< includes

Hi-Res ﬁmpbz’as and Mrimation
l/sz’ng ﬂssemb{y lcmguage

The Guide for Apple’ll Programmers

A 1~ e 2 QL A r g

WAV A A VA VA YA N

double hi-res AN \/\ VA U S N ¢ !
BT R AV AL G G Gl N |
:and exlended- NN AR \\ N |
| |

2 memory
S Anle”lle

PENTAT A A A A G

..

- [mAYDEN ‘ L eonard | Malkin, Pb.D.

Hi-Res Braphics and Rimation
llsz'ng ﬂssembly language

The Guide for Apple 1I°Pragrammers

Hi-Res Graphics and Mimation
: Using Assernby Language

The Guide for Apple 11°Programmers

Leonard |, Malkz'n, Ph.D

Hayden Book Company

A DIVISION OF HAYDEN PUBLISHING COMPANY. INC.
HASBROUCK HEIGHTS, NEW JERSEY

Acquisitions Editor: KAREN PASTUZYN
Production Editor: ALBERTA BODDY

Design: JIM BERNARD

Cover photo: LOU ODOR

Compositor: MCFARLAND GRAPHICS AND DESIGN, INC.

Printer: J.D. LUCAS PRINTING COMPANY

I would like to thank my editor, Karen Pastuzyn, who helped me turn a rough idea into a
finished manuscript, and also the reviewers, who lent their assembly language expertise tO

many parts of the programs.

Library of Congress Cataloging-in-Publication Data

Malkin, Leonard 1.
Hi-res graphics and animation using assembly language.

Includes index.
1. Apple II (Computer) — Programming. 2. Computer
3. Assembler language (Computer program

graphics.
language) I. Title.
QA76.8A662M35 1985 0006.6 85-24752

ISBN 0-8104-6758-5

Copyright © 1986 by HAYDEN BOOK COMPANY. All rights reserved. No part of
this book may be reprinted, or reproduced, or utilized in any form or by any
electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage and
retrieval system, without permission in writing from the Publisher.

Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

86 87 88 89 90 91 92 93 94 YEAR

To Diane, Sonya, and Joshua,
with whom I can now get reacquainted,

and to my parents, who made me.

———
———

—_—
——

To use the programs in this book, you will need the following equipment:

e An Apple II Plus, Ile, or Ilc (Chapter 12 requires cither a IIc or an
extended-memory Ile)

e A disk drive
« A monitor (color for Chapter 11 and part of Chapter 12)

e A joystick or paddle
« An assembler (see the What You Will Need section)

What You Wil Need

If you have an Apple 11 (114, Ile, or Il¢), and someplace to plug it in, you're
practically all set. You will need a disc drive and a display screen, which can be
cither a black and white or color monitor or television set. Monitors give sharper
pictures and are recommended, especially for double hi-res, but television sets
are adequate. You should also have a joystick or paddle controls.

You will also need a good assembler. Assemblers are software packages that
allow you to write and, more importantly, edit assembly language programs.
Strictly speaking, you don’t need an assembler to enter the programs in this book
(you could use the Apple’s resident Monitor or even BASIC), but the level of
inconvenience would be unbearably high. Also, for you assembly language
beginners out there, don’t be lulled by those who may tell you that the Apple’s
Mini-Assembler or some other simple assembler is sufficient for your needs. The
most important characteristic of full feature assemblers is their convenience, not
their complexity. To eliminate long hours of needless work, and certainly if
you're going to do any serious assembly language programming, a full feature
assembler is a necessity. All programs in this book were assembled using the BIG
MAC assembler (available from A.P.P.L.E., 290 S.W. 43rd St., Renton, WA 98055;
call 1-800-426-3667 to order), but any full feature assembler can be used as they
all employ the same basic command set. Among others I can recommend are
Orca/M (Hayden Software), Merlin (Southwestern Data Systems), and DOS Tool
Kit (Apple Computer, Inc.). These are available in computer stores and are also
discounted by mail order firms—check the software ads in any computer maga-
zine. If you don’t want to invest in an assembler just now, contact your local
Apple user’s group—you may be able to borrow an assembler for temporary use.

There are usually some minor differences from assembler to assembler but
these are almost always in extra features rather than in the basic system. Features
of the BIG MAC assembler used in this book that may not be found in other
assemblers are pointed out in the text along with the normal or standard instruc-
tions. If you’re not going to use BIG MAC, examine your assembler’s instruction
manual. This, together with an examination of the generated machine code, will
tell you what changes, if any, have to be made in the way the assembly code is
written.

Introduction

Part One of this book will lead you, step-by-step, through the constru¢
tion of a single, arcade-type hi-res game written entirely in Apple Il assembly
language. Each chapter in Part One provides a building block leading to the final
game with minimal digressions. Later chapters (Part Two) discuss aspects Of
hi-res animated graphics important to the subject but not directly related to the
game, with suggestions about how to apply these techniques to the game itself
Or to your Own programs.

The game we’re going to construct is relatively simple but the program code
is not. Hopefully, reading this book will reduce the level of difficulty to
manageable proportions. It is written for beginners and experienced users alike
and no prior knowledge of assembly language is required. It begins with a
discussion of bits and bytes, binary and hexadecimal numbering systems,
architecture of the Apple II hi-res screens, use of an assembler, and proceeds
with a discussion of drawing and animating shapes, paddle and joystick controls,
collision detection, scoring and sound, and finally the game itself. Other topics
discussed in both Parts One and Two include animating multiple shapes,
drawing over backgrounds, animation in color and in double hi-res color and
black and white, advanced paddle and joystick routines, and integrating BASIC
with assembly language programs.

Studying this book slowly and methodically will provide you with knowledge
of the elements of hi-res game design for the Apple and you will be able to
program your own hi-res animation routines in assembly language. However, it
should be emphasized that the skills you will acquire have utility far beyond
merely designing games. Let me give you a concrete example. I've recently
completed an educational program for the Apple II that required moving rather
large shapes around the screen and attempts to do this from BASIC using Apple
shape tables (we’ll discuss these in Chapter 1) were far from satisfactory. The
jerky, flickering animation seemed designed to ensure nervous blinking. Using

the simple principles described in this book, I was abl¢ to produce smooth,
professional-looking animation that contributes greatly to the visual appeal of the
program, which is one of its strong selling points. So even if game design is not
your goal, hi-res animation using assembly language will provide yvou with an
extremely useful tool for a myriad of applications, limited only by your
imagination.

Finally, T strongly encourage you to play an active role in the learning
process. Do not merely read the text; type in the programs. Try the advanced
techniques described in Part Two to modify the game and, above all, develop
your own programs. In this way you will learn not only the techniques of hi-res
graphics and animation but also many fundamental principles of assembly
language programming. Reading about assembly language instructions is one
thing but using them in your own programs is another. In the words of an
ancient Chinese philosopher,

I bear, and I forget,

I see, and | remember,
I do, and I understand.

Conents

Part ONE
Fundamentals and the Game 1

..

1. Why Assembly Language for Hi-Res Animated Graphics?

2. Bits and Bytes, Sugar and Spice 6

Binary Number System 6

The Hexadecimal Numbering System 8
The Apple I Memory Map 9

The Hi-Res Screens 11

Using an Assembler 12

3. Drawing a Shape on the Hi-Res Screen 16

Displaying the Hi-Res Screen 16

Clearing the Hi-Res Screen 18

Drawing a Shape 21

Line Address Tables 24

Shape Tables 30

Drawing Shapes Wider Than One Byte 33

4. Vertical Animation 37

Erasing a Shape 37

Time Delays 39

Vertical Animation— One Shape Moving Down 39
One Shape Moving Up 45

Draw-Draw Routines 48

3

S ——

5. Horizontal Movement and Internal Animation 54

The Seven Preshifted Shapes 55
TEMP and Shape Address Tables 57

Accessing Sequential Shapes and Testing for End of Screen 60
Shapes at New Line Positions 72

Draw-Draw 77

Internal Animation 82

Paddle and Joystick Controls and Multiple Shapes 89

Paddle and Joystick Controls 89
Paddle Control of Vertical Movement 90
Paddle Control of Horizontal Movement 93

Multiple Shapes— Paddle Control
Bullets 105

Collisions and Explosions 116

Collision Detection 116
Explosions 127

Scoring, Stopping, and Restarting 140
Counting by Ones 140

Stopping at a Predetermined Score and Restarting with a Keypress
Counting by Multiples and Decrementing Score 154

Sound Generation: Explosions and Clickety-Clicks 167

The Apple Speaker and Sound Generation

167
Integratz’ng Sound Effects into the Game Prog

ram 169

10. Putting 1t All Together: The Game

PAarRT Twy

172

.................

I1. Drawing in Color

Apple Color 213

Color Animation 215

Collision Detection with Color Shapes 221

12. Double Hj-Res Graphics and Animation 227

Double Hi-Res— What It [s a
The Double Hi-Res Screen
The Double Hi-Res Mode
Drawing Shapes 229
Animating Shapes 231
Double Hi-Res Color Shapes 239
Animating Double Hi-Res Color Shapes

nd What'’s Required 227
228

229

244

1

QA

of Horizontal Movement and Shooting

13.

14.

15.

16.

17.

Curved and Diagonal Movement 252

Diagonal Movement 252
Curved Movement 261
Drawing over Backgrounds 266

White Shapes and Backgrounds 266

Color Shapes with Color or White Backgrounds 276

Advanced Paddle (Joystick) Routines 283
Testing for Non-Movement of Padldle 283
Paddle-Smoothing Routines 288

Integrating BASIC with Assembly Language Programs

Memory Allocation 296

Zero Page Usage 299
Graphics and Text Commands JSfrom BASIC 300

Accessing Assembly Language Programs from BASIC

Suggestions for Game Modification 304

Appendix: Assembly Language Commands 306

Index 313

295

300

Fundamentals and
the Game

Wiy Assembly Language
for HiRes Animated Graphics?

An English teacher named Bea
Knew the dictionary from A to Z,
But upon buying an Apple

She then had to grapple

With a brand new vocabulary.

R)gramming in assembly language is not the only way to produce hi-res
animated graphics on the Apple II. Applesoft BASIC supports many graphics fea-
tures that can be quite useful for displaying shapes or moving one or two rela-
tively small shapes around the screen. In fact, it is often convenient to combine
graphics from BASIC with assembly language graphic routines, and we will dis-
cuss how to do this in Chapter 16. But, as we’'ll soon see, there are problems
associated with using BASIC for graphics programming.

