3 SDEPTH DS 1
1 4 BACK D S 6
15 GRAPHICS = $C050
16 MIXOFF = $C052
17 H I R E S = $C057
18 P A G E l = $C054
1 9 H I G H = $1B
2 0 LOW = $1A
2 1 W A I T = $FCA8

6 0 1 0 : AD 5 0 CO 2 2 PGM L D A GRAPHICS
6 0 1 3 : A D 5 2 CO 2 3 L D A M I X O F F

6 0 1 6 : A D 5 7 CO 2 4 L D A H I R E S

6 0 1 9 : A D 5 4 CO 2 5 L D A PAGEl
6 0 1 C : A 9 0 0 2 6 L D A #$00
6 0 1 E : 8 5 l A 27 STA LOW

6 0 2 0 : A 9 2 0 2 8 LDA #$20
6 0 2 2 : 8 5 I B 2 9 S T A H I G H

6 0 2 4 : AO 0 0 3 0 C L R l L D Y #$00
6 0 2 6 : A 9 0 0 3 1 L D A # $ 0 0
6 0 2 8 : 9 1 l A 3 2 C L R S TA (LOW),Y
6 0 2 A : C 8 3 3 I N Y
6 0 2 B : DO F B 3 4 B N E C L R

6 0 2 D : E 6 I B 3 5 I N C H I G H

6 0 2 F : A 5 I B 3 6 L D A H I G H

6 0 3 1 : C9 4 0 37 CMP #$40
6 0 3 3 : 9 0 EF 3 8 B LT C L R l
6 0 3 5 : A 9 8 0 39 LDA #$80
6 0 3 7 : 8D 0 8 6 0 4 0 STA DELAY

4 1 ** DRAW VIOLET BOX
6 0 3 A : A 9 5 A 4 2 LDA #$5A
6 0 3 C : 8 0 0 9 6 0 4 3 S TA SDEPTH
6 0 3 F : AO 1 0 4 4 L D Y #$10
6 0 4 1 : A 9 5 0 4 5 L D A #$50
6 0 4 3 : 8 0 0 5 6 0 4 6 S T A L I N E

; H I R E S , P. l

:CLEAR SCREEN 1

;LOAD TIME DELAY

Hi-Res Graphics and Animation Using Assembly Language

A E 0 5 6 0 L D X L I N E

S T A R T
S T A R T l

I N I T I A L

L D A H I , X
S T A H I G H
L D A L O , X
S T A L O W
L D A # $ 5 5
STA (LOW).Y
I N C L I N E
L D A L I N E
C M P S D E P T H
B L T S T

* * * M A I N P R O G R A M

J S R I N I T I A L
J S R D R A W
L D A D E L A Y
J S R W A I T
J S R X D R AW
I N C D E P T H
I N C L I N E A
L D A L I N E A
S T A L I N E
C M P # $ B B
B G E S T A R T
J M P S T A R T l

* * * S U B R O U T I N E S

L D A # $ 1 0
S T A B Y T E
L D A # $ 0 0
S T A L I N E
S T A L I N E A

;SETUP BYTE,LINE & DEPTH
;DRAW SHAPE
;DELAY

;ERASE SHAPE
;NEXT DEPTH

& NEXT LINE

;IS LINE AT BOTTOM OF SCREEN?
;IF YES, DRAW FROM INITIAL VALUES
; IF NO, DRAW NEXT L INE

* * * * * * * * * *

:SET STARTING BYTE

;SET STARTING LINE

$ 0 6
D E P T H

;ADD DEPTH OF SHAPE TO LINE

D R A W l

X D R AW

X D R A W l

$ 0 0
X C O U N T
B Y T E
L I N E
H I , X
H I G H

LO,X
LOW
X C O U N T

(L0W) ,Y
B A C K , X
WSHAPE,X
$ 7 F
B A C K , X
SHAPE,X
(LOW),Y
XCOUNT
L I N E
L I N E
D E P T H
D R A W l
L I N E A
L I N E

DRAW
$ 0 0
X C O U N T
L I N E

ZERO XCOUNT
L O A D B Y T E
LOAD LINE
LOAD LINE ADDRESS INTO HIGH,LOW

G E T S C R E E N B Y T E
S AV E B A C K R O U N D
L O A D W H I T E S H A P E

;ORA COLOR SHAPE
;PLOT

;NEXT LINE

;FINISH SHAPE?
;IF NO, DRAW NEXT LINE
;IF YES, RESET LINE

A N D G O T O N E X T

C Y C L E

Drawing over Backgrounds

A C 0 4 6 0 1 0 8
B D 1 5 6 1 1 0 9
8 5 I B 1 1 0
B D 0 5 6 1 1 1 1
8 5 l A 1 1 2
A E 0 3 6 0 1 1 3
B D O A 6 0 1 1 4
9 1 l A 1 1 5
E E 0 3 6 0 1 1 6
E E 0 5 6 0 1 1 7
A D 0 5 6 0 1 1 8
C D 0 7 6 0 1 1 9
9 0 D A 1 2 0
A D 0 6 6 0 1 2 1
8 D 0 5 6 0 1 2 2
6 0 1 2 3
2 8 2 8 2 8 1 2 4
2 8 2 8 2 8
7 C 7 C 7 C 1 2 5
7C 7C 7C

L D Y B Y T E

S H A P E

WSHAPE

H I , X
H I G H

LO,X
LOW
XCOUNT
BACK,X
(LOW),Y
XCOUNT
L I N E
L I N E
DEPTH
XDRAWl
L I N E A
L I N E

282828282828 ;SHAPE TABLE

7C7C7C7C7C7C ;WHITE SHAPE TABLE

6 6 1 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

LOW =$1A H I G H =$1B
L I N E = $ 6 0 0 5 L I N E A =$6006
S D E P T H =$6009 B A C K =$600A
C L R = $ 6 0 2 8 S T =$6046
I N I T I A L = $ 6 0 8 4 DRAW =$6098
X D R A W l =$60DC S H A P E =$6109
L O = $ 6 1 0 5 G R A P H I C S=$C050
H I R E S = $ C 0 5 7 W A I T =$FCA8

XCOUNT =$6003 B Y T E =$6004
DEPTH = $ 6 0 0 7 D E L A Y =$6008
PGM = $ 6 0 1 0 C L R l = $ 6 0 2 4
START =$6062 S TA R T l =$6065
DRAWl =$6090 XDRAW =$6007
WSHAPE = $ 6 1 0 F H I = $ 6 11 5
MIXOFF = $ 0 0 5 2 PA G E l = $ 0 0 5 4

Let's examine the details to see how the program works

Vio le t background
Green shape
White dummy shape

10 10 10 1
0 0 0 1 0 1 0
0 0 1 1 1 1 1

#$55
$ 2 8
#$7C

W h i t e s h a p e
E O R # $ 7 F

R e s u l t
AND violet background

R e s u l t

ORA green shape

R e s u l t

0 0 1 1 1 1 1
1 1 1 1 1 1 1

1 1 0 0 0 0 0
1 0 1 0 1 0 1

1 0 0 0 0 0 0
0 0 0 1 0 1 0

1 0 0 1 0 1 0

b l a c k

The result is a green shape over a violet background. This is what we
want — the colors are retained—but notice that the shape now has a black

Hi-Res Graphics and Animation Using Assembly Language

border. This is not a great problem. If you run Program 14-5, you'll see that the
border actually sets off the shape quite nicely. Eliminating the border is really
not necessary for most situations and in fact an equally pleasing effect can be
achieved by changing the border to white. All that's required is changing the
white dummy shape. For example:

Violet background
Green shape
White dummy shape

White shape
EOR #$7F

R e s u l t
AND violet background

R e s u l t
ORA green shape

R e s u l t

1 0 1 0 1 0 1 # $ 5 5
0 0 0 1 0 1 0 # $ 2 8
0 0 0 1 1 1 1 # $ 7 8

0 0 0 1 1 1 1

1 1 1 1 1 1 1

1 1 1 0 0 0 0

1 0 1 0 1 0 1

1 0 1 0 0 0 0

0 0 0 1 0 1 0

1 0 1 1 0 1 0

w h i t e

This technique works for drawing any color over a white background and for
any color (including white) over any other color background, unless the color
combinations involve high-bit-set and high-bit-not-set colors. You can't draw aviolet shape over a blue background, for example, because the plotted byte
either has the high bit set or not.

i Advanced Paddle
j (Jovstick) Routines

rm really i)i a bit of a fix—
/ need a lijiierick like a magician needs tricks.
But Vm lazy today
So I'll take the easy way—
fust read the one in Chapter 6.

TJL heJL he paddle routine in the game program works okay for its stated pur
pose, but let's see how we can use our assembly language expertise to improve
on it and at the same time exercise our programming skills. First, we'll discuss
how to minimize flicker by introducing a paddle movement test, and then we'll
go on to a paddle-smoothing routine that prevents instantaneous movement of
the paddle-controlled shape.

TESTING FOR NON-MOVEMENT OF PADDLE

Let's consider Program 6-1, where the vertical movement of a shape is con
trolled by a paddle. The overall scheme can be represented as follows.

, ▶! PADDLE READ

D R A W

D E L A Y

E R A S E

In the game program, "DELAY" can be replaced by "REST OF PROGRAM",
because everything else is executed between paddle reads. Now if you look at
the man shape in the game program or the shape in Program 6-1, when the
shapes are stationary, flicker is evident. As mentioned before, the amount of

Hi-Res Graphics and Animation Using Assembly Language

flicker depends to a large extent on the image retention characteristics of the
monitor or TV, The reason for the flickering is the delay between paddle reads;
the longer the delay (or the larger the program code between reads) the greater
the flickering. Note also that the flickering is noticeable only when the shape is
stationary, i.e., when the paddle position is not changed, and this leads us to the
solution to the problem. In the scheme diagrammed above, the shape is drawn
and erased continuously, even if the paddle position stays the same. What we
need to do then is introduce a test for paddle movement—if the paddle is not
moved, the draw-erase cycle will be bypassed, the shape will stay on the screen
at the position determined by the paddle, and flicker will be totally eliminated.

If we try to introduce this test using the scheme above, we run into trouble,
because the shape is erased before each paddle read and so if the paddle isn't
moved, the shape will not be displayed.

I ▶ P A D D L E R E A D

S A M E P O S I T I O N ?

D R A W

DELAY(REST
OF PROGRAM)

E R A S E

We could get around this by using a DRAW-DRAW routine, but this presents
its own problems which we'll get to later. To perform the test with a DRAW-
ERASE routine, we have to modify our usual draw-erase cycle to an erase-draw
cycle preceded by an initial draw outside the main loop; that is:

r

Advanced Paddle (Joystick) Routines

As you can see, the shape is erased and drawn only when the paddle position
changes—if it stays the same, the erase-draw routine is bypassed entirely. Note
that the shape is drawn, not erased, before the paddle read and test and so
always stays on the screen. This scheme is incorporated into the following pro
gram (Program 15-1) which is the same as Program 6-1, except for the paddle
m o v e m e n t t e s t .

In the MAIN PROGRAM of Program 15-1, we draw the shape initially using a
specified screen byte position (defined in the INITIAL subroutine) and a screen
line specified by the POLE subroutine; in this subroutine we also store the Y
value returned from PREAD in Yl. The program then proceeds into the main
loop, starting with a delay (or rest of program) and then a paddle read. The Y
value returned from PREAD is compared to Yl—if equal, it means the paddle
position hasn't changed and the program loops back to the delay (rest of pro
gram) without erasing and redrawing the shape. Voila, no flicker, or, as they say
in French, voila, no flicker.

If Y is not equal to Yl, the paddle position has moved, so we want to erase
and then redraw the shape at the new position specified by the paddle read.
First, we store the Y value from PREAD temporarily in Y2 and then jump to
PLOT to erase the shape using Yl (the original Y value from the last draw). The
value in Y2 is then placed in Yl and another jump to PLOT draws the shape
using the Y value from the last PREAD. In other words, Yl is used for erasing and
Y2 for drawing, then Y2 is placed in Yl in preparation for the next cycle. After
the draw, the program loops to the delay (rest of program), and so on and on
a n d o n .

Compare Programs 6-1 and 15-1. The absence of flicker is quite noticeable
and quite an improvement, and would be even more so in programs with lots of
code between paddle reads.

D I S P L AY A N D C L E A R S C R E E N

D R AW AT I N I T I A L P O S I T I O N

Y F R O M PA D D L E R E A D — > Y 1

1
DELAY (REST OF PROGRAM)

I
G E T Y F R O M P A D D L E R E A D

1 Yes
Y = Y 1 ?

^ No
Y — > Y 2

E R A S E U S I N G Y l

I I
Y 2 — ^ Y 1

D R AW U S I N G N E W Y 1

Hi-Res Graphics and Animation Using Assembly Language

]PROGRAM 15-
: A S M

6 0 0 0 : 4 C O B

6 0 0 B :
6 0 0 E :
6 0 1 1 :
6 0 1 4 :
6 0 1 7 :
6 0 1 9 :
6 0 1 B :
6 0 1 D :
6 0 1 F :
6 0 2 1 :
6 0 2 3 :
6 0 2 5 :
6 0 2 6 :
6 0 2 8 :
6 0 2 A :
6 0 2 C :
6 0 2 E :
6 0 3 0 :
6 0 3 2 :

A D 5 0
a d 5 2
a d 5 7
a d 5 4
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
AO 00
A 9 0 0
9 1 l A
C 8
DO FB
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 4 0
8 D 0 8

6035: 20 76
6038: 20 89
603B: 20 7c
603E: 20 9C

6041: AD 08
6044: 20 A8
6047: A2 01
6049: 20 IE
604C: CO 09
604F: FO FO

* PADDLE MOVE TEST * VERT ICAL
* *

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP
* *

$ 6 0 0 0
P G M

X C O U N T
B Y T E

L I N E
L I N E A
D E P T H

D E L A Y
Y 1
Y 2

G R A P H I C S
M I X O F F

H I R E S
P A G E l
H I G H
L O W
W A I T
P R E A D

P G M ; H I R E S , P . l

;CLEAR SCREEN 1

$ C 0 5 0
$ C 0 5 2
$C057
$ C 0 5 4
$1B
$ 1 A
$FCA8
$ F B 1 E
G R A P H I C S

M I X O F F
H I R E S

P A G E l

$ 0 0
L O W

$ 2 0
H I G H

$ 0 0
$ 0 0
(L O W) , Y

B N E C L R
I N C H I G H

L D A H I G H
C M P # $ 4 0
B L T C L R l

L D A # $ 4 0 ; L O A D T I M E D E L A Y
S T A D E L A Y

* * * * * * * * * * m a i n p r o g r a m * * * * * * * * * *
* * I N I T I A L D R A W * *

J S R I N I T I A L ; S E T S C R E
J S R P D L E ; R E A D P A D
J S R D E P ; S E T D E P T
J S R D R A W ; D R A W

* *

S E T S C R E E N B Y T E
R E A D P A D D L E 1
S E T D E P T H

D R A W

P R O G R A M D E L A Y

W A I T

$ 0 1
P R E A D
Y 1

P R O G R A M

;DELAY OR REST OF PROGRAM

' PADDLE HASN'T MOVED, DO NOT
E R A S E A N D R E D R AW S H A P E

r

Advanced Paddle (Joystick] Routines

6 0 5 1 : 8 C O A 6 0
6 0 5 4 : 2 0 6 3 6 0
6 0 5 7 : A D O A 6 0
6 0 5 A : 8 D 0 9 6 0
6 0 5 D : 2 0 6 3 6 0
6 0 6 0 : 4 C 4 1 6 0

6 0 6 3 : A D 0 9 6 0
6 0 6 6 : C 9 B B
6 0 6 8 : 9 0 0 2
6 0 6 A : A 9 B A
6 0 6 C : 8 D 0 5 6 0
6 0 6 F : 2 0 7 C 6 0
6 0 7 2 : 2 0 9 C 6 0
6 0 7 5 : 6 0

6 0 7 6 : A 9 1 0
6 0 7 8 : 8 D 0 4 6 0
6 0 7 B : 6 0

6 0 7 C : A D 0 5 6 0
6 0 7 F : 8 D 0 6 6 0
6 0 8 2 : 1 8
6 0 8 3 : 6 9 0 6
6 0 8 5 : 8 D 0 7 6 0
6 0 8 8 : 6 0

6 0 8 9 : A 2 0 1
6 0 8 B : 2 0 I E F B
6 0 8 E : 8 C 0 9 6 0
6 0 9 1 : C O B B
6 0 9 3 : 9 0 0 3
6 0 9 5 : A 9 B A
6 0 9 7 : A 8
6 0 9 8 : 8 0 0 5 6 0
6 0 9 B : 6 0

6 0 9 0 : A 9 0 0
6 0 9 E : 8 D 0 3 6 0
6 0 A 1 : A O 0 4 6 0
6 0 A 4 : A E 0 5 6 0
6 0 A 7 : B D D 6 6 0
6 0 A A : 8 5 I B
6 0 A 0 : B D 9 6 6 1
6 0 A F : 8 5 l A
6 0 B 1 : A E 0 3 6 0
6 0 B 4 : B 1 l A
6 0 B 6 : 5 D D O 6 0
6 0 B 9 : 9 1 l A
6 0 B B : E E 0 3 6 0
6 0 B E : E E 0 5 6 0
6 0 0 1 : A D 0 5 6 0
6 0 0 4 : O D 0 7 6 0
6 0 0 7 : 9 0 D 8
6 0 0 9 : A D 0 6 6 0
6 0 0 0 : 8 D 0 5 6 0
6 0 0 F : 6 0

S T Y Y 2
J S R P L O T
L D A Y 2

S T A Y 1
J S R P L O T
J M P P R O G R A M

* * * * * * * * * * S U B R O U T I N E S * *

P L O T L D A Y 1
OMP / / $BB
B L T C O N T l

;IF PADDLE HAS MOVED, STORE Y IN
Y 2 A N D E R A S E U S I N G Y 1

;TRANSFER Y2 TO Y1
A N D

* * * * * * * *

O O N T l

L D A # $ B A
S T A L I N E
J S R D E P
J S R D R A W

* *

I N I T I A L L D A / / $ 1 0
S T A B Y T E
RT S

* *

D E P L D A L I N E
S T A L I N E A
O L C
A D O / / $ 0 6
S T A D E P T H
R T S

* *

P D L E L D X # $ 0 1
J S R P R E A D
S T Y Y 1
O P Y # $ B B
B L T O O N T
L D A # $ B A
T A Y

O O N T S T Y L I N E
R T S

* *

D R A W L D A # $ 0 0
STA XOOUNT

D R A W l L D Y B Y T E
L D X L I N E
L D A H I , X
S T A H I G H
L D A L O , X
S T A L O W
L D X X O O U N T
L D A (L O W) , Y
E O R S H A P E , X
S T A (L O W) , Y
I N C X O O U N T
I N C L I N E
L D A L I N E
O M P D E P T H
B L T D R A W l
L D A L I N E A
S T A L I N E

: S E T S T A R T I N G B Y T E

: S E T D E P T H

;READ PADDLE 1
;0 -255 IN Y
; STORE Y IN Y1
: O L I P T O 0 - 1 8 6

; 0 - 1 8 6 I N L I N E

Z E R O X O O U N T
L O A D B Y T E

L O A D L I N E

LOAD LINE ADDRESS INTO HIGH,LOW

;LOAD X WITH XOOUNT
;GET BYTE FROM SCREEN
;EOR BYTE FROM SHAPE ADDRESS+X
;PLOT BYTE

; N E X T L I N E

;FINISH SHAPE?
; I F N O , D R AW N E X T L I N E
; I F Y E S , R E S E T L I N E A N D

DRAW NEXT CYCLE

Hi-Res Graphics and Animation Using Assembiy Language

6 0 D 0 : 0 8 I C 2 2 1 1 2 S H A P E
6 0 D 3 : 3 E 2 2 7 F

H I
L O

H E X 0 8 1 C 2 2 3 E 2 2 7 F ; S H A P E TA B L E

5 9 8 b y t e s

S y m b o l t a b l e — n u m e r i c a l o r d e r ;

L O W = $ 1 A
L I N E = $ 6 0 0 5
Y 1 = $ 6 0 0 9
C L R = $ 6 0 2 3
I N I T I A L = $ 6 0 7 6
D R A W = $ 6 0 9 0
L O = $ 6 1 9 6
H I R E S = $ 0 0 5 7

H I G H = $ 1 B
L I N E A = $ 6 0 0 6
Y 2 = $ 6 0 0 A
PROGRAM =$6041
D E P = $ 6 0 7 0
D R A W l = $ 6 0 A 1
G R A P H I O S = $ 0 0 5 0
P R E A D = $ F B 1 E

X O O U N T = $ 6 0 0 3
D E P T H = $ 6 0 0 7
P G M = $ 6 0 0 B
P L O T = $ 6 0 6 3
P D L E = $ 6 0 8 9
S H A P E = $ 6 0 D 0
M I X O F F = $ 0 0 5 2
W A I T = $ F 0 A 8

B Y T E = $ 6 0 0 4
D E L A Y = $ 6 0 0 8
O L R l = $ 6 0 1 F
O O N T l = $ 6 0 6 0
O O N T = $ 6 0 9 8
H I = $ 6 0 D 6
P A G E l = $ 0 0 5 4

P^PÎ -SMOOTHING ROUTINES
As mentioned above, using a DRAW-DRAW routine would simplify things

somewhat, because without an erase routine, the shape will always be on the
screen. For example, we could use the following scheme:

I N I T I A L D R AW

T 1
PA D D L E R E A D

SAME POSITION?

D R A W

D E L A Y

Advanced Paddle (Joystick) Routines

However, there is a problem with paddle routines using DRAW-DRAW.
Remember that DRAW-DRAW erases by redrawing over a previous position. For
vertical movement, a border of #$00's equal to the maximum shape move must
be included in the shape tables. For horizontal movement, a trailing byte #$00
may be needed, depending on how the shape is drawn. If the jump in position
from one paddle read to the next is greater than the border in vertical move
ment, or larger than one byte in horizontal movement, then shape fragments will
be left on the screen. Because the paddle routines we've used so far provide for
virtually instantaneous movement, moving the paddle (or more easily the joy
stick) rapidly does produce large jumps. Try this with Program 6-1. Introduce a
border of size 5 or so and convert to a DRAW-DRAW routine; then move the
paddle slowly—okay. Then move it rapidly—interesting pattern, no? The solution
to this problem (aside from huge, unworkable borders or movement limiters on
your paddles) is to limit the maximum shape move regardless of paddle move
ment. This not only eliminates the DRAW-DRAW problem, but also provides for
a smoother, more pleasing effect. In the next program (Program 15-2), were
going to modify Program 6-2 (horizontal movement of the man shape) by limit
ing the movement to a maximum of 5 bit positions at a time.

Program 15-2 is the same as Program 6-2 except for the PDLE subroutine, sowe'll limit our discussion to that part of the program. Examining the flowchart
will make this discussion easier to follow. The flowchart for Program 15-2 is on page
294. The two salient memory storage locations are MHORIZ, which contains the Y
value used to calculate the shape position, and PDL, which contains the Y value from
the most current paddle read.