Simple BASIC commands allow one to plot points or lines (and thus shapes)
on the hi-res screen and to move them around by erasing and redrawing at a new
position. For example, the following BASIC program plots a horizontal line and
moves it down one line:

10 HGR: REM CLEARS AND DISPLAYS HI-RES SCREEN

20 HCOLOR=3: REM COLOR SET TO WHITE

30 HPLOT 20,20 TO 100,20: REM DRAWS HORIZONTAL LINE

40 HCOLOR=0: HPLOT 20,20 TO 100,20: REM ERASES LINE BY REDRAWING IN BLACK
50 HCOLOR=3: HPLOT 20,21 TO 100,21: REM REDRAWS LINE IN NEW POSITION

The line can be made to traverse the screen by continuing the program and
changing plot coordinates. One can also draw vertical or diagonal lines and move
them across the screen. By specifying different values for HCOLOR, the lines can
be drawn in any of the four hi-res colors (blue, orange, violet, and green). This
routine is fine for drawing and moving lines, but is far too cumbersome for
complicated shapes and entirely inappropriate for rapid and smooth animation—
BASIC is just too slow. Consider that even a simple shape may consist of 5 or 10
lines, and moving a shape across the entire hi-res screen involves over 200 draw-
erase cycles. Now imagine a routine to move several such shapes at the same
time. Attempting to do this in BASIC, in the way described above, would result in

Hi-Res Gmp["cs and Animation Using Assemb[y LANGUAGRE - -

an enormous, and enormously difficult to write, program. In addition, the anima-
tion would be extremely slow and jerky.
There is yet another method for programming hi-res graphics from BASIC
and this involves using Apple shape tables. Dctails are contained in the Apple
BASIC manual so I will touch on the subject only bricfly. The instructions for
drawing a shape (not the shape itself) are stored somewhcere in memory in what
are called, appropriately enough, shape tables. A single shape table can contain
instructions for more than one shape. For example, to draw the first shape of a
shape table, the location of the table is specificd by POKEing the appropriate
numbers into certain memory locations. Then the color is chosen by assigning a
number to HCOLOR, and values for rotation (ROT) and scale (SCALE) are speci-
fied. The instruction DRAW 1 AT X,Y will draw thc first shape of the table at the
coordinates specified by X and Y. By changing th¢ HCOLOR value, the shape can
be drawn in different colors. Changing the valucs for ROT and SCALE allows one
to rotate the shape and scale it up in size (although this latter feature is of
limited usefulness because the scaling is not proportional). The shape can be
erased by the instruction XDRAW 1 AT X,Y or by changing the color to black
(HCOLOR = 0) and reDRAWing at X,Y. By crasing and redrawing at different
nearby coordinates, the shape can be made to appedr to move. ' .
Using shape tables is a neat and convenient way to program hi-res graphics,
but there are three problems associated with their use. First, although any of the
hi-res colors can be selected, the shape can be only one color —multiple colors
in a single shape is not possible. Second, constructing a shAapc table in thc.wuy
described in the Apple BASIC manual is 2 horrendous task. The manual itself

f the many commercially available utility programs for

recommends using one O
program from Beagle Bros.

this purpose —an example is the Apple McchaniF m fry
Such utilities work well (you draw the shape, point by point, and the program

assembles it automatically into a shape table) but,‘ as is often the case \.Jvith
someone else’s program, you may not be able to get it to' do what you want it to
do. The Apple Mechanic, for example, limits the overall size of t.he sl'.lapc.and tbis
may not be appropriate for your needs. Third, smooth z?nd r.apld amma'txon w_nh
large shapes or with many shapes moving at the same time 15 not possible using
shape tables. The draw, erase, redraw cycles arc just too' slow, and‘exccsswc
flickering and jerky movement are the results. Again, as with HPL‘.()Ttmg, shape
tables do met have their place (I use them in my Own commercial programs),
but they do not provide the versatility afforded by assembly language program-
ming.

There are a few graphics utility p

greatly simplify hi-res animation and the : at
suffer from many of the problems associated with shape tables and graphics from

BASIC and thus, in my opinion, have limited usefulness. Again, using someone
else’s program almost assuredly will place limits on what you can do. For exam-
ple, the programs I am familiar with limit the size of the shapes fir}d the number
of shapes you can display at any one time. Most have no provision for sound.

They are also too slow—the more and larger the shapes, the sl.owcr and jerkier
programs may satisfy your particular needs but

rograms on the market that purport to
y do. But they also, in my hands at least,

the animation. Some of these

don’t buy one without return privileges. ' . '
The essence of good animation is speed. The illusion of continuous move-

ment can be accomplished only by very rapid draw and erase ('ycles., especially
for large shapes. This also applies in the case of the game we're going to con-

... Why Assambly Language far Hi_nes A”imamd Gmph"cs

struct, where one desires the illusion of simultaneous movement of multiple
shapes. Assembly language provides this speed —in fact, as we’ll soon see, assem-
bly language speed is so great that time delays have to be placed in the game
program to slow down the action to a reasonable pace.

In addition to speed, assembly language provides the ultimate in versatility.
You want to draw and move a shape that takes up half the screen? OK, no prob-
lem. How about moving five shapes in different directions at the same time, with
sound effects and all possible colors? Also no problem (actually, it is a problem
but solvable with assembly language).

Finally, if you're like 1 am, you want to know and control what’s going on.
How is your computer drawing and moving all those shapes? Using someone
else’s program or using BASIC or shape tables tells you very little. Writing your
own assembly language programs tells you a great deal.

Speed, versatility, understanding—only assembly language provides this

combination of virtues.

Bits and Byres
Sugar and sz’ce

There once was a fellow named Tex
Whose com

pPuter kept him from sex.
When offereq a slumber
By a cute liyge number

He Sazd, “r rea[[_y [)r("/(,’r b,’;;a}j' and hex.

A Certain

S - -rin y S)’S‘
inimal knowledge of binary and hcxadcumaldm:;:nb:sc f’,f ;M
Ui ow i-res screens, an ¢ u
tems, the Apple Memory map, details of the hi- rLs Si(r)(r-] of assembly language
assembler jg Necessary before going on to a dlscgézjatcrial can skip to Chap-
hi-res drawing anq animation. Those who know this

is chapter. I'll try to
ter 3. Those who don’t will need to slog their way through this chap
make the slogging as painless as possible.

BINARY NUMBER SYSTEM

.............................

Computers ¢

Everything a com
another fo

” nds of 2-position switcl?cs.
pfliztred(e)zsser:;zlrllyg :)rzl dl;i;n? oihtzl:(sta which to a corrg‘)u;frp :rllltl;;
9 B dita)’ manii)ulating it and sending 1 Oulttctl(l) é‘la;LZ?ther be on or
or other device, is al| controlled by these switches. Itf S:VVC asslgi o 1 xod @ 6 o
off (more precisely, high voltage or low voltage). fing the summs of fhese
these alternate states, we then have a way of represen %1 ¥ 16 dio. e Fss b
switches with numbers, To “talk” to a computer, to tell it w '211 Comp,mcr e
set its switches by talking its language. The only lzfnguag;at i5. milled] @ BlauEs
stands is the language of 0’s and 1I’s, which compl‘lstffl ‘;‘; BASIC, use interpre.
number system. Higher level computer .languagesl; Sucinstructi()ns into a binary
tive programs to convert text and decimal nuIVn) ell;l BN, S fo o
form. To use lower level languages, such as ass(l.)r_r:1 ay SyStEm B8 Fefoid
stand hi-res graphics, some understanding of the binary

..

In any language, all possible words are represented by arranging the alphabet
characters in different combinations. Computer “words” are numbers and the
computer “alphabet” is 0 and 1. How can just two digits be used to represent
more than two numbers? The universally used numbering system is, of course,
the decimal system which uses ten digits, O to 9, to represent all possible
numbers (this is undoubtedly related to the fact that we have ten fingers and
toes; if we had only two, we would probably be balancing our checkbooks in
binary). We have to realize that the decimal system is just as arbitrary as any
other system using any other number of digits. Thus, to understand the binary
system requires only an understanding of the principles of the decimal system.

The decimal system works by column assignments. There is no single digit to
represent the number ten, so a 1 is placed in a second column, the tens column.
Similarly, we represent one hundred by placing a 1 in the third or hundreds
column. Each column represents some whole factor of 10.

1000's 100's 10’ 1's
10° 102 10' 100
4 3 2 7 =4000 + 300 + 20 + 7 = 4327

In the binary system, we can count to one easily enough (zero, one) but there is
no single digit to represent the number two so we place a 1 in a second column.
Thus, binary 10 = decimal 2 and, it follows, binary 11 = decimal 3. What is
decimal 4? Very good. It’s binary 100. Thus, the binary system uses columns just
like the decimal system except the columns are now factors of two.

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Columns can be extended to a 16’s column, 32’s column, etc. and so given
enough columns, we can represent any number by stringing together Os and 1s.

Bits and Bytss, Sugar and Spice

Hi-Res Gmphics and Animation Using Assembly Language T P

THE HEXADECIMAL NUMBERING SYSTEM

Writing numbers in binary is obviously a laborious task and is also pronec to
€Irors—try copying a string of a hundred 0’s and 1's and sce how far y(.m gt
without making a mistake. To avoid these problems, assembly language uses yet
another numbering system, the hexadecimal system. An interpreter program
converts hexadecimal (or hex for short) numbecrs into the binary format so the
computer can understand what'’s going on. It will be casicr to understand the
hexadecimal system if we first discuss some aspects of how the Apple handles
numbers,

Each position of a binary number is called a bit. A group of 4 bits is called a ;
nibble and a group of 8 bits is called a bytc. :

Byte

~
P
BitNumber —» 7 6 5 4 3 2 1 0]

Value — o 128 64 32 16 8 4 2 1

~
Nibble

The Apple 11 is an 8-bit machine; that is, its microprocessor handles 8 bits
(1 byte) of data at a time. It’s convenient to represent a nibble by a single hex
number; thus two hex numbers can represent a single byte. If we look at the
table below, we see that a nibble can have values from 0 to 15. We have o
digits (0-9) to work with, so numbers 10 to 15 are assigned letters A to
flumbers are preceded by a sign to distinguish them from decimal num

nly ten
F (hex
bers).

Binary Hex
0 0000 $0
1 0001 $1
2 0010 $2
3 0011 $3
4 0100 $4
S) 0101 $5
6 0110 $6
7 0111 $7
8 1000 $8
9 100 1 $9
10 1010 $A
11 1011 $B
12 1100 $C
13 1101 $D
14 1110 $E
15 1111 $F

.. Bits and Bytes, Sugar and Spice

Now we've simplified things somewhat. It’s obviously easier to write $F than
1111.

Most of the time we’ll be writing numbers as bytes and here the advantage of
hex numbers becomes more apparent. To write a byte in hex, we simply assign a
hex number to each nibble, e.g.,

Decimal Binary Hex

98 011t 00O 1O $62
_/

VT N
$6 $2

198 11 0001 1 0 $C6
$C $6

255 1 1 1 1 1.1 11 §FF
$F $F

1 0000O0O0O0T1 $0
$0 $1

If you ever feel an irresistible urge to convert hex numbers into binary, you
simply take each hex digit and write the corresponding binary nibble. Convert-
ing hex to decimal and vice versa is often useful (BASIC uses only decimal
numbers). This can be done easily if you understand that the hex system also
uses column assignments, just as binary and decimal, but here the columns are
factors of 16 (hence the name hexa[6]decimal[10]) because there are 16 digits
possible in each column.

16’s 1’s

16’ 16° Hex Decimal
$1 $0 $10 16
$2 $0 $20 32
$2 $A $2A 42

$6 $2 $62 98

--

The Apple 6502 microprocessor stores numbers in specific locations called
memory addresses. Each memory address can hold only one byte. The maximum
value of a byte is $FF (11111111 or 255 decimal) — this explains why 255 is the
maximum value you can use to POKE to a memory location in BASIC. When

10

Hi-Res Graphics and Animation Using Assembly Language

these addresses are scanned, a byte is retrieved from each location and depend-
ing on the value, a given operation is performed. Memory addressces are accessed
by a system that can handle two bytes of data at a time. Two bytcs can be repre-
sented by four hex numbers, and so a memory address has the gencral form
$NNNN where N equals any hex number. Assemblers always access addresses
using the hex format. We can convert memory addresses from hex to decimal
(useful when using BASIC and assembly language in the same program) by

column assignments; e.g.:

4096’s 256's 16s Is

163 162 16’ 16° Hex Decimal
$0 $0 $A $0 $00A0 160
$0 $8 $0 $0 $0800 2048
$2 $0 $0 $0 $2000 8192
$4 $0 $0 $0 $4000 16384
$6 $0 $0 $0 $6000 24576
$9 $6 $0 $0 $9600 38400
$F $F $F $F $FFFF 65535

The highest memory address is $FFFF; i.c., all 16 bits are 1. Thus the 6502
microprocessor can access only 65536 addresses ($0000 is the first memory
location) —from this comes the term 64K of memory. Apples with 128K of
memory switch between two memory banks, each one containing 65536
addresses; Apples with less than 64K of memory have the capability of accessing

65536 addresses— it’s just that they’re not all there.
Memory addresses are conveniently divided into what are called pages, each

page containing 256 bytes.

Address Bytes Hex Address Page Number
0-255 $0000-$00FF 0
256-511 $0100-301FF 1
512-767 $0200-$02FF 2

etc.

Thus, addresses in the range $0000 to $00FF are called zero page addresses.
We'll meet up with these later on as they play an important role in some of the

assembly language instructions used in our programs.
Memory addresses themselves are often stored at other memory addresses

for use in a program. Because_an address can store only one byte but is itself
represented by two bytes (except for zero page addresses), we have a problem.
The solution is to store an address in two locations, one byte in one and one
byte in the other. This is done in a particular way. Memory address bytes are
divided into two classes, the high order byte (left) and the low order byte
(right). For example, $20 is the high byte and $00 the low byte of address $2000.
The bytes are stored in consecutive locations, low byte first. We’'ll learn more

about this when we get to our programs in later chapters.
There are several general areas of memory that play a distinctive role in the
operation of the Apple II. The following memory map describes and locates

some of these functions.

..

$FFFF (65535)

Hardware

$BFFF (49151)
DOS

$9600 (38400)
USER PROGRAM

$6000 (24576)

Page 2 Hi-Res
$4000 (16784)
Page 1 Hi-Res
$2000 (8192)
USER PROGRAM
$0800 (2048)
Text Screen and
Operating System
$0000 (0)

THE HI-RES SCREENS

...

There are two areas reserved for hi-res graphics, Pages 1 and 2 (these page
numbers have nothing to do with the page numbers of memory addresses dis-
cussed above). Page 1 occupies an area from $2000 to $3FFF and Page 2 from
$4000 to $SFFF. Either page can be used for any hi-res graphics program, the
only difference being that Page 1 has the option of displaying full-page graphics
or mixed text and graphics, the bottom four lines displaying the text. So if you
want to display text and graphics, choose Page 1. For full page graphics, you can
choose either page. The only other point to consider in choosing pages is
whether you're going to use a BASIC program along with your assembly language
program. BASIC requires a continuous stretch of memory, so the page choice
determines the maximum length of your BASIC program. For example, if you
choose Page 1, you can run BASIC from $0800 to $1FFF or load the BASIC pro-
gram above Page 1 and run it from 84000 to $9600. This will be discussed in
more detail in Chapter 16.

The hi-res screens are divided into screen bytes (horizontal) and lines (ver-
tical). There are 192 lines, numbered 0 to 191, top to bottom, and each line
contains 40 screen bytes, numbered O to 39 (#800 to #$27) left to right. Thus
there are 40 X 192 = 7680 screen byte positions.

In hi-res drawing, only 7 of the 8 bits in a byte are plotted (more on this
later) and so each screen byte contains 7 bits, or, as they're called when plotted,
pixels (let's get away from computerese and call them dots). Each line then can
contain 7 X 40 = 280 dots. Therefore a hi-res screen can display up to 280 X
192 = 53760 dots; that’s why they call it hi-res. So far so good. Everything seems
to be in logical order but, of course, there are complications; otherwise, why
would you need to read this book? For reasons we won't go into, the Apple
designers decided to number hi-res lines in a nonconsecutive fashion. For exam-
ple, line 0 of the Page 1 screen starts at address $2000 and ends at $2027. You
might then expect line 1 to start at $2028, right? Wrong. Line 1 starts at $2400.
Line 2 starts at $2800, line 3 at $2C00, and so on, producing quite a scrambled

Bits and Bytes, Sugar and Spice

11

”’._Bes Eraphics aﬂd Aﬂima”ﬂ” USing Assembly La”guage ..

n
)

Address 0 1 2 3 4 5 & 7 8 9 1011 12 13 14 15 16 17 18 19 2C

se000 N L] T

s2080 |\
s2100 [} h . |
szigo [[N L |

|
$2200 ¥ = |
$2280 N N S
$2300 \ \ e fI:
$2380 b
$2028 \
$20A8 \
$2128
$2148
$2228
$22A8 |
32328 {
$23A8
$2050
$20D0 f T
$2150 i

-
Jr ;
$21D0 [T T
T
%

| @
N
‘\‘
N
\

e
|

S S B
|

t
(

|
g
(1]
X
.y
Q.
]
/
n

IS (S S -
-
.
.
+
.
.
.
.

)
.
1
.
.
|
+
"
.

o=
+— “L S I 1 R
1
™ P—t—t g |

@
ey
(=
)

\\
D &N

o
5 &

NN

(

=

(=]
@O W » v
- O

e

o S

(= I

1460 | 104 111
= s . N . . . + 1

NGO O SN N -Aol..'

o
@ O ®
Q
QO
S

32250

3$22D0

1
SSEE RSN

picture. The same situation holds true for the Page 2 hi-res screen although, of
course, with different addresses. There is a method to this mad scramble but we
need not concern ourselves with the details because the next chapter will de-
scribe a way of accessing any screen position without having to refer to the
hi-res screen memory map. The map itself is useful, however, so that you will
understand how this is done. In addition, situations may arise where you will
want to access particular screen positions directly by referring to the map.

|
.
+
4ty

|
-
p—t—t
{
|

—t—t

|
T
S S —t=

|| |

—t -
O O e 5
——t
| -
—y
.
| S
—
—
—

USING AN ASSEMBLER

sese
M R R R R R R T R Ay

Finally, we get to the subject of an assembler. As mentioned in the What You
Will Need section at the beginning of the book, you don’t have to use an
assembler for your assembly language programs but if you don’t, I'll reserve a
room for you at the home.

The object of writing an assembly language program is, fittingly enough, to
produce 9biect or machine code. Object code is a machine language program
that consists entirely of bytes stored at memory addresses. Some of these bytes

rep.resent numbers and others represent instructions to the operating system.
Object code can look something like this:

6000: A9 10
6002: 8D 40 60

The code is interpreted as follows. When the program gets to address $6000
byte $A9, an opcode (operation code), tells the computer to store the f()ll()winé
number ($10) in the Accumulator, or A, an area for number storage and manipu-
lation in the microprocessor. The first byte (88D) in the next program line is an
opcode that instructs the computer to put the number in the Accumulator at
memory address $6040 (note that memory addresses are stored low byte first).

.. Bits and Byfes' SUgﬁf and sPice

You could enter this code directly from BASIC by POKEing appropriate numbers
into appropriate memory locations, remembering first to convert all numbers to
decimal. The BASIC program would look like this:

POKE 24576, 169
POKE 24577, 16
POKE 24578, 141
POKE 24579, 64
POKE 24580, 96

The program could also be entered directly from the Apple’s Monitor in this
fashion:

6000:A9
6001:10
6002:8D
6003:40
6004:60

Here is an assembly language code for the same instructions:

ORG $6000
LDA #$10
STA $6040

ORG $6000 says start the program at address $6000. LDA is a mnemonic for
LoaD Accumulator (the Apple 6502 microprocessor uses some 56 mnemonics
for assembly language instructions). The # prefix says #$10 is a number, not a
memory address. STA is a mnemonic for STore Accumulator and $6040 is the
address where #$10 is to be stored. This type of code is called a source code and
the assembler, when it is instructed to do so, assembles the source code into the
object code and usually will display or print both codes together, one next to the
other.