If MHORIZ is larger than PDL, we want to subtract 5 from MHORIZ but not
go below zero. After the subtraction, if MHORIZ is >= PDL, we continue with
the program and use MHORIZ to calculate the new shape position. If MHORIZ <
PDL, we don't want to go beyond the paddle position, so we set MHORIZ equal toPDL and then continue with the shape draw. If MHORIZ initially equals PDL, we
set MHORIZ equal to PDL and continue. If MHORIZ is initiaUy smaller than PDL,
we add 5 to MHORIZ but only if it is below 250 so that we don't go beyond 255.
After adding 5, if MHORIZ > PDL we set MHORIZ equal to PDL, again not to go
beyond the paddle position. All this occurs just once each cycle, thus limiting the
shape movement to a maximum of 5 bit positions in either direction.

]PROGRAM 15-2
: A S M

1 *PADDLE OR JOYSTICK CONTROL OF HORIZONTAL MOVEMENT
2 *PADDLE SMOOTHING ROUTINE
3 O R G $ 6 0 0 0

6 0 0 0 : 4 C 4 0 6 0 4 J M P P G M
5 L I N E D S 1
6 L I N E A D S 1
7 D E P T H D S 1
8 H O R I Z D S 1
9 X C O U N T D S 1
1 0 D E L A Y D S 1
1 1 T E M P D S 3 9
1 2 P D L D S 1
1 3 M H O R I Z D S 1
1 4 G R A P H I C S = $ C 0 5 0
1 5 M I X O F F = $ C 0 5 2
1 6 H I R E S = $ C 0 5 7
1 7 P A G E l = $ C 0 5 4
1 8 H I G H = $ 1 B
1 9 L O W = $ 1 A

Hi-Res Graphics and Animation Using Assembiy Language

6 0 3 2 :
6 0 3 3 :
6 0 3 4 :
6 0 3 5 :
6 0 3 6 :
6 0 3 7 :
6 0 3 8 :
6 0 3 9 :
6 0 3 A :
6 0 3 B :
6 0 3 C :

6 0 3 D :
6 0 3 E :
6 0 3 F :
6 0 4 0 :
6 0 4 3 :
6 0 4 6 :
6 0 4 9 :
6 0 4 C :
6 0 4 E :

6 0 5 0 :
6 0 5 2 :
6 0 5 4 :
6 0 5 6 :
6 0 5 8 :
6 0 5 A :
6 0 5 B :
6 0 5 D :
6 0 5 F :
6 0 6 1 :
6 0 6 3 :
6 0 6 5 :
6 0 6 7 :
6 0 6 A :
6 0 6 C :
6 0 6 E :
6 0 7 1 :
6 0 7 3 :
6 0 7 6 :
6 0 7 8 :
6 0 7 A :
6 0 7 C :
6 0 7 D :
6 0 7 F :

5 A

6 1
8 1
6 1
A 8
6 1
C F
6 1

F 6
6 1
I D

6 2
4 4
6 2
AD 50 CO
AD 52 CO
AD 57 CO
AD 54 CO
A 9 0 0
8 5 l A
A 9 2 0
8 5 I B
A O 0 0
A 9 0 0
9 1 l A
C 8

D O F B
E 6 I B
A 5 I B
C 9 4 0
9 0 E F
A 9 6 0
8D 08 60
A 2 B 7
AO 00
B D 7 1 6 4
8 5 I B
B D 3 1 6 5
8 5 l A
A 9 7 F
9 1 l A
C 8
C O 2 7
9 0 F 9

6081: 20 96 60
6084: 20 A5 60
6087: 20 10 61
608A: AD 08 60
608D: 20 A8 FC
6090: 20 10 61
6 0 9 3 : 4 C 8 4 6 0

; H I R E S , P . l

: C L E A R S C R E E N

W A I T = $ F C A 8
P R E A D = $ F B 1 E
*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
♦ C O N T I N U E F O R A L L 7 S H A P E S

S H P A D R D F B # < S H A P E 1
D F B # > S H A P E 1
D F B / / < S H A P E 2
D F B # > S H A P E 2
D F B / / < S H A P E 3
D F B # > S H A P E 3
D F B / / < S H A P E 4
D F B # > S H A P E 4
D F B / / < S H A P E 5
D F B / / > S H A P E 5
D F B / / < S H A P E 6
D F B / / > S H A P E 6
D F B / / < S H A P E 7
DFB / ; t>SHAPE7

P G M L D A G R A P H I C S ; H I R E S , P . 1
L D A M I X O F F
L D A H I R E S
L D A P A G E l
L D A / / $ 0 0 ; C L E A R S C R E E N 1
S T A L O W
L D A / / $ 2 0
S T A H I G H

C L R l L D Y # $ 0 0
L D A i t $ 0 0

C L R S T A (L 0 W) , Y
I N Y

B N E C L R
I N C H I G H
L D A H I G H
C M P # $ 4 0
B L T C L R l
L D A # $ 6 0 ; L 0 A D D E L A Y
S T A D E L A Y
L D X # $ B 7 ; D R A W L I N E
L D Y i t $ 0 0
L D A H I . X
S T A H I G H
L D A L O , X
S T A L O W
L D A # $ 7 F

L N S T A (L O W) , Y

* * * * * * * * * * m a i n p r o g r a m * * * * * * * * * *

;LOAD DELAY

: D R A W L I N E

P A D D L E
I N I T
P O L E

D R A W

D E L A Y
W A I T

D R A W
P A D D L E

S E T L I N E & D E P T H
R E A D P A D D L E 0
D R A W

D E L A Y
E R A S E
R E A D P A D D L E A G A I N

Advanced Paddle (Joyslick) Routines

7 6 * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * *
A 9 A A 7 7 I N I T L D A # $ A A
8 D 0 3 6 0 7 8 S T A L I N E
8 D 0 4 6 0 7 9 S T A L I N E A

6 9 O D
8 D 0 5 6 0

#$0D
D E P T H

A 2 0 0

2 0 I E F B
8 C 3 0 6 0
9 8
C D 3 1 6 0
9 0 2 0
C D 3 1 6 0
F O 1 2
A D 3 1 6 0
C 9 F A
B O O B
A D 3 1 6 0
1 8

6 9 0 5
C D 3 0 6 0
9 0 0 3
A D 3 0 6 0
8 D 3 1 6 0
4 C E B 6 0
A D 3 1 6 0
3 8

E 9 0 5
B O 0 5
A 9 0 0

8 D 3 1 6 0
C D 3 0 6 0
B O E 8
A D 3 0 6 0
4 C C D 6 0
A C 3 1 6 0
B 9 6 B 6 2
8 D 0 6 6 0
B 9 6 E 6 3
O A
A A
B D 3 2 6 0
8 5 l A
B D 3 3 6 0
8 5 I B
A O 0 0
B 1 l A

9 9 0 9 6 0
C 8

C O 2 7
9 0 F 6
6 0

* *

P D L E L D X / / $ 0 0
J S R P R E A D

M H O R I Z
PA D D L E 3
M H O R I Z
PA D D L E 1
M H O R I Z

//$FA
PA D D L E 1
M H O R I Z

$ 0 5
P D L
PA D D L E 2
P D L
M H O R I Z

PA D D L E S
M H O R I Z

/ /$05
PA D D L E 4

$ 0 0
M H O R I Z
P D L

PA D D L E 2
P D L
PA D D L E 2
M H O R I Z
BYTETBL.Y
H O R I Z

OFFSET,Y

P A D D L E 1

P A D D L E 2

PA D D L E 3

PA D D L E 4

PA D D L E S

:READ PADDLE 0

IF MHORIZ > PDL ,
S U B T R A C T 5 F R O M M H O R I Z

I F M H O R I Z = P D L ,
S E T M H O R I Z = P D L

IF MHORIZ < PDL ,
B U T > = 2 5 0 ,

S E T M H O R I Z = P D L

:IF < 250, ADD 5 TO MHORIZ

:DON'T GO PAST PDL POSIT ION

; SUBTRACT 5 FROM MHORIZ

;BRANCH IF >= 0
; IF < 0 ,

S E T M H O R I Z = 0
: D O N ' T G O P A S T P D L P O S I T I O N

; CONVERT TO SCREEN BYTE (0 - 36)

;GET SHAPE NUMBER
: L O A D S H A P E I N T O T E M P

SHPADR,X
L O W
SHPADR+1,X
H I G H

$ 0 0
(L O W) , Y
T E M P. Y

Hi-Res Braphics and Animation Using Assembiy Language

A 9 0 0
8 D 0 7 6 0
A E 0 3 6 0
A C 0 6 6 0
B D 7 1 6 4
8 5 I B
B D 3 1 6 5
8 5 l A
A E 0 7 6 0
B 1 l A
5 D 0 9 6 0
9 1 l A
0 8
B 1 l A
5D OA 60
9 1 l A
0 8
B 1 l A
5D OB 60
9 1 l A
E E 0 7 6 0
E E 0 7 6 0
E E 0 7 6 0
E E 0 3 6 0
A D 0 3 6 0
C D 0 5 6 0
9 0 0 2
A D 0 4 6 0
8 D 0 3 6 0
6 0
00 OE 01
00 OE 01
0 0 4 4 0 1
0 0 7 F 0 0
3 0 I F 0 0
18 IF 00
00 IF 00
00 IB 00
60 60 00
0 0 1 0 0 2
0 0 1 0 0 2
0 0 0 8 0 3
0 0 7 E 0 1
0 0 3 F 0 0
40 3F 00
00 3E 00
00 36 00
00 63 00
00 38 04
00 38 04
00 10 06
0 0 7 0 0 3
0 0 7 0 0 0
0 0 7 E 0 0

1 3 3

1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 0
1 4 1
1 4 2
1 4 3
1 4 4
1 4 5
1 4 6
1 4 7
1 4 8
1 4 9
1 5 0
1 5 1
1 5 2
1 5 3
1 5 4

1 5 5
1 5 6
1 5 7
1 5 8
1 5 9
1 6 0
1 6 1
1 6 2

0 0 O E
1 6 3

6 0 I F
1 6 4

0 0 I F
1 6 5

4 0 3 1
1 6 6
1 6 7

0 0 1 0
1 6 8

0 0 3 E
1 6 9

0 0 3 E
1 7 0

0 0 3 6
1 7 1
1 7 2

0 0 3 8
1 7 3

0 0 7 0
1 7 4

0 0 7 0

* *

D R A W L D A # $ 0 0
S T A X O O U N T

D R A W l L D X L I N E
L D Y H O R I Z
L D A H I , X
S T A H I G H

L D A L O , X
S T A L O W

L D X X O O U N T
L D A (L O W) , Y
E O R T E M P , X
S T A (L O W) , Y
I N Y
L D A (L O W) , Y
E O R T E M P + 1 , X
S TA (L O W) , Y
I N Y
L D A (L O W) , Y
E O R T E M P + 2 , X
S T A (L O W) , Y
I N O X O O U N T
I N O X O O U N T
I N O X O O U N T

I N O L I N E
L D A L I N E
O M P D E P T H
B L T D R A W l

L D A L I N E A ; R E S E T L
S T A L I N E
R T S

S H A P E 1 H E X O O O E O I O O O E O I O O O E O I
0 1

H E X 0 0 4 4 0 1 0 0 7 F 0 0 6 0 1 F 0 0
0 0

H E X 3 0 1 F 0 0 1 8 1 F 0 0 0 0 1 F O O

0 0
H E X 0 0 1 F 0 0 0 0 1 B 0 0 4 0 3 1 0 0

0 0
H E X 6 0 6 0 0 0

S H A P E 2 H E X 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2
0 2

H E X 0 0 0 8 0 3 0 0 7 E 0 1 0 0 3 E 0 0
0 0

H E X 0 0 3 F 0 0 4 0 3 F 0 0 0 0 3 E 0 0

0 0
H E X 0 0 3 E 0 0 0 0 3 6 0 0 0 0 3 6 0 0

0 0
H E X 0 0 6 3 0 0

S H A P E 3 H E X 0 0 3 8 0 4 0 0 3 8 0 4 0 0 3 8 0 4
0 4

H E X 0 0 1 0 0 6 0 0 7 0 0 3 0 0 7 0 0 0

0 0
H E X 0 0 7 0 0 0 0 0 7 E 0 0 0 0 7 0 0 0

; R E S E T L I N E

: S H A P E TA B L E S

Advanced Paddle [Joystick) Routines

6 1 C 3 : 0 0 3 8 0 0 1 7 5 H E X 0 0 3 8 0 0 0 0 3 8 0 0 0 0 6 C 0 0
6 1 C 6 : 0 0 3 8 0 0 0 0 6 C 0 0
6 1 C C : 0 0 A 6 0 1 1 7 6 H E X 0 0 4 6 0 1
6 1 C F : 0 0 7 0 0 8 1 7 7 S H A P E 4 H E X 0 0 7 0 0 8 0 0 7 0 0 8 0 0 7 0 0 8
6 1 D 2 : 0 0 7 0 0 8 0 0 7 0 0 8
6 1 D 8 : 0 0 2 0 O C 1 7 8 H E X 0 0 2 0 0 C 0 0 7 8 0 7 0 0 7 8 0 1
6 1 D B : 0 0 7 8 0 7 0 0 7 8 0 1
6 1 E 1 : 0 0 7 8 0 1 1 7 9 H E X 0 0 7 8 0 1 0 0 7 8 0 1 0 0 7 8 0 1
6 1 E 4 : 0 0 7 8 0 1 0 0 7 8 0 1
6 1 E A : 0 0 7 0 0 0 1 8 0 H E X 0 0 7 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0
6 1 E D : 0 0 7 0 0 0 0 0 7 0 0 0
6 1 F 3 : 0 0 7 0 0 0 1 8 1 H E X 0 0 7 0 0 0
6 1 F 6 : 0 0 6 0 11 1 8 2 S H A P E 5 H E X 0 0 6 0 11 0 0 6 0 11 0 0 6 0 11
6 1 F 9 : 0 0 6 0 1 1 0 0 6 0 1 1
6 I F F : 0 0 4 0 1 8 1 8 3 H E X 0 0 4 0 1 8 0 0 7 0 0 F 0 0 7 0 0 3
6 2 0 2 : 0 0 7 0 O F 0 0 7 0 0 3
6 2 0 8 : 0 0 7 0 0 3 1 8 4 H E X 0 0 7 0 0 3 0 0 7 8 0 3 0 0 7 0 0 3
6 2 0 B : 0 0 7 8 0 3 0 0 7 0 0 3
6 2 1 1 : 0 0 6 0 0 1 1 8 5 H E X 0 0 6 0 0 1 0 0 6 0 0 1 0 0 3 0 0 3
6 2 1 4 : 0 0 6 0 0 1 0 0 3 0 0 3
6 2 1 A : 0 0 1 8 0 6 1 8 6 H E X 0 0 1 8 0 6
621D: 00 40 23 187 SHAPE6 HEX 004023004023004023
6 2 2 0 : 0 0 4 0 2 3 0 0 4 0 2 3
6 2 2 6 : 0 0 0 0 3 1 1 8 8 H E X 0 0 0 0 3 1 0 0 6 0 1 F 0 0 6 0 0 7
6 2 2 9 : 0 0 6 0 I F 0 0 6 0 0 7
6 2 2 F : 0 0 7 0 0 7 1 8 9 H E X 0 0 7 0 0 7 0 0 7 8 0 7 0 0 6 0 0 7
6 2 3 2 : 0 0 7 8 0 7 0 0 6 0 0 7 2 9 3
6 2 3 8 : 0 0 6 0 0 7 1 9 0 H E X 0 0 6 0 0 7 0 0 6 0 0 6 0 0 6 0 0 6
6 2 3 B : 0 0 6 0 0 6 0 0 6 0 0 6 H i
6 2 4 1 : 0 0 3 0 O C 1 9 1 H E X 0 0 3 0 0 C
6244: 00 00 47 192 SHAPE7 HEX 000047000047000047
6 2 4 7 : 0 0 0 0 4 7 0 0 0 0 4 7
624D: 00 00 62 193 HEX 00006200403F00700F
6 2 5 0 : 0 0 4 0 3 F 0 0 7 0 O F
6256: 00 58 OF 194 HEX 00580F004C0F00400F
6 2 5 9 : 0 0 4 C O F 0 0 4 0 O F
625F: 00 40 OF 195 HEX 00400F00400D006018
6 2 6 2 : 0 0 4 0 O D 0 0 6 0 1 8
6 2 6 8 : 0 0 3 0 3 0 1 9 6 H E X 0 0 3 0 3 0

B Y T E T B L
O F F S E T
H I
L O

1 5 2 1 b y t e s

S y m b o l t a b l e - n u m e r i c a l o r d e r :

L O W = $ 1 A H I G H = $ 1 B L I N E = $ 6 0 0 3 L I N E A = $ 6 0 0 4
DEPTH =$6005 HORIZ =$6006 XCOUNT =$6007 DELAY =$6008
TEMP =$6009 PDL =$6030 MHORIZ =$6031 SHPADR =$6032
P G M = $ 6 0 4 0 C L R l = $ 6 0 5 4 C L R = $ 6 0 5 8 L N = $ 6 0 7 A
PADDLE =$6084 INIT =$6096 PDLE =$60A5 PADDLE1 =$60CA
PADDLE2 =$60CD PADDLE3 =$60D3 PADDLE4 =$60E0 PADDLE5 =$60EB
LOAD =$6105 DRAW =$6110 DRAWl =$6115 SHAPE l =$615A
SHAPE2 =$6181 SHAPE3 =$61A8 SHAPE4 =$61CF SHAPE5 =$61F6
SHAPE6 =$621D SHAPE7 =$6244 BYTETBL =$626B OFFSET =$636E
H I = $ 6 4 7 1 L O = $ 6 5 3 1 G R A P H I C S = $ C 0 5 0 M I X O F F = $ 0 0 5 2
P A G E l = $ 0 0 5 4 H I R E S = $ 0 0 5 7 P R E A D = $ F B 1 E W A I T = $ F 0 A 8

Run Program 15-2 and compare it to Program 6-2. I think you'll agree the
effect is more pleasing and is reminiscent of the type of paddle control one sees
in Invader-type games.

The paddle smoothing routine can be used in any program using paddles to
move shapes in any direction and the maximum speed of movement can be
altered simply by changing the value to be added or subtracted. This routine also
allows one to incorporate a DRAW-DRAW routine into the program. For vertical
animation, we simply limit the maximum move to the border size. For horizontal
animation, we need only limit the maximum move to one byte or less.

One final note. I haven't combined the paddle smoothing routine with the
paddle movement test of Program 15-1. This is something for you to do, as we'll
talk about in the last chapter.

16
Integrating BaSIC with
Assembly Language Prog'ams
There once was a woman named Kit,
Whose husband gave her a Jit.
Co77iputing all night
He 77eglected her plight
So they drifted apart, bit by bit.

(This has 7iothing to do with this chapter, but it's hard ivriting these thmgs.)

TJL here isn't anything that can be done in BASIC that cant be done in
assembly language, but for some things BASIC is much easier. Complex arith
metic, for example, is much simpler using BASIC. In assembly language, you can
add, subtract, multiply, and divide, but in BASIC a whole host of arithmetic func
tions are available, such as SQR, ABS, INT, SIN, COS, TAN, RND, EXP, LOG, etc.,
and working with formulas is made simpler with the DEF FN instruction (see the
Apple BASIC manual for details). Of course, all these functions can be derived
from the four basics of adding, subtracting, multiplying, and dividing, but if speed
is not required, it's much easier to let the BASIC interpreter do it for you. If
speed is required (let's say you want to plot sine curves on the hi res screen-—
easy but slow in BASIC), you'll need to use assembly language. Deriving sinecurve equations from the four basic arithmetic functions is about as much fun as
defleaing your dog but fortunately, if you need to do this, there are texts on themarket that deal with complex number manipulations using assembly language.

Printing to the text screen is often used with hi-res graphics programs,
either for displaying whole page instructions or for printing on the bottom four
lines of page 1 with the mixed text and graphics mode. (This is different from
printing on the hi-res screen itself—here one needs to use shapes in the form of
letters in the same way as we used number shapes for displaying the score in the
game program.) Text printing can be done using BASIC or assembly language
and in fact is relatively easy with assembly language, because one can use several
built-in Apple subroutines to take care of the housekeeping chores. But, to my
mind, nothing is easier than the BASIC PRINT statement. The only advantage of
assembly language for text printing is speed, but this is like saying you can travel
a distance of 1 foot faster going 100 mph than going 50 mph. Printing in BASIC
is so fast, unless you're using some kind of convoluted code, that any speed
advantage of assembly language is more academic than real.

Hi-Res Graphics and Animation Using Assembly Language

M E M O R Y A L L O C A T I O N

Dealing with a program that uses both BASIC and assembly language, or with
a program that uses both BASIC and hi-res graphics whether or not assembly
language is also used, requires that attention be paid to how memory is allo
cated. We have to be careful that BASIC, assembly language, and the hi-res
screens don't run into each other, that is, do not occupy the same memory loca
tions; otherwise, we will be left with an unworkable program. To see how to do
this, let's consider first how BASIC uses memory.

On startup, the Apple assigns $800 (2048) to the bottom of BASIC and
89600(38400) to the top (for machines with 48K minimum RAM,—see Chapter
2). The reason a top has to be assigned is that while the BASIC program starts at
the bottom, variables are stored after the end of the last program line, and string
variables are stored at the top and work their way down. Thus, any non-BASIC
program code such as assembly language or a hi-res screen between the top and
bottom may interfere with the BASIC program itself, especially if string variables
are used. Even if they're not, it's always a good idea to reserve an area of memory
for BASIC to ensure no overlap with the hi-res screens or with assembly language
code. There are two solutions to this problem—we either change the top or
change the bottom of BASIC, the particular choice depending on how much
memory we want to allocate to the different parts of the program and which
hi-res screen we want to use.

There are four basic situations to consider:

1. Page 1 hi-res screen, BASIC below Page 1, assembly language above
Page 1:

A S S E M B L Y L A N G U A G E

P A G E 1

$9600 (38400)

$4000 (16384)

$2000 (8192)

$0800 (2048)

A S S E M B L Y L A N G U A G E 2 2 0 0 0 B Y T E S
B A S I C 6 0 0 0 B Y T E S

The bottom of BASIC is the startup address, 8800 (2048). We want to move
the top, the area for string variable storage, to the bottom of hi-res screen Page 1,
which starts at $2000 (8192). We do this in the beginning of the BASIC program
b y

1 H I M E M : 8 1 9 2

(Note that BASIC uses only decimal addresses, not hex.) This instruction ensures
that BASIC will occupy a memory block that will not be interfered with by the
hi-res screen or the assembly language code. The assembly language program
itself could be given a starting address of 84000, that is, just above Page 1. The
result of all this is that BASIC would have about 6000 bytes of available memory.

Integrating BASIC with Assembly Language Programs

whereas the assembly language program would have about 22,000 bytes. (If we
want to use both hi-res screens, the assembly language program would be started
at $6000 and would have about 14,000 bytes of memory.)

2. Page 2 hi-res screen. BASIC below Page 2, assembly language above
Page 2 :

$9600(38400)

$6000 (24576)

$4000 (16384)

$0800 (2048)

A S S E M B LY L A N G U A G E 1 4 0 0 0 B Y T E S
B A S I C 1 4 0 0 0 B Y T E S

Here we want to move the top of BASIC to $4000 and we do this by

1 H I M E M : 1 6 3 8 4

The assembly language code would start at $6000 and have about 14,000 bytes
of memory, and BASIC would have also about 14,000.