Now, imagine a program hundreds or even thousands of lines long.
Obviously, a program written in assembly language is more easily written (and
read) than one written in machine language. But assemblers have even more
useful features, not the least of which are editing capabilities that allow you to go
anywhere in the program and change numbers and lines around without having
to reenter the whole thing. In addition, assemblers allow the use of labels and
comments, both very useful features.

The source code from most assemblers is divided into several fields or
columns. First, a line number is displayed for each instruction. These line
numbers are not incorporated into the object code—they are there for editing
convenience. The next field is reserved for labels, which are optional. When a
region of the program is labeled, it can be accessed by referring to the label
rather than to a specific memory location. This not only makes the program
more readable but also eliminates the chore of changing instructions to reflect
new memory addresses when lines are shifted around. The next field is the
command field, which contains the opcode and, if required, the operand, the
number or address acted upon by the opcode. Finally, there is the comment
field, usually delimited by a semi-colon(;). Comments are similar to REM state-
ments in BASIC and are not incorporated into the object code.

13

Hi-Res Grap["cs and Animation Us,’ng Assemb[y [_a”guagg ..

Let’s look at a sample program. When the source code is typed in. it will
look like this (the field headings are not displayed by the assembler—they arc
there for your edification):

Line Label Opcode Operand Comments
1 *SAMPLE PROGRAM
2 ORG $6000 ;START PROGRAM AT $6000
3 LOOP LDA #3510 LOAD A WITH #8810
4 STA $6040 ;STORE AT $6040
5 JMP LOOP ;GO TO LOOP (LINE 3)

Line numbers are entered automatically by the assembler. Line 1 demon-
strates another feature of assemblers—an entire line can be a comment if de-
limited by a *. Such lines are not incorporated into the object code. When the
command to assemble (usually ASM) is given, the object and source codes are
displayed side by side:

1 *SAMPLE PROGRAM

2 ORG $6000 ;START PROGRAM AT $6000
6000:A9 10 3 LOOP LDA #3$10 ;LOAD A WITH #310
6002:8D 40 60 4 STA $6040 ;STORE AT $6040
6005:4C 0060 5 JMP LOOP ;GO TO LOOP (LINE 3)

The source code and object code are named by you and then saved
separately on a disc. The assembler will append a prefix or suffix automatically to
one or the other to distinguish which is which. For example, the disc catalog
may show the object code as SAMPLE PROGRAM and the source code as SAM-
PLE PROGRAM.S. This is how programs appear when assembled using the BIG
MAC assembler. Other assemblers may do this differently.

The object code is the machine language program we want to run. The
source code is not a program and can’t be “run” as such. How do we run the
program? Object codes are always stored as binary files. To run, we enter BRUN
<space> file name (in this case, SAMPLE PROGRAM). This program will be
loaded at address $6000 and will run starting from this location. We can also
load the program without running it if, for example, we want just to inspect it.
The instructions for this are BLOAD <space>> file name. To see the program
we've loaded, enter the Monitor with CALL-151 and then type GOOOL (L for
list). The program, along with its assembly language mnemonics but without
labels or comments, will be listed starting from $6000. To run the program now
Wwe can enter 6000G (G for go to).
tion%l)[;p:})ﬁe we decide at some later date that $6000 is an inappropriate loca-

IS program because we want to use this area for something else. Let’s
§ay WE€ now want to store it at address $4000 instead. We can do this by specify-
ing the address when we BLOAD it, i.e.,, BLOAD <lspace> file name,A84000. The
program will now load at $4000 and we can run it from the Monitor by 4000G. What
will h_appen when we run it? Disaster! The reason is that the machine language
code is nonrelocatable, that is, it can be run only at the location specified by the
ORG statement. To see why this is so, let’s look at the code itself. The assembly
language instruction in line 5 is JMP LOOP. LOORP is a label that refers to address
$6000. Remember that object codes do not deal with labels, only numbers, and

Bits and Bytes, Sugar and Spice

..

so the assembled code for line 5 is 4C 00 60, which is interpreted by the operat-
ing system to mean go to address $6000. If the program is loaded at and run
from $4000, the 4C 00 60 instruction will be executed faithfully and the pro-
gram will jump to $6000, which no longer contains the original instruction. Gar-
bage in, garbage out.

It is possible to write relocatable codes, that is, programs that can be loaded
anywhere regardless of the address specified by the ORG statement. Sometimes
such codes are necessary, but for our purposes this represents just another com-
plication we can do without. If you want to relocate a program, simply call up
the source program, change the ORG operand to the new address, and
reassemble.

There is one other aspect of assembler use that should be emphasized so I'll
mention it here and remind you of it again in later chapters. Assembly language
opcodes are entered as 3-letter mnemonics, designed to help you remember
what they stand for. Two such opcodes, BCC (Branch on Carry Clear) and BCS
(Branch on Carry Set) are often not helpful in this regard. In the BIG MAC and
most other full feature assemblers, these opcodes can be replaced by what are
called pseudo-opcodes; e.g., BCC can be replaced by BLT (Branch if Less Than)
and BCS by BGE (Branch if Greater or Equal). If your assembler doesn’t use
these pseudo-opcodes, just use BCC and BCS—there is no difference in the
assembled program. Purists might argue against the use of pseudo-opcodes
because they are not part of the standard Apple instruction set, but they do make
programs easier to write and read. I should also mention at this point that the
instruction EQU, which is used to assign a label to a memory address, can be
replaced in the BIG MAC and other assemblers by the = sign. If your assembler
doesn’t allow it, use EQU.

If all this is confusing to you, don’t worry about it. Get an assembler, read the
instructions, look over some of the programs in this book to get a feel for it, and
before you know it you'll be a bona fide assembly language programmer. Now,
onward and upward (or, in the case of some programs, downward and
acrossward).

16

Drawing a Shape
on the Hi-Res Screen

Of graphbics be certainly could write it
His talent so great he couldn’t hide it.
He plotted a shape

That looked so like a grape

It was all you could do not to byte it.

Drawing a point or a series of points (i.e., a shape) on a hi-res screen
involves only three operations:

1. Display the screen.
2. Clear it.

3. Store a byte in a hi-res screen memory location ($2000-83FFF for Page 1
or $4000-$5FFF for Page 2).

DISPLAYING THE HI-RES SCREEN

In Applesoft BASIC, the command HGR can be used both to clear and to
display the Page 1 hi-res screen. Similarly, HGR2 clears and displays hi-res Page 2.
We can do this in assembly language by accessing built-in subroutines. For ¢xample,
JSR $F3E2 is equivalent to HGR and JSR $F3D8 is equivalent to HGR2. This is fine for
Cle@ng and displaying a hi-res screen when speed is not required (i.e., at the
beginning of a program), but to accomplish this rapidly we need to write our own
assembly language routines.

Displaying the hi-res screen of choice involves accessing what are called soft
switches. These are certain memory locations that, when accessed, perform the
desired function. Accessing a soft switch means either reading from it (PEEKing
in BASIC) or writing to it (POKEing in BASIC). It doesn’t make any difference
which numbers are read from or written to these memory locations. The access
process itself is all that’s required. Some soft switches require a read, others a
write, and some can be accessed either way (details of soft switches can be
found in the reference manuals published by Apple for your particular machine).
The soft switches of interest for hi-res graphics are the following:

... Drawing a Shape on the Hi-Res Screen

Memory Location of Switch

Decimal Hex Function

49232 $C050 Turns on graphic mode

49239 $C057 Selects hi-res mode

49236 $CO054 Selects Page 1

49234 $C052 Selects full page graphics (Page 1)
49237 $C055 Selects Page 2

49235 $C053 Selects mixed text and graphics (Page 1)
49233 $CO051 Selects text mode

Arbitrarily, I've decided to use Page 1 with full-screen graphics as the screen
of choice for all programs in this book. The switches we want to access then are
the first four in the table above. These switches can be accessed by either a read
or a write. Try this in BASIC or directly from the keyboard:

POKE 49232,0 :POKE 49239,0: POKE 49236,0: POKE 49234,0

The Page 1 hi-res screen will be displayed (you will probably see a screen
filled with random dots as these instructions, unlike HGR or HGR2, do not clear
the hi-res screens). Now, how do we do this in assembly language? The assembly
language instruction equivalent to a PEEK in BASIC is LDA, the mnemonic for
LoaD Accumulator (the Accumulator is a part of the Apple’s 6502 microproces-
sor that performs most number manipulations). The LDA instruction is used to
load the Accumulator with a byte (LDA #8308 loads the number 8 into the
Accumulator) or with the contents of a memory location (LDA $2057 loads the
Accumulator with the byte stored in location $2057) —note that # preceding a
number means it is a number, not a memory location. Because we’re simply
accessing a soft switch, the particular number loaded into the Accumulator is
immaterial.

The assembly language instruction equivalent to a POKE in BASIC is STA
(STore Accumulator). This instruction stores the number in the Accumulator in
a specified memory location (STA $4097 stores the number in the Accumulator
in location $4097). Again, when accessing a soft switch, the particular number is
immaterial.

Either LDA or STA can be used to access the soft switches we’re interested
in but I'm going to use LDA throughout (it appears to be the traditional choice
among assembly language programmers). Thus, the assembly language code for
displaying the Page 1 hi-res screen with full screen graphics is as follows.

JPROGRAM 3-1

A 1 ORG §6000 ;START PROGRAM AT $6000
00: AD 50 CO 2 LDA $CO050 ;GRAPHICS

2803: AD 57 CO 3 LDA $C057 “HI-RES

6006: AD 54 CO 4 LDA $C054 :PAGE 1

6009: AD 52 CO 5 LDA $C052 ;FULL SCREEN GRAPHICS

600C: 60 6 RTS

--End assembly--

13 bytes

18

Hi-Res Graphics and Animation Using Assembly Language

That’s all there is to it! Running this program (scc the section in Chapter 2
on using an assembler) will display the Page 1 hi-res screen (again probably
with random dots as the screen is not cleared by these instructions). Let's now
use a feature of the assembler to make this program more readable. As men-
tioned previously, we can assign labels to particular memory locations so that the
code reads more like text rather than a serics of numbers (this is always nice to
do so that when you come back to it three months later vou won't wonder why
in heaven’s name you LDAed $C050). Here is the same program with labels for
the soft switches (JMP is an instruction equivalent to GOTO in BASIC).