3. Page 1 hi-res screen, BASIC above Page 1, assembly language below
Page 1:

B A S I C

1 $9600 (38400)

$4000 (16384)
P A G E 1

A S S E M B L Y L A N G U A G E

$2000 (8192)

$0800 (2048)

A S S E M B LY L A N G U A G E 6 0 0 0 B Y T E S
B A S I C 2 2 0 0 0 B Y T E S

Moving the bottom of BASIC is a little more complicated than moving the
top. There is no single command to do this; rather a series of POKEs is required.
Locations 103 and 104 have to be POKEed with certain values and the new start
of BASIC has to be POKEed with zero because BASIC must always start with zero
in the first position. There is a formula that can be used to calulate the values to
be POKEed into 103 and 104, but the easiest thing to do is incorporate the
formula into a BASIC instruction itself and let the program do the calculating for
you. What wc do is set up a separate program called a "loader" program and use

Hi-Res Graphics and Animation Using Assembly Language

it both to change the bottom of BASIC and run the main program. The "loader"
program consists of one line (make sure you save the program before running it
because it self-destructs on running):

1 LOG = 16384 -f 1:POKELOC - 1,0:POKE 103,LOG - INT(LOG/256) * 256:
POKE 104,INT (LOG/256): PRINT GHR$(4): "RUN PROGRAM"

Running this program will set the bottom of BASIC to S4000 and will run the
main program labeled PROGRAM, assuming of course it's on the same disk. In
this case, BASIC will have about 22,000 bytes of available memory and the
assembly language program about 6,000 bytes, assuming we start it at 8800.

4. Page 2 hi-res screen, BASIC above page 2, assembly language below
Page 2:

B A S I C

P A G E 2

A S S E M B LY L A N G U A G E

$9600 (38400)

$6000 (24576)

$4000 (16384)

$0800 (2048)

A S S E M B LY L A N G U A G E 1 4 0 0 0 B Y T E S
B A S I C 1 4 0 0 0 B Y T E S

The only change here is defining LOC in the "loader" program as 24576 + 1.
Now both BASIC and the assembly language program will have about 14,000
bytes of available memory.

These are the four basic memory allocation situations, but variations are
sometimes required. For example, and as mentioned above, if we want to use
both hi-res screens, things would have to be shifted around, removing memory
from either BASIC or the assembly language program, depending on the particu
lar configuration we want. Also, because we can start the assembly language
program anywhere, the actual memory available for assembly language is
v a r i a b l e .

Other situations may require other changes. For example, suppose we're
using the number 3 configuration with BASIC above Page 1. If our assembly
language program requires 8,000 bytes instead of the 6,000 available, we could
move the bottom of BASIC to around 19,000 instead of 16,384 and use the extra
memory for assembly language code. We could use this memory block, for
example, to store our line address and offset tables. Assembly language programs
do not require a continuous block of uninterrupted memory, but when we split
up such a program, we have to be careful where we do it. For example, we
wouldn't want an interruption in the middle of a draw routine. We can, however,
place any block of code that is accessed only by its label anywhere we want. The
only caveat, as discussed before, is that relative branch instructions have a range
limited to 127 bytes forward and 128 bytes back—-in thCvSe cases, we use the
relative branch to go to a nearby JMP instruction, which has no range limitation.
In the example cited above, we would set up our main program with GRG $800

Integrating BASIC with Assembly Language Programs

and place the line address and offset tables starting at $4000, making sure they
d o n o t e x t e n d i n t o t h e s t a r t o f B A S I C .

The particular configuration we would choose obviously depends on the
program requirements. If we need Page 1 to display mixed text and graphics, we
must use configuration 1 or 3. If the assembly language program is long and
BASIC short, we would choose 1; conversely, configuration 3 would be appro
priate for long BASIC and short assembly language programs. Keep in mind that
because we can place assembly language blocks almost anywhere we want and
we can vary the top and bottom of BASIC, there is a large amount of flexibility in
how to allocate available memory for any particular program application.

If your program lengths are running close to the available memoiy limits, it's
important to know the program size so you can plan accordingly. This is no
problem with assembly language programs, as most assemblers will display the
length in bytes after assembly. To determine the length of a BASIC program in
bytes, load the program and type in the following instructions (with thanks to
Beagle Bros.):

PRINT (PEEK (175)) + PEEK (176) * 256) - (PEEK (103) + PEEK (104) * 256)

If you find your programs are too large to fit, don't despair just yet. Assembly
language programs can be shortened by writing more efficient code, but this is
probably applicable only to very experienced programmers. An easy trick to
extend total available memory is to include the following as the first line of your £99
B A S I C p r o g r a m : ^

1 PRINT CHR$(4) ; "MAXFILES1"

This extends the upper limit of memory from $9600 (38400) to $9AA6 (39590)
(for 48K minimum machines), making available an extra 1,190 bytes. The price
you pay for this is that only one text file can be open at one time (see the Apple
DOS Programmer's Manual for more details). Another thing you can do is use
one of the commercially available optimizing programs, such as those available
from Beagle Bros., to crunch your BASIC programs. You'd be amazed at how
much space can be saved using one of these utilities, but save this for last such
crunched programs are virtually impossible to edit. If you're really desperate, try
one of the DOS mover programs (if you have 64K)—you can realize some
10,000 bytes of extra memory this way.

Z E R O P A G E U S A G E

We mentioned in a previous chapter that we have to be careful in choosing
which zero page addresses to use in our assembly language programs. This is
because zero page is used extensively by Applesoft BASIC and DOS and so if
we're using BASIC along with our assembly language program or if we're using
DOS commands, either from BASIC or from assembly language, we have to
search for "open" zero page addresses and there aren t many. For the Apple He,
safe zero page addresses are $06 to $09, $1A to $IC, $EB to $EF, and $F9 to $FC.
These are probably okay for other Apple lis but I would check the Reference
Manual for your particular machine just to make sure. Of course if you re not
using BASIC or DOS, then any zero page address can be used, but it's probably

Hi-Res Graphics anil Animation Using Assembly Language

best to stick with the safe ones—you never know when you might be adding
DOS commands or BASIC to your assembly language program.

G R A P H I C S A N D T E X T C O M M A N D S F R O M B A S I C

You've seen some of these instructions before in Chapter 3 and they are all
described in the Apple BASIC manual but some rather obtusely— a brief review is
w o r t h w h i l e .

GR Clears and displays low resolution screen.
HGR Clears and displays hi-res screen Page 1 (mixed text and graphics with

the bottom four lines displaying text).
HGR2 Clears and displays hi-res screen Page 2.
TEXT Displays the full screen text page without clearing it.
HOME Clears but does not display the text page and sends the cursor to the

top left position. When used with hi res screen Page 1 in mixed text and
graphics mode, the bottom four lines are cleared and the cursor is posi
tioned at VTAB 21 without affecting the graphics display. The combined
instructions TEXT:HOME will display and clear the entire text page regard-

300 l^ss of which hi-res screen is being used.
I POKE 49232,0 (or POKE —16304,0) (In this and the following examples,

either number can be POKEed but Integer BASIC requires poking the nega
tive number.) Accesses the graphics mode, either lo-res or hi-res depending
on the status of other soft switches, without clearing the graphics screen.

POKE 49233,0 (POKE —16303,0) Selects the text page without clearing it:
the text page margins can be altered to produce a text "window," unlike the
TEXT command, this instruction leaves the text "window" settings intact.

POKE 49234,0 (POKE —16302,0) Selects full screen graphics for hi-res
screen Page 1.

POKE 49235,0 (POKE —16301,0) Selects mixed text and graphics for hi-res
screen Page 1 (not necessary after an HGR if full screen graphics has not
been selected).

POKE 49236,0 (POKE —16300,0) Selects Page 2 without clearing it.
POKE 49237,0 (POKE —16299,0) Selects Page 1 without clearing it.

POKE 49238,0 (POKE —16298,0) Selects low resolution mode (not necessary
after a GR).

POKE 49239,0 (POKE -16297,0) Selects high resolution mode (not neces
sary after an HGR or HGR2).

ACCESSING ASSEMBLY LANGUAGE PROGRAMS
F R O M B A S I C

When combining BASIC with assembly language, program control essentially
rests with the BASIC program. A particular assembly language program address is

Inlegrating BASIC with Assembly Language Programs

accessed from BASIC by the instruction CALL address (decimal). Thus, the
command CALL 24576 would send the program to the machine code beginning
at S6000. The program returns to BASIC when it reaches an RTS opcode that
does not follow a JSR. If there is no such RTS, the program remains in the assem
bly language portion. For example:

B A S I C MACHINE CODE
_ $ 6 0 0 0

C A L L 2 4 5 7 6

: A L L 2 4 8 3 2

To see how this works in an actual program, let's use BASIC in our game
program to display the game instructions before starting. On our disk we would
have the game program labeled GAME. The BASIC program would look like this:

10 PRINT CHR$(4):"BLOAD GAME.A$6000"
2 0 T E X T : H O M E

3 0 P R I N T " G A M E I N S T R U C T I O N S
40 GET A$
5 0 H G R : P O K E - 1 6 3 0 2 , 0
6 0 C A L L 2 4 5 7 6

PRESS ANY KEY TO CONTINUE'

One of the advantages of using BASIC is that BASIC commands often can
substitute for assembly language code. In this instance, for example, HGR is used
to display and clear the Page 1 hi-res screen and POKE - ? 6302,0 displays full
screen graphics. As this is done in the beginning, speed is not required, and the
call to Page 1 full screen graphics and the clear screen routines in the GAME
program become unnecessary and can be deleted. Once the call to $6000 is
made, the program stays entirely in the GAME program, because there is no RTS
not preceded by a JSR.

Let's modify the GAME even further by changing the restart protocol. In the
STOP2 subroutine, instead of the ftress any key routine we substitute an RTS.
When the game ends, this will send the program back to BASIC where we will
now display another text screen containing, for example, a scoring summary:

7 0 T E X T: H O M E
8 0 P R I N T " G A M E S U M M A R Y. .
90 GET A$
1 0 0 G O T O 5 0

PRESS ANY KEY TO CONTINUE'

The TEXT instruction calls the text screen and HOME clears it. We restart
the game by going back to line 50. Alternatively, if we want to display the game
instructions again, line 100 would read GOTO 20. Other variations are possible.

Hi-Res Graphics and Animalion Using Assembly Language

Suppose we want to restart just by going back to the game instructions:

7 0 G O T O 2 0

This combination of printing in BASIC and displaying graphics in assembly
language is quite easy and very useful, not only for game programs but also for a
multitude of other applications. In addition, BASIC can be used not only for
printing but also for graphics itself, in conjunction with assembly language graph
ics. This is possible because the hi-res screen doesn't care where its instructions
come from and so one can freely intermix graphics from BASIC, assembly lan
guage, and even from Apple shape tables. The only caveat is that pleasant results
are obtained only if the non-assembly language graphics do not involve them
selves in routines that require speed and smooth animation. Perhaps the greatest
utility of this type of intermixing is in educational programs. Such programs
generally do not involve continuous, rapid animation as in games, but rather
present a series of lessons, each one consisting of some text and a graphics
presentation that consists only partly of animation routines.

To see how we can profitably mix text and graphics from a variety of
sources, let's design a small educational program that illustrates the principle
that objects fall down unless restrained (the profit comes from selling the pro
gram to kindergarten computer workshops). We're going to use hi res screen
Page 1 with mixed text and graphics and use the bottom four lines for the

302 explanatory text. Because our BASIC program is small, we'll place it below
_ Page 1 with HIMEM:8192. We're also going to use a shape table and we'll load* this above Page 1 at $4000 (16384). The assembly language program will be

loaded above the shape table, at $6000 (24576).
The screen will show a ball suspended by a rope above a container.