JPROGRAM 3-2

:ASM

1 ORG %6000
6000: 4C 03 60 2 JMP PGM

3 GRAPHICS = $C050

4 HIRES = $C057

5 PAGE1 = $C054

6 MIXOFF = $C052
6003: AD 50 CO 7 PGM LDA GRAPHICS
6006: AD 57 CO 8 LDA HIRES
6009: AD 54 CO 9 LDA PAGE1l
600C: AD 52 CO 10 LDA MIXOFF
600F: 60 11 RTS

--End assembly--

16 bytes

Symbol table - numerical order:

PGM =$6003 GRAPHICS=$C050 MIXOFF =$C052) PAGE1

HIRES =$C057

Obviously this is a much more readable lj
often as we can throughout the book with t
the source code as much as possible.

sting. We’re going to use labels as
he idea of eliminating numbers from

Now that we've displayed the hi-res screen,
on it. Clearing the screen means turning it all to
assembly language clear routine is a relatively sho
clearing the screen, it also serves as a good e
assembly language instructions.

we must clear it before drawing
black, i.e., no dots displayed. The
rt program (13 lines), and besides
xample of the use of some common

Remember we said before that to draw on a hi-res screen we first display the
screen and then store bytes at hi-res screen memory locations. Well, we've
already displayed the screen. Now, what bytes do we store and where to clear
the screen? It turns out that if you load a hi-res screen location with byte #800,
that portion of the screen will turn to black, i.e.. no dots (the relationship of

..

... meing 8 Shapg on the Hi-Res Screen

other bytes to what appears on the screen will be dealt with later in this chap-
ter). Thus, to clear the Page 1 hi-res screen we load all the screen locations,
from $2000 to $3FFF, with zeros. The following program shows how this is done.

JPROGRAM 3-3

:ASM
1 ORG $6000
6000: 4C 03 60 2 JMP PGM
3 GRAPHICS = $C050
4 HIRES = $C057
5 PAGE1 = $C054
6 MIXOFF = $C052
6003: AD 50 CO 7 PGM LDA GRAPHICS
6006: AD 57 CO 8 LDA HIRES
6009: AD 54 CO 9 LDA PAGE1
600C: AD 52 CO 10 LDA MIXOFF
600F: A9 00 11 LDA #$00 ;CLEAR SCREEN PAGE 1
6011: 85 26 12 STA $26
6013: A9 20 13 LDA #$20
6015: 85 27 14 STA $27
6017: A0 00 15 CLR1 LDY #$%$00
6019: A9 00 16 LDA #%$00
601B: 91 26 17 CLR STA ($26),Y
601D: C8 18 INY
601E: DO FB 19 BNE CLR
6020: E6 27 20 INC $27
6022: A5 27 21 LDA $27
6024: C9 40 22 CMP #%$40
6026: 90 EF 23 BLT CLR1
6028: 60 24 RTS
--End assembly--
41 bytes
Symbol table - numerical order:
PGM =$6003 CLR1 =$6017 CLR =$601B GRAPHICS=$C050
MIXOFF =$C052 PAGE1 =$C054 HIRES =$C057

Let’s see how it works (assembly language literates or those simply uninter-
ested can skip to the next section). First, byte #$00 is stored in location $26
(lines 11 and 12). Location $26 is called a zero page address because its actual
address is $0026. There’s a reason for choosing a zero page address as we’ll soon
see. Lines 13 and 14 load #820 into zero page address $27. Line 15 loads #$00
into the Y register (the Apple’s microprocessor has two areas other than the
Accumulator that can store bytes—the X and Y registers). Line 16 loads the
Accumulator with #800. Line 17 does the real work. It uses a type of command
called indirect indexing, which works only with the Y register and a zero page
address (hence choosing a zero page address to begin with). STA ($26),Y says
take the contents of the Accumulator (#$00 from line 16) and store it in a

memory address calculated as follows: go to location $26 to get the low byte of

19

Hi-Res Graphics and Animation Using Assembly Language «-----------==-==ssremsreseeseoen

| the address and then get the high bytc from the next zero page location. e 827,
\ add the contents of the Y register to get the final address
|
|
\

STA ($26)Y —————= LOCATION CONTENTS ACCUNMUL ATOR
$26 #500 43500
$27 #$20

| Y

$2000 - Y $2000
Y #S00

Note what has happened. A zero has been stored at location $2000, the first
location of hi-reg screen Page 1, turning it black. W¢'re on our way' Linc ‘18
(INY) now increments the contents of the Y register by once. Y now contains
#301. Line 19 says if Y has not yet reached zero (incrementing the maximum
value [#3FF] by one results in #300), branch back to CLR (lin¢ 17) Line 1= now
calculates the new address as $2001.

STA(S26)Y — . |OCATION CONTENTS ACCUMULATOR
20 $26 #3$00 #3$00
- $27 #3520

l

$2000 + Y = $2001

Y = #3$01
untirg‘y V‘VC'VC blacked out the next screen location at $2001. This continucs
locateq 'S Incrementeq o zero, thus blacking out 256 bytes. Then the numbc‘r
SO 1o in gddress $27 is incremented by one (line 20). Next we do a compari-

See if we're finished. We load the Accumulator with the byte¢ in $27 and
© #$40 (line 22). If the Accumulator contains #840 we want to stop
S Will get us into the Page 2 hi-res screen. The command in line 23
ch if Less Than, a code that can be used by some assemblers in place
of the standarg BCC, Branch on Carry Clear) says branch or jump to CLR1 if the
Accumulator byte i legg than #840. If it is #3840, the branch is not taken and the

program ends. When we pranch to CLRI, we load Y again with #300 and linc 17
puts a zero at locatjon $2100.

COmpare it ¢
because thi
(BLT, Bran

STA ($26)Y — LOCATION CONTENTS ACCUMULATOR
$26 #300 #$00
$27 #3521

i $2100 + Y = $2100

(Y = #3%$00

... Drawing a Shape on the Hi-Res Screen

Each time 256 bytes are blacked out, $27 is incremented by one and a new page
of memory is selected.

Determined by $27 —{ $20 | 00 ----- 256 bytes (determined by Y)----------- to $20FF
$21 | 00 ————= e to $21FF
$22 | 00 - m oo to $22FF
$3F [00 -=-=======mmmmmmmmmm e to $3FFF
$40 [00 ----- Stop — beginning of page 2 hi-res-----

This whole routine takes less than a tenth of a second. Talk about assembly
language speed! By the way, if you want to clear hi-res Page 2, place #$40 in line
13 and #860 in line 22. The screen addresses will then be $4000 to $5FFF.

DRAWING A SHAPE

Now that we've displayed the screen and cleared it, let’s draw something on
it (about time, eh?).

We've seen that if we store a zero at a hi-res screen location, that location
turns black. The heart of hi-res drawing is the fact that if we write any byte other
than zero to the screen, dots will appear (actually, storing byte #880 will also
produce no dots—this is a complication we don’t need, right? We’'ll discuss why
this happens below). Let’s now discuss the relationship of bytes to dot patterns.
The details are a bit messy but the application is easy.

Remember that a byte is a series of 8 bits, each one of which can be off (0)
or on (1). You guessed it! If a bit is 0, the screen is black at that point; if a bit is
1, a dot is turned on. But there are complications (you wouldn’t want this to be
too easy, would you, else how could you impress your friends?). First, only 7 of
the 8 bits determine a dot pattern. The leftmost or most significant bit (also
called the high bit) is used to select colors for the byte (more on this in a later
chapter). This is why storing byte #$80 will produce no dots. For now, we'll
always use O as the high bit. Second, the remaining 7 bits are plotted backwards!
Why? Don’t ask. Let’s just see how it works. Here is a byte and the dot pattern
that results when this byte is sent to a hi-res screen location.

High Bit

0O 1 0 0 1 1 1 1 Hex#$4F

How does one convert a dot pattern to a byte? Don’t fret. It’s easy. Place the
desired dot pattern in 7 boxes and number the boxes as shown.

21

Hi-Res Graph,c‘g and Animation Using Assamb[y Language «-----cccveeee i

| 1 2 4 8 1 2 4
olole|e® '@
| /
; "
\ %
l HS4F
\ Take the rightmost 3 bits and convert them to a hex number. This is the first

number of the byte. Then do the same for the leftmost 4 bits. This gives you the
second number of the byte. You now have the byte, #84F, that will give you the
desired dot pattern. Let’s try another example.

1 2 4 8 1 2 a
® o o ® o

I
— ~

22

| | #$68

last eGot it? OI.(Let’s now write a program that will display the dot pattern _in the

first l:‘:mpl!e, L€., the one specified by #86B. We're going to put this byte in ic

32000)6 SV;:}C 0? and the first byte (byte 0) of the hi-res screen Page 1 (location

diStingliish :)Ch IS In the upper left-hand corner of the screen. (Be careful to

column [0_3€tween the screen byte, which is the location of the horizontal

byte, why " .9 across the screen] where the shape is to be drawn, and the shape
» THICh s the byte that determines the dot pattern.)

IPROGRAM 3.4

:ASM

1 ORG 600
6000: 4cC 03 60 2 JMP gGM 0

3 GRAPHICS = $C050

4 HIRES = $C057

5 PAGE1 = $C054

6 MIXOFF = $C052
6003: AD 50 co 7 PGM LDA GRAPHICS
6006: AD 57 co 8 LDA HIRES
6009: AD 54 Co 9 LDA PAGE1
600C: AD 52 CO 10 LDA MIXOFF
600F : A9 00 11 LDA #3500 ;CLEAR SCREEN PAGE 1
6011: 85 26 12 STA $26
6013: A9 20 13 LDA #%20

| 6015: 85 27 14 STA $27

... []mwing 8 Shapg on the Hi-Res Screen

6017: A0 00 15 CLR1 LDY #$00
6019: A9 00 16 LDA #%00
601B: 91 26 17 CLR STA (%$26),Y
601D: C8 18 INY
601E: DO FB 19 BNE CLR
6020: E6 27 20 INC $27
6022: A5 27 21 LDA $27
6024: C9 40 22 CMP #$40
6026: 90 EF 23 BLT CLR1
6028: A9 6B 24 LDA #$68B
602A: 8D 00 20 25 STA $2000
602D: 60 26 RTS
--End assembly--
46 bytes
Symbol table - numerical order:
PGM =$6003 CLR1 =$6017
MIXOFF =$%$C052 PAGE1 =$C054

We've now drawn our first shape; admittedly, it’s not much of a shape but
we have to start somewhere (actually it does look something like a far-away bird
or maybe an airplane—it helps to have imagination in this business). Let’s get
more ambitious now and draw something more interesting, say, a person. The
shape will be 1-byte wide by 6-lines deep. Here is the dot pattern, the corres-
ponding bytes, and the line addresses where the bytes will be drawn.

;PLOT BYTE
CLR =$6018B GRAPHICS=$C050
HIRES =$C057

112148 1]2]4 Shape Byte Line Address
o #3508 $2000
00 0o #$3E $2400
@ 00 ® #$5D $2800
00 #$1C $2C00
® ® #$14 $3000
® ® #$22 $3400
JPROGRAM 3-5
:ASM
1 ORG $6000
6000: 4C 03 60 2 JMP PGM
3 GRAPHICS = $C050
4 HIRES = $C057
5 PAGE1 = $C054
6 MIXOFF = $C052
6003: AD 50 CO 7 PGM LDA GRAPHICS
6006: AD 57 CO 8 LDA HIRES
6009: AD 54 CO 9 LDA PAGE1
600C: AD 52 CO 10 LDA MIXOFF

23

24

Hi-Res Graphics and Animation Using Assembly Language

600F: A9 00 11 LDA #5500 ;CLEAR SCREEMN i5tt
6011: 85 26 12 STA $26

6013: A9 20 13 LDA £%20

6015: 85 27 14 STA $27

6017: AQ 00 15 CLR1 LDY 4$00

6019: A9 00 16 LDA 4300

601B: 91 26 17 CLR STA ($26),Y

601D: C8 18 INY

601E: DO FB 19 BNE CLR

6020: E6 27 20 INC $27

6022: A5 27 21 LDA $27

6024: C9 40 22 CMP #$40

6026: 90 EF 23 BLT CLR1 A
6028: A9 08 24 LDA 4308 ;DRAW SHAPE
602A: 8D 00 20 25 STA $2000

602D: A9 3F 26 LDA #%$3E

602F: 8D 00 24 27 STA $2400

6032: A9 5p 28 LDA #$5D

0034: 80 00 28 29 STA $2800

6037: A9 1C 30 LDA #%1C

6039: 8D 00 2¢ 3 STA $2C00

603C: A9 14 32 LDA #%14

603E: 8D 00 30 33 STA $3000

6041: Ag 27 34 LDA #$22

6043: 8D 00 34 35 STA $3400

6046: 60 36 RTS

--End assembly.--

71 bytes

Symbo] table - numerical order:

PGM =$6003 CLR1 =$6017 CLR =$6018 GRAPHICS=$C050
MIXOFF =$c0s2 PAGEL =$C054 HIRES =$C057
We can put the sh i SC ‘hanging the screen
locations, For exam ape anywhere on the hi-res screen by changing

left Ple, if we want to plot it one byte over (one byte from the
SCreen border), the addresses would be $2001, $2401, $2801, ctc.

LINE ADDRESS TABLES

There’s nothing wron
(pardon the pun) th

addresses. We would

g with this program (it works) but it doesn’t address
€ major headache in hi-res plotting, i.e., calculating line
_ like to plot the shape from, say, lines 0 to 5 without bother-
ing about the nonconsecutive nature of the screen line addresses. With the
PFO.C.CdUYC I'm about to describe, one can plot a shape at any line and byte
position without having to refer to a huge map of all 7680 screen positions. This
ally important when we deal with animation, which involves
und the screen. There is more than one way to solve this
asiest and fastest way is to use table look-ups. The high byte
ch line address is stored in tables. A line number from O to
191 is specified; by looking up the table, the correct line address is retrieved.

will become especi
moving shapes aro
problem, but the e
and low byte of ea

e

... Drawi”g 8 Shape on the Hi-Res Screen

The byte position (0-39) also is specified and added to the line address to get
the correct screen position. Let’s see how it works (see Program 3-6).

There are two tables, one labeled HI for the high bytes and one labeled LO
for the low bytes. Each table is 192 bytes long for the 192 line addresses. (The
BIG MAC Assembler and some others allow the entry of hex numbers without
prescripts using the HEX command; some assemblers do not support this
instruction and require the code DFB #8$20, #824, #828, etc. The ORCA/M
assembler uses a DC H’ directive; refer to your assembler’s instructions.) Sup-
pose we want to plot our man shape at byte O, lines O to 5 as before. We'll use
the Y register to hold the byte position and the X register to hold the line
position.

DISPLAY SCREEN,
HI-RES PAGE 1

'

CLEAR SCREEN

'

X = LINE NUMBER
Y = BYTE POSITION

'

r———-» GET LINE ADDRESS
LOAD A WITH
SHAPE BYTE
DRAW
NEXT LINE
JPROGRAM 3-6
:ASM
1 ORG $6000
6000: 4C 03 60 2 JMP PGM
3 GRAPHICS = $C050
4 HIRES = $C057
5 PAGE1 = $C054
6 MIXOFF = $C052
6003: AD 50 CO 7 PGM LDA GRAPHICS
6006: AD 57 CO 8 LDA HIRES
6009: AD 54 CO 9 LDA PAGE1
600C: AD 52 CO 10 LDA MIXOFF
600F: A9 00 11 LDA #$%00 ;CLEAR SCREEN PAGE 1
6011: 85 26 12 STA $26
6013: A9 20 13 LDA #%$20
6015: 85 27 14 STA $27
6017: A0 00 15 CLR1 LDY #$00
6019: A9 00 16 LDA #$00
601B: 91 26 17 CLR STA (%$26),Y
601D: C8 18 INY
601E: DO FB 19 BNE CLR
6020: E6 27 20 INC $27

6022: A5 27 21 LDA $27

25

Hi-Res smphics and Animation Using Assgmb[y [_anguagg ..

6024: C9 40 22 CMP #%40
6026: 90 EF 23 BLT CLRI
24 khkhkhkhkhkhkhkhkhkhkhkhkhhkikh*k
6028: A2 00 25 LDX #3%00 :LINE NUMBER
602A: A0 00 26 LDY #3%00 ;BYTE NUMBER
602C: BD 86 60 27 LDA HI,X ;GET LINE ADDRESS
602F: 85 77 28 STA %77
6031: BD 46 61 29 LDA LO,X
6034: 85 76 30 STA $76
6036: A9 08 31 LDA #%08
6038: 91 76 32 STA ($76),Y ;PLOT
603A: E8 33 INX ;NEXT LINE
603B: BD 86 60 34 LDA HI,X
603E: 85 77 35 STA $77
6040: BD 46 61 36 LDA LO,X
6043: 85 76 37 STA $76
6045: A9 3E 38 LDA #%3E
6047: 91 76 39 STA ($76),Y ;PLOT
6049: ES8 40 INX ;NEXT LINE
604A: BD 86 60 41 LDA HI,X
604D: 85 77 42 STA $77
604F: BD 46 61 43 LDA LO,X
6052: 85 76 44 STA %76
6054: A9 5D 45 LDA #%$5D
6056: 91 76 46 STA (%76),Y ;PLOT
6059: BD 86 60 48 LDA HI,X
605C: 85 77 49 STA $77
605E: BD 46 61 50 LDA LO,X
6061: 85 76 51 STA $76
6063: A9 1C 52 LDA #$1C
e n 8 kB o
6068: BD 86 60 55 LDA HI,X SNEXT LINE
606B: 85 77 56 STA $77
606D: BD 46 61 57 LDA LO.X
6070: 85 76 58 STA $7¢
6072: A9 14 59 6
: LDA #$14
6074: 91 76 60 STA
6076: ES8 61 INX ($76),Y ;PLOT
6077: BD 86 60 &2 LDA H sNEXT LINE
607A: 85 77 63 STA $77
607C: BD 46 61 64 LDA LO.X
607F: 85 76 65 STA $76
6083: 91 76 67
6085: 60 68 a1 (3760, spLoT
6086: 20 24 28 69 HI HE
£089. oC 30 34 38 3C X 2024282C3034383C ; HIGH BYTE LINE ADDRESSES
608E: 20 24 28 70 HEX
S 20 50 54 38 3¢ 2024282¢3034383C
6096: 21 25 29 71 HEX 2
S0oe: 2 23 282 ' 125292D3135393p
609E: 21 25 29 72 HEX 212529
60AL: 2D 31 35 39 3D 2D31353930
60A6: 22 26 2A 73 HEX 22262A2E32363A3F
60A9: 2FE 32 36 3A 3E
GOAE: 22 26 2A 74 HEX 22262A2E32363A3F
60B1l: 2E 32 36 3A 3E
60B6: 23 27 2B 75 HEX 23272B2F33373B3F

60B9: 2F 33 37 3B 3F

... Drawing a Shape on the Hi-Res Screen

60BE:
60C1:
60C6:
60C9:
60CE:
60D1:
60D6:
60D9:
60DE :
60E1:
60E6:
60E9:
60EE:
60F1:
60F6:
60F9:
60FE:
6101:
6106:
6109:
610E:
6111:
6116:
6119:
611E:
6121:
6126:
6129:
612E:
6131:
6136:
6139:
613E:
6141:
6146:
6149:
614E :
6151:
6156:
6159:
615E :
6161:
6166:
6169:
616E:
6171:
6176:
6179:
617E:
6181:
6186:
6189:
618E:
6191:
6196:
6199:
619t :
61A1:
61A6:
61A9:
61AE:

LO

HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

HEX

23272B2F33373B3F
2024282C3034383C
2024282C3034383C
212529203135393D
2125292D3135393D
22262A2E32363A3E
22262A2E32363A3E
23272B2F 333738 3F
23272B2F3337383F
2024282C3034383C
2024282C3034383C
212529203135393D
2125292D3135393D
22262A2E32363A3E
22262A2E32363A3E
23272B2F33373B3F
23272B2F 333738 3F
0000000000000000
8080808080808080
0000000000000000
8080808080808080
0000000000000000
8080808080808080
0000000000000000
8080808080808080
2828282828282828
ABABASABABABASAS
2828282828282828
ABABABABABABABAS
2828282828282828

ABABABABA8BABABAS8

; LOW BYTE LINE ADDRESSES

7

Hi-Res Graphics and Animation Using Assembly Language

..