Shape
T a b l e

• H P L O l

Assembly
L a n g u a g e

- H P L O T

After some text instructions, the rope will be cut at a site indicated by an
arrow-tbe arrow will then disappear and the ball will fall into the container
The container and rope will be drawn from BASIC by HPLOTting. e arrow wi.
come from the shape table (designed with the aid of a utility program such as
Apple Mechanic from Beagle Bros.) and the hall will be drawn and animatedwith our assembly language program. The Page 1 screen will be displayed and
cleared from BASIC and we can begin the assembly language program at 16000
with just drawing the ball. This draw routine ends with an RTS, say at $64FF, and
thus will return to BASIC once the ball is drawn. At $6500 (25856), the program
continues with the ball animation and also ends with an RTS to get bacK lO

Integrating Basic with Assembiy Language Programs

BASIC again. The program would look like this (the shape table and assembly
language program will already have been BSAVEd on the disk:

1 H I M E M : 8 1 9 2 : R E M B A S I C B E L O W P A G E 1
10 PRINT GHR$(4);"BLOAD SHAPE TABLE,A$4000"
20 PRINT CHR$(4):"BLOAD ASSEMBLY LANGUAGE,A$6000"
30 SH = 16384 :REM LOCATION OF SHAPE TABLE
40 POKE 232,SH - INT(SH/256) * 256:POKE 233, INT(SH/256) :REM TELLS PROGRAM

W H E R E S H A P E TA B L E I S L O C AT E D
5 0 H G R ; R E M S E L E C T S H I - R E S PA G E 1
6 0 H C O L O R = = 3 ; R E M C O L O R W H I T E
70 ROT = 0:SCALE = 1 :REM NEEDED FOR SHAPE TABLE DRAW
80 HOME: VTAB21:PRINT "WHAT WILL HAPPEN WHEN THE ROPE IS CUT?":PRINT "PRESS ANY

KEY TO CONTINUE" :REM PRINTS ON BOTTOM 4 LINES
90 HPLOT 100,50 TO 100,100 TO 150,100 TO 150,50 :REM PLOTS CONTAINER
100 HPLOT 125,10 TO 125,20 :REM PLOTS ROPE
110 DRAW 1 AT 125,20 :REM DRAWS ARROW
1 2 0 C A L L 2 4 5 7 6 : R E M D R AW S B A L L
130 GET A$:REM WAIT FOR KEYPRESS
140 HOME: VTAB21:PRINT "LET'S DO IT. PRESS ANY KEY TO CUT THE ROPE" :REM CHANGES

TEXT IN BOTTOM 4 LINES BUT LEAVES GRAPHICS INTACT
1 5 0 G E T A $
160 XDRAW 1 AT 125,20 :REM ERASES ARROW
1 7 0 C A L L 2 5 8 5 6 : R E M M O V E S B A L L D O W N _
180 HOME: VTAB21:PRINT "YOU WERE RIGHT! THE BALL FALLS":PRINT "PRESS ANY KEY TO ■

C O N T I N U E

190 GET A$
200 TEXT:HOME: PRINT "IF YOU LIKED THIS PROGRAM, TELL MOMMY TO BUY IT." :REM

P R I N T S O N T E X T P A G E

The variations on this theme are endless. We could clear the screen with
HGR and continue with more graphics from any source; we could draw the
container, rope, and arrow in color by specifying a color with HCOLOR and, of
course, draw the ball in color in the assembly language program; w e could make
a larger container by changing SCALE; we could switch back and forth from text
to graphic screens without erasing them by using the appropriate POKEs, and so
on. The reason this works is that HPLOT and DRAW are very fast for simple
shapes that are displayed and not moved—assembly language is required only for
the animation. And let me emphasize that assembly language is indeed
required—moving the ball around from BASIC or shape tables would produce an
animation that would immediately mark you as a rank amateur, deserving only of
scorn. From personal experience, 1 can tell you that professional-looking anima
tion is a strong selling point for these types of programs.

17
Suggestions for
Game
Modification

r w e've covered quite a bit since constructing the game program, but, of
course, the coverage has not been exhaustive (and I don't mean it hasn't been
tiring). My hope is that this book has provided the necessary background inhi-res assembly language graphics so that you can now profitably examine more
advanced texts and those rather obtuse (I hope now less obtuse) magazine arti
cles that pop up now and then to learn even more about this subject, either for
constructing your own games or indeed for any of the many other applicationsthat find hi-res graphics useful. You may not know enough yet to construct a
really super arcade-type game, but you certainly have the knowledge to produce
professional results for interesting games and for educational and other types of
programs. And, of course, you've also learned something about how to use
assembly language other than just to move numbers around.

As mentioned in the Introduction, any learning process is enhanced by doing
and not just observing. In this spirit, below I will discuss suggestions for modify
ing the game program using techniques covered in Parts One and Two that were
not incorporated into the game. You may find that going through the exercises
in this chapter will teach you more about hi-res graphics and assembly language
than all the other chapters combined, and so I urge you to sharpen your typing
fingers and go to work.

1. Use the DRAW-DRAW protocol for both the man and the plane, making
sure to incorporate the appropriate borders. As neither shape is used for colli
sion detection, DRAW-DRAW will work and will produce smoother animation.
For the man shape, use the paddle smoothing routine (necessary for DRAW-
i:)RAW as discussed in Chapter 15) and the test for non-movement of paddle to
e l i m i n a t e fl i c k e r .

Suggestions for Same Modlflealion

2. Work on the sound routines for the plane and explosions and perhaps for
the bullet firing.

3. Have planes appear at several different line positions and have some going
right to left instead of just left to right. Make sure each line position is some
multiple of 8 from the bullet firing line to ensure collision detection with the
bullet; alternatively, use multiple line collision testing with the bullet shape.

4. Have the planes drop bombs and use the bomb shape for collision testing.
Use the line position of a collision to determine what the bomb has hit—if at the
bottom, it hits the bottom line; above the bottom, but not above the top of the
man, it hits the man; above the man, it hits a bullet. Include an explosion routine
for each collision. Have the game end if the man is hit.

5. Change the scoring protocol to decrement by 1 each 2 bullet is
fired, increment by 3 for each plane hit and by 5 for each bomb hit. A plane is hit
if only a bullet detects a collision. A bomb is hit if both the bomb and bullet
d e t e c t a c o l l i s i o n .

6. Use BASIC to display the game instructions.
7. Draw the plane in color, changing the bullet shape to a width of 2 bits to

ensure collision detection. Draw the explosion shapes in orange and yellow.
Draw flickering orange lines directly behind the plane to simulate engine
exhaust. Enlarge the man shape and draw in color.

8. Reprogram the game in double hi-res and in double hi-res color. For the
latter, use dummy white shape tables for collision detection.

Well, that's it. Good luck-and remember, #$2B or not #$2B is not the only
question.

I Ĵpendtx:
j Assembly Language
i Commands

3 0 S y y -
H -Z. ▼ ot all assembly language commands for the Apple II 6502 microprocessor are listed here, mainly just those referenced in the text. In addition, the

descriptions are not comprehensive. A complete set, with complete descriptions,
can be found in texts on assembly language programming. I especially recom
mend Assembly Lines: The Book, by Roger Wagner, Roger Wagner Publishing
Co., Santee, CA, 1982.

ADC (ADd with Carry) Adds the contents of a memory location or a direct
value to the contents of the Accumulator, plus the Carry bit if it was set. The
result is stored in the Accumulator. ADC is usually preceded by a CLC in
case the Carry bit has inadvertently been set. A common use of ADC is to
add two numbers together.

E x a m p l e

C L C

LDA #$01
ADC #$01 lAccumulator now contains #$02

C L C

LDA #$01
ADC $4000 ;$4000 contains #$04
STA $5000 :$5000 now contains #$05

AND (Logical AND) Compares each bit of the Accumulator with each corres
ponding bit of the contents of a memory location or a direct value. If both
bits are 1, the result is 1; otherwise the result is 0. The result is stored in the
Accumulator. This command is useful for col l is ion detect ions.

Appendix—Assembly Language Commands

Example

A c c u m u l a t o r

N u m b e r

R e s u l t

0 0 0 1 1 1 0 1

0 1 1 1 0 1 0 0

0 0 0 1 0 1 0 0

ASL (Arithmetic Shift Left) Each bit of the Accumulator or the contents of a
memory location is moved one position to the left. A 0 is placed in bit 0 (the
rightmost bit) and the high bit is placed in the Carry. One use of ASL is to
multiply by factors of two.

C <— 7 6 5 4 3 2 1 0 <— "0"

BCC (Branch on Carry Clear) The branch is taken if the Carry bit is clear;
i.e., zero. The pseudo-op BLT (Branch if Less Than) can be used by some
assemblers, because BCC is often used after a comparison instruction to test
if the Accumulator holds a value less than a specified value; if it does, the
Carry bit is clear and the branch is executed.

E x a m p l e

L D A # $ 0 5
C M P # $ 0 6
B O G C O N T I N U E ;The b ranch i s t aken

BCS (Branch on Carry Set) The branch is taken if the Carry bit is set, i.e., 1.
The pseudo-op BGE (Branch if Greater or Equal) This can be used by some

assemblers as BCS is often used after a comparison instruction to test if the
Accumulator holds a value equal to or greater than a specified value; if it does,
the Carry bit is set and the branch is executed.

Example

L D A # $ 0 5
CMP #$04
BCS CONTINUE ; The branch is taken

BEQ (Branch if EQual) Branches if the result of a previous operation is zero.
It is often used to compare the value in the Accumulator or the contents of a
memory location to a specified value, which itself can be the contents of a
memory location or a direct value. If the values are equal, the branch is
t a k e n .

Example

L D A L I N E

C M P D E P T H

BEQ CONTINUE ;The branch is taken if LINE = DEPTH

BEQ can also be used to test for a register reaching a zero value.

Hi-Res Graphics and Animation Using Assembiy Language

E x a n ^ l e

L D Y # $ 0 6
LDA $4000
S TA $ 5 0 0 0
D E Y

BEQ CONTINUE ;The branch is taken when Y = 0
J M P L O O P

BIT Compare Accumulator BITs with contents of memory. BIT can be used to
access a soft switch without changing the contents of the Accumulator.

E x a t r ^ l e

BIT $0030 ;Tweaks speaker

Bivn (Branch on Minus) Branches if any operation produces a result in the
range #$80 to #IFF, i.e., high bit set. One use is to test for a keypress.

E x a n ^ l e

LOOP LDA $0000 ;lf no key pressed, value < #$80
BMI CONTINUE .Branches if key pressed
J M P L O O P

BMI can also be used to terminate a loop when a value reaches any number
from #$80 to #$FF.

Example

LDY #$70
L O O P D E Y

BMI CONTINUE ;Branch taken when Y wraps around to #$FF
J M P L O O P

BNE (Branch on Not Equal) Branches if the result of any operation is non
z e r o .

Example

LDA #$06
CMP #$05
BNE CONTINUE .Branch is taken

BNE can also be used in loops to test for non-zero.

Examp le

L D Y # $ 0 6
L O O P D E Y

B N E L O O P ; B r a n c h e s u n t i l Y = 0
R T S

L O O P

Appendix—Assembly Lenguege Commands

BPL (Branch on Plus) Branches if any operation produces a result in the range
#$00 to #$7F, i.e., high bit not set. BPL can be used to test for a key press.

E x a m p l e

LOOP LDA $0000 :lf no key pressed, value < #$80
BPL LOOP :Branches until key is pressed
J M P C O N T I N U E

BPL can also be used to terminate a loop when a value reaches any number
outside the range #$00 to #$7F.

E x a m p l e

LDY #$70
L O O P D E Y

BPL LOOP ;Branches until Y = #$FF
R T S

Note: Conditional branches are limited to 127 bytes forward and 128 bytes back.

BRK (BReaK) Halts execution of the program. This command is useful for
debugging programs. By placing BRK at strategic locations, the program can ^qqbe stopped and the status of the registers and memory locations examined. ̂

CLC (CLear Carry) Clears the Carry bit; usually used preceding an ADC
instruction in case the Carry bit has been set accidentally somewhere else in
the program. It can also be used to force a branch.

Example

C L C

BCC CONTINUE :Branch a lways taken

CMP (CoMPare to Accumulator) Compares the value in the Accumulator to
a direct value or to the contents of a memory location. CMP is used with
comparison instructions for conditional branches.

E x a m p l e

LDA #$06
CMP #$07
B C C C O N T I N U E

CPX (Compare to X register) Compares the contents of the X register to a
direct value or to the contents of a memory location; used with con
d i t i o n a l b r a n c h i n s t r u c t i o n s .

Hi-Res Graphics and Animation Using Assembiy Language

E x a m p l e

L O O P

L D X # $ 0 0
L D A L I N E . X
S T A L I N E A
I N X

CPX #$05
B O O L O O P
R T S

: B r a n c h e s u n t i l X = 5

CPY (ComPare to Y register) Compares the contents of the Y register to a
direct value or the contents of a memory location; see CPX.

DEC (DECrement) Decrements the contents of a memory location by one. If
the location contains #$00, the value will wrap around to #$FF.

E x a m p l e

L D A # $ 0 0
S TA $ 4 0 0 0
D E C $ 4 0 0 0 :$4000 now contains #$FF

DEX (DEcrement to X register) Decrements the X register by one; see DEC.
DEY (DEcrement the Y register) Decrements the Y register by one; see DEC.
EOR (Exclusive-OR with Accumulator) Each bit of the Accumulator is com

pared to the corresponding bit of a direct value or the contents of a memory
location. If either bit is 1, the result is 1; if both bits are 1 or 0, the result is
0. The result is stored in the Accumulator. EOR is useful in drawing routines
for both drawing and erasing.

Example

A c c u m u l a t o r
N u m b e r

R e s u l t

1 0 0 1 1 0 0 0

0 1 0 1 0 1 1 0

1 1 0 0 1 1 1 0

INC (INCrement memory) Increments the contents of a memory location by
one. If the location contains #$FF, the value will wrap around to #$00 (see
DEC).

INX (INcrement the X register) Increments the X register by one; see INC.
INY (INcrement the Y register) Increments the Y register by one; see INC.
JMP (JuMP to address) Sends the program to the specified address.
JSR (Jump to SubRoutine) Analogous to a GOSUB in BASIC, JSR sends the

program to a subroutine at a specified address. When an RTS in the subrou
tine is encountered, the program returns to the program line immediately
following the JSR (see RTS).

LDA (LoaD the Accumulator) Loads the Accumulator with a direct value or
the contents of a memory location.

Appendix—Assembly Language Commands

Example

LDA #$05 :Accumula to r con ta ins #$05
LDA $4000 :Accumulator contains contents of $4000

LDX (LoaD the X register) Loads the X register with a direct value or the
contents of a memory location; see LDA.

LDY (LoaD the Y register) Loads the Y register with a direct value or the
contents of a memory location; see LDX.

LSR (Logical Shift Right) Opposite of ASL; each bit of the Accumulator or the
contents of a memory location is moved 1 position to the right. A zero is
placed in the high bit and bit 0 (the rightmost bit) is placed in the Carry bit.
One use of LSR is to divide by factors of 2.

"0" —> 7 6 5 4 3 2 1 0 —> C

NOP (No operation) This does what it says; no operation is performed, but
time is used. NOP is used for debugging by disabling certain steps and can
also be used as a time delay.

ORA (Inclusive OR with Accumulator) Compares each bit of the Accumula
tor with the corresponding bit of a direct value or the contents of a memory
location. If either or both bits are 1, the result is 1; if both bits are 0, the
result is 0. The result is stored in the Accumulator.

Example

Accumulator 0 0 1 1 0 0 1 1
N u m b e r 0 1 0 1 0 1 0 1
R e s u l t 0 1 1 1 0 1 1 1

ROL (Rotate Left) Each bit of the Accumulator or the contents of a memory
location is moved one position to the left. The Carry bit is placed into bit 0
and is replaced by the high bit (see ASL).

0 < — 7 6 5 4 3 2 1 0 < — C

ROR (Rotate Right) Each bit of the Accumulator or the contents of a memory
location is moved one position to the right. The Carry bit is placed in the
high bit and replaced by bit 0 (see ROL).

C —> 7 6 5 4 3 2 1 0 —> C

RTS (ReTum from Subroutine) Returns the program to the line immediately
following the JSR call to the subroutine (see JSR). An RTS without a preced
ing JSR is used to return the program to BASIC when the assembly language
program is called from BASIC.

SBC (SuBtract with Carry) Subtracts the contents of a memory location or a
direct value from the Accumulator and also subtracts the opposite of the

Hi-Rss Graphics and Animation Using Assembiy Language

Carry. The result is stored in the Accumulator. SBC should always be pre
ceded by SEC prior to the first subtraction.

E x a m p l e

LDA #$05
S E C

SBC #$03 :Accumulator now contains #$02

SEC (SEt Carry) Sets the Carry bit to 1. Used before a SBC instruction and also
can be used to force a branch.

E x a m p l e

S E C

BCS CONTINUE ;Branch always taken

Accumulator) Sends the contents of the Accumulator to a speci-
memory location. The Accumulator is not affected.

E x a m p l e

STA $4000 ;$4000 contains contents of Accumulator

STX (STore the X register) Sends the contents of the X register to a specified
memory location (see STA). The X register is not affected.

STY (STore the Y register) Sends the contents of the Y register to a specified
memory location (see STX). The Y register is not affected.

TAX (Transfer Accumulator to X register) Transfers the contents of the
Accumulator to the X register. The Accumulator is not affected.

TAY (Transfer Accumulator to Y register) Transfer the contents of the
Accumulator to the Y register. The Accumulator is not affected (see TAX).

TXA (Transfer X to Accumulator) Sends the contents of the X register to the
Accumulator. The X register is not affected. Combined with TAY, can be
used to transfer a value from X to Y.

Example

LDX #$05 ;#$05 in X
T X A ; # $ 0 5 i n A
T A Y ; # $ 0 5 i n Y

TYA (Transfer Y to Accumulator) Transfers the contents of the Y register to
the Accumulator. The Y register is not affected. Combined with TAX, can be
used to transfer a value from Y to X.

E x a m p l e

L D Y # $ 0 5 ; # $ 0 5 i n Y
T Y A ; # $ 0 5 i n A
T A X ; # $ 0 5 i n X

Index

Absolute indexing, 28
ADC (ADd with Carry)

instruction, 32, 170, 306
A d d r e s s e s

line address tables, 24-29
memory, 9-15
shape address tables, 57-60

Air resistance simulation, 265
AND (Logical AND)

instruction, 306
collision detection, 116-117
use in color drawing,

2 2 3 - 2 2 4
drawing over backgrounds

using, 272-273
explanation of, 306-307

Animating shapes
in double hi res, 231-238
in double hi res color,

2 4 4 - 2 5 1
in single hi res, 39
shape tables and, 4

An ima t i on , co lo r, 215
Animation, horizontal

accessing sequential shapes,
6 0 - 7 2

double hi res and, 231-236
DRAW-DRAW rout ine and,

7 7 - 8 1
DRAW-ERASE routine and,

6 1

preshifted shapes, 54-57

problems with color and,
2 1 5

TEMP and shape address
tables, 57-60, 65-66

testing for end of screen in,
60-61

use of separate draw
routines for, 66-72

Animation, internal
defini t ion of , 82
how to produce, 82-88

Animation, multiple shapes, 105
Animation, vertical 39

double hi res and, 231,
236 -238

DRAW-DRAW routines and,
4 8 - 5 3

DRAW-ERASE routine and,
48, 53

moving down, 39-45
moving up, 45-48

Apple shape tables,
disadvantages of, 4

Apple II
memory map, 9-11
sound generation and,

167-169
ASL (Arithmetic Shift Left)

instruction, 58-59, 307
ASM (assemble) command, 14
A s s e m b l e r s

field headings in, 13-14

how to w r i t e ob jec t /
machine code, 12-15

purpose of, vii
source code and, 13, 14

Assembly language
accessing assembly

language programs
f rom BASIC, 300-303

determining length of
programs in, 299

editing in, 13
memory and, 296-299
speed of, 4
text printing and, 295
versatility of, 5
zero page usage and,

2 9 9 - 3 0 0

A s t e r i s k
as a delimeter, 14

Backgrounds
color shapes with color or

white, 276-282
EOR and, 266-267
EOR and drawing color,

2 7 6 - 2 7 8

retaining colors in, 279-282
use of AND, 272-273
white shapes and, 266-275

HI-Rbs BrBOhics 8nd AninnBtion Usinn Assemblv LsnnuanpI f f f f u w W f 9 ^ f f / v u w f f u n f f f i r i D i f u i l w Q i n U n o O Q i t t U t j t m O U U U O U G •♦ • •

B A S I C Bullets, paddle control and how to draw a green plane.
accessing assembly shooting, 105-106 2 2 0

language programs Byte how to draw an orange-
f r o m , 3 0 0 - 3 0 3 defin i t ion o f , 8 p lane, 220

arithmetic functions in, 295 high order, 10 how to draw a violet plane.
determining length of low order, 10 2 2 0

programs in, 299 screen versus shape, 22 how to maintain througliout
disadvantages of, 3-4 BYTETBL tab le , 98-99 screen range, 215
extending memory for, 299 how to produce white, 213
graph ics and tex t how to produce multiple

commands from, 300 CALL address, 301 c o l o r s , 2 2 0
memory allocation and, Carry bit, 170-171 L S R a n d , 2 2 2 - 2 2 3

2 9 6 - 2 9 9 CLC (CLear Carry), 32, 309 prob lems w i th cer ta in co lo rtext printing and, 295, 302 Clearing a hi-res screen, 18-21 c o m b i n a t i o n s , 2 1 5
zero page usage and. CMP (CoMPare t o resolut ion and, 215

299 -300 Accumulator), 309 shifting of bits in collisionBCC (Branch on Carry Clear), (C o l l i s i o n d e t e c t i o n detect ion, 222-224
15, 20, 307 A N D i n s t r u c t i o n a n d types available in doubleBCS (Branch on Carry Set), 1 1 6 - 1 1 7 hi-res, 240-241
1 5 , 3 0 7 color drawing and, 221-226 types available in hi-res,BEQ (Branch if EQual), decrementing scoring and. 2 1 3
3 0 7 - 3 0 8 1 5 6 - 1 6 6 Command fie ld , 13

BGE (Branch if Greater or D R A W - D R A W a n d , 5 2 , 1 1 7 Comment field, 13, 14
Equal), 15, 307 DRAW-ERASE and, 118 C o M P a r e t o A c c u m u l a t o r

314 Binary number system, how it dummy shape tables and. (CMP), 309

m works, 6-7 2 2 4 - 2 2 5 C o n d i t i o n a l b r a n c h
how to convert to decimal, 7 explosion and, 131-138 inst ruct ions, 178how to convert to hex, 9 general rout ine for, 117-118 CPX (ComPare to X register),

B i t r e a s o n f o r c o l l i s i o n t e s t t o 3 0 9 - 3 1 0
definition of, 8 fail, 119 CPY (ComPare to Y register).