61B1: A8 A8 A8 A8 A8

61B6: 28 28 28 107 HEX 2828282828282828

61B9: 28 28 28 28 28

61BE: A8 A8 A8 108 HEX ABABASASASABASAS

61C1: A8 A8 A8 A8 A8

61C6: 50 50 50 109 HEX 5050505050505050

61C9: 50 50 50 50 50

61CE: DO DO DO 110 HEX DODODODODODODODO

61D1: DO DO DO DO DO

61D6: 50 50 50 111 HEX 5050505050505050

61D9: 50 50 50 50 50

61DE: DO DO DO 112 HEX DODODODODODODODO

61E1: DO DO DO DO DO ;
61E6: 50 50 50 113 HEX 5050505050505050 A
61E9: 50 50 50 50 50 ‘
61EE: DO DO DO 114 HEX DODODODODODODODO

61F1: DO DO DO DO DO !
61F6: 50 50 50 115 HE X |
olFo: 20 29 59 sil2, 5050505050505050 |
61FE: DO DO DO 116 HEX

62015 DO b9 b9 DulSs DODODODODODODODO

--End assembly--

518 bytes

28

|| Symbol table - numerical order:
o 16003 CLRL =$6017 CLR =$6018 HI 36086
HIRES =30057 RAPHICS=$C050 MIXOFF =$C052 PAGE1 =$%

Let’s look at the program starting from line 25.

LDX #$00 Line number in X register

LDY #$00 Byte number in Y register

LDA Hi,x This insujuction is called absolute indexing. The Accumulator is
!oaded with the byte found in location HI + X (remember that HI
is a label for a particular address). Because X = 0, the first byte in
the HI table (#820) is loaded into the Accumulator.

STA $77 The contents of the Accumulator (#8%20) are placed in a zero page
location.

LDA LO,X The Accumulator is loaded with the low byte of the line address,
i.e., the byte in LO + X Because X = 0, the first byte in the LO
table (#800) is loaded into the Accumulator.

STA $76

#800 is placed in another zero page location.

$76 and $77 now contain the low and high bytes of the address of
line O ($2000).

LDA #3$08 The first shape byte to be plotted is put into the Accumulator.

STA ($76).Y

STA ($76).Y —— > LOCATION CONTENTS

...

We've seen this instruction before in the clear screen routine. It
stores the Accumulator contents at a screen address retrieved
from the contents of zero page addresses $76 and $77 plus Y, the
byte position.

ACCUMULATOR
$76 #3500 #$08

$77 #$20

l

$2000 + Y = $2000 (LINE 0)

Y = #$00

We've now plotted the first shape byte at line 0, byte 0. The second shape
byte now goes on line 1. To plot on this line, we increment X by one and repeat
the above steps with the next shape byte.

INX X now contains #$01

LDA HI,X Loads the Accumulator with the second byte in table HI (HI +
1 = #824)

STA $77 $77 now contains #$24.

LDA LO,X Loads the Accumulator with the second byte in table LO (LO +

= #$00).
STA $76 $76 now contains #800.
LDA #$3E Loads the Accumulator with the second shape byte.

STA ($76),Y The second shape byte is plotted at $2400 + Y = $2400 (line 1).

STA ($76),Y — LOCATION CONTENTS

ACCUMULATOR
$76 #300 #S3E

$77 #%24

l

$2400 + Y = $2400 (LINE 1)

Y = #$00

These steps are repeated until all the shape bytes are drawn. We can change

Drawing a Shape on the Hi-Res Screen

29

the byte and line locations by putting different values in the Y and X registers.
For example, to plot the shape starting at screen line 5 and screen byte 4, place
5 in X and 4 in Y. LDA HILX and LDA LO,X retrieves the line address $3400. STA
($76),Y adds 4 to this address to get the desired screen position, 383404,

32

Hi-Res Graphics and Animation Using Assembly Language

Symbol table - numerical order:

LOW =$1A HIGH =%$18B BYTE =$6003 L INE
DEPTH =$6005 XCOUNT =%$6006 PGM =$6007 CLR1
CLR =$601F DRAW =$6041 SHAPE =$6068 HI

LO =$612E GRAPHICS=$%C050 MIXOFF =3%C052 PAGE 1

HIRES =$C057

HI and LO refer to the tables in Program 3-6.

Let’s examine the program in some detail, because some new clements of

assembler use have been added. We need to reserve some space in the program

to hold the values for byte, line, depth of shape, and XCOUNT (the use of

XCOUNT will be described below). This is done by using the¢ code DS for
Defined Storage. Thus, BYTE DS 1 will reserve one memory location somewherce
between $6000 and PGM and label it BYTE (the precise location is displayed in
the Symbol Table at the end of the program listing). Also, in keeping with our
desire to remove numbers from the source code, we define zero page addresses
$1A as LOW and $1B as HIGH, and use these labels also in the clear screen
routine. (Using $1A and $1B as zero page addresses ensures no conflict with
DOS commands or any BASIC program we might want to integratc with our
assembly language program—see Chapter 16).
We first enter the initial values for line, byte, and depth of shape (lines 31 to
37). Note that the shape depth is added to the starting line number (lines 33 to
35) So'that DEPTH will contain the value #$05 + #806 = #$0B (ADC mcans
gDRi\;,V ith (;arry afld must always be preceded with CLC, CLear (ja}rry). In the
ing linefollftlne, Y is loaded with the screen byte (line 40) and X Wlth. the start-
45 (lrl.e 41). XCOUNT is initially set to zero (lines 38 to 39). Lines 42 to
8¢t the line address for the first line to be plotted.
We now need another counter to access the bytes in the shape table but
€ are no more available—A, X, and Y are being used already. To get around
shapew f éoad X temporarily with the value in XCOUNT and use XCOUNT as the
SHAPE;I(le counter (X is reloaded with the line number by line 41). Thus, LDA
table, b (line 47) loads A, the Accumulator, with the first byte of the shape
then’ lecause X =0 from the initial value of XCOUNT. S’FA.(LOW),Y (line 48)
(1ine94(9)ts the first shape byte at line 5, byte 4. XCOUNT 1s.mcrementcd by one
(line 50) and now contains the value #$01. LINE is also incremented by‘one
Pared to); It now contains the value #$06. This new line number is now com-
To d:)hv:e value in DEPTH (line 52). .
COmpareq ti) CMP comparison, you must first load A with - i o e
Dumber i 5 (line 51). BLT DRAW (line 53) is an instruction tha sayl (e
DRAW ang (th.e line number) is less than the number in DEPT H,.go bac
(#306) andcontmue drawing. At DRAW, X is loaded with the new hnc. number
With the nev;l)[(l(e;w address is obtained from the HI and LO tables. X is loaded
of the shape tabIOUN.T (#801) and LDA SHAPE,X loads A with the second byte
the secong shap:. gh 1S 18 then plotted at the new line by STA (LOW),Y.. ThrL:S
Program, the scree yte is plotted at screen line 6 and screen byte 4 (in tt 1(51
until the last |jpe ? byte isn’t changed). This whole process is tt}en repeate :
taken and the rop otted is equal to DEPTH. Then the branch at line 53 is nO
Com arcdp gram ends. ‘
easier topr fo the pr'evi()us program, this program is not only shorter buf also
€ad and manipulate. For example, if we don’t like the way the shape

ther
this,

h the number to be

...

... Drawing a Shape on the Hi-Res Screen

looks, we can simply change numbers in the shape table. For larger programs
with multiple shapes, the advantage of using shape tables becomes even more
apparent.

DRAWING SHAPES WIDER THAN ONE BYTE

...

We've one more topic to discuss before we leave this chapter. Up to now,
we've only plotted shapes of width one screen byte or less. Suppose we want to
plot a shape that extends over two bytes or more. A slight change in the drawing
routine is required. The following program (Program 3-8) plots the shape of a
plane that is 2-bytes wide and 5-lines deep.

112|481]|2|4)1]|]2|4]|8]|]1]|2]|4 Screen Byt%}_:APE BYTS‘,EcSreen Byte 2
® e #$03 #$00
o0 #$03 #$00
® o000 0o eeee #$7D #$3F
o o #$01 #$40
C I 0 20 0 JE J0 20 0 J0 JK JE JE) HS7F #$3F

The order of drawing will be:

line 1, first screen byte, second screen byte
line 2, first screen byte, second screen byte

line 3, first screen byte, second screen byte, etc.

Thus, the order of shape bytes in the shape table is 03 00 03 00 7D 3F 01 40
7F 3F.

In the DRAW routine, we get the address of the first screen line and first
screen byte and plot the first byte of the shape table. Then, on the same line, we
increment Y (line 49) so that the next plot (STA (LOW),Y) will be at the
second screen byte. LDA SHAPE+1,X (line 50) retrieves the second byte of the
shape table for this plot. XCOUNT is then incremented by the number of bytes
in the shape width; in this case, two. We then go to the next line by increment-
ing LINE (line 54) and, because the shape isn’t finished yet, we go back to
DRAW to reset the screen byte to its initial value (line 40) and obtain the new
line address. Now LDA SHAPE,X will get the third shape byte because X = 2
from XCOUNT. INY gets us to the next screen byte and LDA SHAPE+1X
retrieves the fourth shape byte. This continues until CMP DEPTH tells us the

shape is finished.

Hi-Res Graphics and Animation Us[ng Assgmb[y [_anguagg ..

DISPLAY SCREEN.
HI-RES PAGE 1

Y

CLEAR SCREEN

Y

SET INITIAL LINE NUMBER,
BYTE POSITION AND DEPTH

'

ZERO XCOUNT

Y

X = LINE NUMBER
Y = BYTE POSITION

v

GET LINE ADDRESS |

Y

X = XCOUNT |

y

LOAD A WITH SHAPE
BTYE — LDA SHAPE, X

Y

DRAW

'

NEXT BYTE LOCATION

y

LOAD A WITH NEXT SHAPE
BYTE — LDA SHAPE +1, X

Y

DRAW

Y

INC XCOUNT BY NO. OF
BYTES IN WIDTH

Y

NEXT LINE

'

LINE = DEPTH?

| B

No

...