BIT instruction, 308 scoring and, 144-155 3 1 0
BLOAD command, 14 shape positions and.
BET (Branch if Less Than), 15, 11 9 - 1 2 0

2 0 shifting of bits and,
BMI (Branch on Minus), 308 2 2 2 - 2 2 4
BNE (Branch on Not Equal), test-draw-erase cycle and, DC di rect ive, 25

168, 308 11 8 - 11 9 DEC (Decrement the X
BPL (Branch on Plus), 88, test for, 118, 122-127 register), 310

3 0 9 Color, drawing in Decrementing scoring,
Branch if EQual (BEQ), A N D i n g a n d , 2 2 3 - 2 2 4 1 5 6 - 1 6 6

3 0 7 - 3 0 8 animating double hi-res DEcrement the Y register
Branch if Greater or Equal color shapes, 244-251 (DEY) , 310

(BGE), 15, 307 Apple 11 and, 213-215 Defined Storage (DS) code,
Branch if Less Than (BLT), 15, backgrounds and, 276-282 3 2

2 0 collision detection and. D E L A Y i n s t r u c t i o n
Branch on Carry Clear (BCC), 2 2 1 - 2 2 6 a n i m a t i o n a n d , 3 9

15, 20, 307 double hi res and, 239-243 coll ision and, 118
Branch on (,arry Set (BCS), dummy shape tables and, explosions and, 139

1 5 , 3 0 7 2 2 4 - 2 2 5 paddle crosstalk and, 101
B r a n c h o n M i n u s (B M I) , 3 0 8 high bit and, 214, 239 sound generation and.
Branch on Not Equal (BNE), h o r i z o n t a l m o v e m e n t a n d 168-169

1 6 8 , 3 0 8 prob lems w i th , 215 DEY (DEcrement the Y
Branch on Plus (BPL), 88, h o w f o u r h i r e s c o l o r s a r c register) , 310

3 0 9 p roduced , 214 DEB code, 25, 58
BRK (BKeaK) , 309 how to draw a blue plane. Displaying a hi res screen,
B lU IN command , 14 2 1 5 - 2 2 0 1 6 - 1 8

Index

D o t s
defini t ion of , 12
h o w t o c o n v e r t a d o t

pattern to a byte,
2 1 - 2 2

D R A W - D R A V 7 r o u t i n e

col l is ion detect ion and, 52,
11 7

defin i t ion o f , 48

drawing of a plane using,
1 9 5 - 2 1 0

ERASE and, 50
flicker and, 52
s o u n d e f f e c t s a n d , 1 9 8

speed of, 52-53
DRAW-ERASE routine, 48, 53,

6 1

col l is ion detect ion and, 118
Drawing

color shapes over color or
white backgrounds,
2 7 6 - 2 8 2

figures (persons), 23-24
multiple shapes, 106-115
shapes in double hi-res,

2 2 9 - 2 3 1

shapes in double hi res
color, 241-243

shapes wider than one byte,
3 3 - 3 6

shooting bullets, 105-106
using EOR instruction, 38
white shapes and

backgrounds, 266-275
See also Animation,

ho r i zon ta l ; An ima t ion ,
v e r t i c a l

DS (defined storage) code, 32

E O R (E x c l u s i v e - O R)
ins t ruc t ion , 310

drawing color backgrounds
using, 276-278

drawing over backgrounds
using, 266-267

erasing a shape using,
3 7 - 3 9

EQU instruction, 15
ERASE routine, 50

Erasing a shape
by drawing over a shape,

4 8 - 5 3

using EOR instruction,
3 7 - 3 9

Explosions
collision and, 131-138
decrementing scoring and,

1 5 6 - 1 6 6

delay loop and, 139
how to draw, 129-138
ini t ia l izat ion rout ine and,

1 2 9

scoring and, 144-155
types of displays for, 129
w h e r e t o d r a w a n

explosion, 127-129
See also Sound effects

Field headings in assemblers,
13-14

Figures (persons), how to
draw, 23-24

F l i c k e r
DRAW-DRAW and, 52
how to reduce, 283-288

Game, creating a
bullet draw routine, 177
conditional branch

instructions, 178

displaying of scores, 177
drawing a man, 176
drawing a plane, 176-177
flowchart for, 172-178
paddle reads and, 176
program for, 179-195
using DRAW-DRAW for,

195-210
GOSUB command, 40
GR command, 300

HCOLOR command, 4
Hexadecimal numbering

system, how it works,
8 - 9

HEX command, 25
Hex numbers

how to convert to decimal, 9
HGR command, l6, 300
HGR2 command, 16, 300
Hi bit, and color, 214, 239
HI byte table, 26-27

Hi-res, double
animating color shapes in,

2 4 4 - 2 5 1

animating shapes in,
2 3 1 - 2 3 8

displaying color in, 239-243
drawing shapes in, 229-23E

241-243
high bit and, 229
how to select mode for,

2 2 9

memory needed for, 227
motherboard for, 227
resolut ion and, 228
screens for, 228-229
v i d e o m o n i t o r v e r s u s

te lev is ion for, 227
Hi-res screen(s)

choosing between page 1
and page 2, 11-12

clearing the, 18-21
displaying the, 16-18
divisions of, 12
doub le , 228-229
memory allocation and,

2 9 6 - 2 9 9
HOME command , 300

INC (INCremerit memory),
3 1 0

INC LINEA instruct ion, 41
INC LINE instruct ion, 41
IN^ (INcrement the X

register), 310
INY (INcrement the Y

register), 310

JMP (JuMP to address)
instruction, 18, 310

Joysticks
difference between paddles

and, 89
h o r i z o n t a l / v e r t i c a l

m o v e m e n t a n d ,

1 0 1 - 1 0 5

reading of, 89-90
S e e a l s o P a d d l e s

JSR (Jump to SubRoutine)
instruction, 40, 310

Hi-Res Graphics and Animation Using Assembly Language

Keypress, used in restarting,
1 4 4 - 1 5 5

LDA (LoaD the Accumulator)
instruct ion, 17, 310-311

LDX (LoaD the X register),
3 11

LDY (LoaD the Y register),
3 11

L i n e a d d r e s s t a b l e s

how to use, 24-25
program fo r, 25 -29

L i n e l o c a t i o n s

changing, 29
curved movement and, 262
shapes at new, 72-77

Line numbers, 14
LO byte table, 27-28
Load accumulator (LDA)

instruction, 17, 310-311
Loading (BLOAD) a program,

1 4

Loading TEMP, 58-59
oig Load the X register (LDX),^ 3 1 1■ Load the Y register (LDY),

3 11
LSR (Logical Shift Right)

i n s t r u c t i o n
co l l i s i on de tec t i on and

color drawing and,
2 2 2 - 2 2 3

definition of, 311
sound effects and, 171

Memory
allocation in BASIC,

2 9 6 - 2 9 9
determining length of

p r o g r a m s , 2 9 9
double hi res and, 227
extending, 299

Memory addresses
in Apple II, 9-11
changing location of, 14-15
converting from hex to

decimal, 10
pages and, 10
relocating, 15
storage and, 10

Mon i to rs ve rsus te lev is ions
for double hi res, 227

M o t h e r b o a r d f o r d o u b l e h i
r e s , 2 2 7

M o v e m e n t , c u r v e d
ai r res is tance s imulat ion,

2 6 5

calculating line positions
for, 262

fl o w c h a r t f o r , 2 6 3

program for falling bombs,
2 6 3 - 2 6 5

Movement, diagonal
creating sharp angles,

2 5 7 - 2 6 1
fl o w c h a r t f o r , 2 5 3
program for line by line,

2 5 2 - 2 5 7

testing for end of screen
and , 252 -253

M o v e m e n t , h o r i z o n t a l
joystick control and,

1 0 1 - 1 0 5

paddle control and, 93-101,
2 8 9 - 2 9 4

See also Animat ion,
h o r i z o n t a l

M o v e m e n t , v e r t i c a l
joystick control and,

1 0 1 - 1 0 5

paddle control and, 90-93
See also Animation, vert ical

Multiple shapes, animation of,
1 0 5

N ibb le , defin i t ion o f , 8
NOP (No operation), 311

Object code
defin i t ion o f , 12
how to run, 14

OFFSET table, 100-101
Opcodes and pseudo-opcodes,

1 5

ORA (Inc lus i ve OR w i th
A c c u m u l a t o r) , 3 11

Paddle crosstalk, 101
P a d d l e s

creating a game and reading
of, 176

d i f f e r e n c e b e t w e e n

joysticks and, 89
horizontal movement and,

93-101, 289-294

how to integrate multiple
shapes, 106-115

reading of, 89-90
shooting bullets and,

1 0 5 - 1 0 6

smoothing routines,
2 8 8 - 2 9 4

testing for non-movement
o f , 283-288

ver t ica l movement and,
9 0 - 9 3

See also Joysticks
Pages

in hi res screens, 11-12
in memory addresses, 10

PEEK command, 16
Pixels, definition of, 12
Plotting shapes, 24-29
POKE commands, 4, 16, 300
PREAD instruct ions, 89-90
Preshifted shapes, 54-57
Printing text, 295, 302

Reading of paddles, 89-90
Relocation of programs, 14-15
R e s o l u t i o n

color drawing and, 215
double hi-res and, 228

Restarting using a keypress, 144
RETURN command, 40
Reviewing (CALL-151) a

program, 14
ROL (Rotate Left), 311
ROR (Rotate Right), 311
ROT (rotation) command, 4
RTS (ReTurn from

Subroutine) instruction,
40, 311

Running (BRUN) a program,
1 3

SBC (SuBtract with Carry),
3 11 - 3 1 2

SCALE command, 4
Scoring display

counting by multiples and
decrementing score,
1 5 6 - 1 6 6

counting by ones, 140-144
how to count co l l i s ion

events, l4l, 144
how to zero the counter,

141

stopping and restarting
with a keypress,
1 4 4 - 1 5 5

Screen bytes, 12
Screen positions

accessing, 12
testing, 60-61

Screen(s), hi-res
choosing between page 1

and page 2, 11-12
clearing the, 18-21
displaying the, 16-18
divisions of, 12
d o u b l e , 2 2 8 - 2 2 9
memory allocation and,

2 9 6 - 2 9 9
SEC (SEt Carry), 312
Semi-colon, use of, 13
Shape positions and collisions,

11 9 - 1 2 0

Shapes
accessing sequential, 60-72
d o u b l e h i - r e s a n d

an imat ing , 231-238
double hi-res and animating

color, 244-251
double hi-res and drawing

of , 229-231
how to produce colored,

213-214
new line positions and,

7 2 - 7 7

padd le con t ro l and
multiple, 106-115

seven preshifted, 54-57

Shape tables
addressing (SHPADR), 58
color drawing and dummy,

2 2 4 - 2 2 5
contents of, 4
for hor izonta l an imat ion,

5 5 - 5 7
how to construct, 32, 58

problems with using, 4
program for, 30-32
purpose of, 30
TEMP and, 57-60, 65-66

Shooting bullets, how to draw,
105-106

SHPADR, 57-58
Soft switches

assigning labels to, 18
for double hi-res, 299
for single hi-res, 17
how to access, 16-17

Sound effects
on the Apple II, 167-169
DELAY and, 168-169
DRAW-DRAW and, 198
how to create, 169-171
See also Explosions

Source code, 13,

STA (STore Accumulator)
instruction, 13, 17, 312

Status Register, 170
Stopping at a predetermined

score, 144-155
Store accumulator (STA)

instruction, 13, 17, 312

STX (STore the X register),
3 1 2

STY (STore the Y register),
3 1 2

SUBROUTINES, definit ion of,
4 0

Subtract with carry (SBC),
3 11 - 3 1 2

TAX (Transfer Accumulator to
X register) instruction,
59, 312

TAY (Transfer Accumulator to
Y register) instruction,
59, 312

Televisions and double hi-res,
2 2 7

TEMP and shape address
tables, 57-60, 65-66

advantage of, 57
loading of shapes in, 57-58
SHPADR and, 58-60

TEXT command , 300

Time delays
TXA (Transfer X to

Accumulator), 312
TYA (Transfer Y to

Accumulator), 312

Zero page addresses, 10, 299

A B O U T T H E A U T H O R

Leonard I. Malkin teaches and does research in biochemistry at a leading
midwest medical school. He is a member of the medical school committee on
CAI (Computer Assisted Instruction) and has published several commercially
successful educational programs for the Apple 11. He is also president o s
educational software corporation and is currently engaged in deve opmg o er
educational programs for the Apple. His immediate plans are to use epr̂ ee
from this book to buy myself a boat and get away from computers for a while-
they're driving me crazy."