JPROGRAM 3-8
:ASM

6000: 4C 07

6007: AD 50
600A: AD 57
600D: AD 54
6010: AD 52
6013: A9 00
6015: 85 1A
6017: A9 20
6019: 85 1B
601B: A0 00
601D: A9 00
601F: 91 1A
6021: C8

6022: DO FB
6024: E6 1B
6026: A5 1B
6028: C9 40
602A: 90 EF

602C: A9 05
602E: 8D 04
6031: 18

6032: 69 05
6034: 8D 05
6037: A9 04
6039: 8D 03
603C: A9 00
603E: 8D 06
6041: AC 03
6044: AE 04
6047: BD /B
604A: 85 1B
604C: BD 3B
604F: 85 1A
6051: AE 06
6054: BD 71
6057: 91 1A
6059: C8

605A: BD 72
605D: 91 1A
605F: EE 06
6062: EE 06
6065: EE 04
6068: AD 04
606B: CD 05
606E :
6070: 60

60

co
co

co

60

60
60

60
60
60
60

61

60
60

60

60
60
60
60
60

OWONO O H WN

ORG $6000

JMP PGM
BYTE DS 1
LINE DS 1

DEPTH DS 1
XCOUNT DS 1
GRAPHICS $C050
HIRES $C057
PAGE1 $C054
MIXOFF $C052
HIGH $1B
LOW $1A
PGM GRAPHICS
HIRES
PAGE1
LDA MIXOFF
LDA #3$00
STA LOW
LDA #3$20
STA HIGH
CLR1 LDY #$00
LDA #300
CLR STA (LOW),Y
INY
BNE CLR
INC HIGH
LDA HIGH
CMP #$40
BLT CLR1
Ahkkhkhkkkkkkkkkhkkkkx
LDA #$05
STA LINE
CLC
ADC #$05
STA DEPTH
LDA #3$04
STA BYTE
LDA #$00
STA XCOUNT
DRAW LDY BYTE
LDX LINE
LDA HI,X
STA HIGH
LDA LO,X
STA LOW
LDX XCOUNT
LDA SHAPE,X
STA (LOW),Y
INY
LDA SHAPE+1,X
STA (LOW),Y
INC XCOUNT
INC XCOUNT
INC LINE
LDA LINE
CMP DEPTH
BLT DRAW
RTS

—rr
[N N w)
> >

Drawing a Shape on the Hi-Res Screen

;CLEAR SCREEN PAGE 1

sLINE NUMBER

;ADD DEPTH OF SHAPE
;BYTE

;ZERO XCOUNT

;BYTE IN Y REGISTER
;LINE IN X REGISTER
;sGET LINE ADDRESS

;LOAD X WITH XCOUNT

;GET SHAPE BYTE

;PLOT

sNEXT BYTE

sNEXT SHAPE BYTE

;PLOT

;INC XCOUNT BY NO. OF
BYTES IN SHAPE WIDTH

JNEXT LINE

;IS SHAPE DONE?
;IF NO, CONTINUE DRAW
; IF YES, STOP

35

Hi-Res Graphics and Animation Using Assembly Language

..................................

Program 3-8 illustrates the

DRAW LDY BYTE

LDX LINE

LDA Hi,x

STA HIGH

LDA LO x
36 STA Low
LDX XCOUNT
LDA SHAPE x
STA (Low),y
INY
LDA SHAPE+1 x
STA (LOw),y
INY
LDA SHAPE+2 x
STA (Low) y
INC XxcounT
INC xcounT
INC XcounT
INC LINE
LDA LINE
CMP DEPTH
BLT DRAW
RTS

R .

We now know how to displ
shape tables and line address
move shapes around the screen

6071: 03 00 03 59 SHAPE HEX 030003007D3F01407F3F
6074; 00 7D 3F 01 40 Zﬁ 3F
LO
507 bytes
Symbol table - numerical order:
= INE =$6004
= HIGH =$1B BYTE =$6003 L =604
lﬁgyliTH =§é305 XCOUNT =$602? gSgPE =§28917 glI_Rl =§6O7B
= F DRAW =$60 - -
EBR =§2?§B GRAPHICS=$C050 MIXOFF =$C052 PAGE1 $C054
HIRES =$C057

general principles of DRAW routines for shapes

of any width. For example, here js 2 routine for a shape 3-bytes wide:

First shape byte
Plot at first screen byte

Second shape byte
Plot at second screen byte

Third shape byte
Plot at third screen byte
Increment XCOUNT by shape width

4y any shape anywhere on the hi-res screen using
tables. Following chapters will discuss how to
using animation routines.

Vertical Animation

There was a young man named Browun l
On whose brow Program 4-2 produced a frouwn,

“I understand it all right

But there’s been an oversight

What goes up is not coming down.”

37

C:)mputer animation is an illusion. Shapes do not move in a continuous, -
unbroken path but rather in fits and starts, bit by bit (literally!), or sometimes
byte by byte. The illusion is created essentially by speed, in the same way that
rapidly changing still pictures create the illusion of movement in movie films. We
touched on this before in discussing why the speed of assembly language is n
essential to animation. But speed is not the only factor. The basic cycle for any
animation routine is as follows:

Draw —» Delay — Erase —= Move to new position

|

If the new position is close to the old one and if the process is fast enough, the
illusion of continuous movement is created. The reason for the time delay is to
ensure that the shape is on the screen longer than it is off; otherwise, excessive

flicker will result.

ERASING A SHAPE

Before we get to the actual vertical animation programs, we first have to
discuss the problem of the shape erase. We could erase a shape by clearing the
entire screen with our clear screen routine but obviously this would be inap-
propriate if there are other shapes on the screen we want to retain. We could 1
also just store zeros in the general shape area, but there is an easier and neater
way. For this we have to introduce another assembly language instruction, EOR
(Exclusive-OR). EOR compares a byte, bit by bit, with a byte in the Accumula-

Hi-Res Graphics and Animation Using Assembly Languaga ..

\ tor. If either bit, but not both, is one, the result is one: otherwise, the result is
‘~\ zero. The result is stored in the Accumulator.
|
\.

Example:
Accumulator 11010011
EOR byte 01101010
Result in Accumulator 10111001

Let’s see how the EOR instruction can be used to erase a shapc. Suppose we
load the Accumulator with a shape byte from a particular screen location. Then

if we EOR the Accumulator with the same shape byte and store the result at the
same screen location, the shape will be erased.

Content of screen i
location SNNNN !

LDA $NNNN 00 1M 1 9 a v n e
0101101 (inAcc lat #$2D
EOR #$2p 00101101(umulator) |
Resuit D ——
00000000 (in Accumulator)
STA $NNNN

#300

Pretty neat, ey

only to erage
Stored

But Wwait, there’s more. We can use this same EOR routine not

e , but also to draw a shape. All that’s necessary is to have a zcro
€ screen location initially.

Content of screen
location SNNNN

LDA $NNNN
EOR #$2p 00000000 (in Accumulator) #$00
- 0010110 1
esult —_
00101101 (in Accumulator)
STA $NNNN

#$2D
This makes 1;
es | ; .
(us), because noles a bit easier for beleaguered assembly language programmers
The shape is dra W? ¢an use a single routine to both draw and erase a shape.
Wn if the screen location contains a zero, and erased if the

screen locatj .
tine will pI'Ol((i)l,[ll already contains the shape byte. Alternate calls to the EOR rou-
€€ a draw-erase cycle. To recapitulate briefly:

Ordinary draw routine LDA shape byte

STA screen location

Draw with EOR LDA screen location contents (zero)

EOR shape byte
STA same screen location

...

Erase with EOR LDA screen location contents (shape byte)
EOR same shape byte
STA same screen location

TIME DELAYS

...

We now need a routine to introduce a time delay in our programs. For this
we can take advantage of certain subroutines built into the Apple’s operating
system (for details, see the Apple Reference Manual). These subroutines perform
many functions, from ringing a bell to printing a character. The subroutine we’re
interested in is at memory location $FCA8. When $FCAS8 is accessed, a delay
results, the length of which depends on the number in the Accumulator. For
example, the following instructions:

LDA #$40
JSR $FCA8 (JSR means Jump to SubRoutine)

will produce a delay of approximately 0.01 second. The larger the number in the

Accumulator, the longer the delay. In most of our programs, we’re going to
define the label WAIT as $FCA8 and reserve a memory location for the number
to be loaded into the Accumulator; we’'ll call this DELAY. We then can load

DELAY with a number:

LDA #$40
STA DELAY

A delay is then produced by:

LDA DELAY
JSR WAIT

This comes in handy if we want the same delay in several different routines.
To see the effect of different delay times, we need change only the value in
DELAY. For programs using different delays, we would LDA with the appropriate
byte and do a JSR WAIT.

VERTICAL ANIMATION—ONE SHAPE MOVING DOWN

...

Let’s get now to our first vertical animation program. The concept of vertical
animation is relatively simple—we draw a shape, delay, erase it, and redraw it
either one line down if we're moving down or one line up if we’re moving up.
We then access the routine repeatedly to traverse the screen (we actually could
move any number of lines at a time but a one-line move produces the smoothest
results—we're going to use one-lineé MOVES for the programs in this chapter).

Vertical Animation

39

Hi-Res Graphics and Animation Using Assemb[y [_anguaye ..

Our first program (Program 4-1) will move an old friend, the person shape, from
the top of the screen to the bottom in a straight line. When it rcaches the bot-
tom, the shape will disappear only to reappear at the top for another screen
traversal. This will continue ad infinitum until the program is stoppcd with
CONTROL RESET. The program will be using EOR draw routines and also a few
things we haven't seen before, so let’s discuss some of the details.

First of all, we're going to use the JSR (Jump to SubRoutine) instruction
rather extensively. JSR is equivalent to the GOSUB instruction in BASIC. All sub-
routines called by JSR must end with RTS (ReTurn from Subroutine) in the same
way that BASIC subroutines must end with the RETURN instruction.

JSRINITIAL

: \» INITIAL

RTS

.
.
.
.
.
.

JSRINITIAL

Alt .

funl:; l;f;lt:]sc‘?g Subroutines does slow a program somewhat (it takes tiﬁmc for any
OVCrshadoweéon)’ the time lost in most programs is insigniﬁcant and is cert.zu.nly
Breater clypg b Y the' great advantage, especially for beginners, of pr()vu‘hn)gf
allows One t(:y d.ln. designing and reading the program. The use of subrmftmcs
and SUBROUTIMGIe 2 program conveniently in two parts—the MAIN PROGRAM
Program’s o a NES.' The MAIN PROGRAM gives us an overall view of the
e pngramg m,zatlon’ whereas the SUBROUTINES supply most of the details. In
PROGRAM anzlve © ?bout to discuss, for example, one can look at the MAIN

. Prograp, 4_1t ake in, almost at a glance, what’s going on. . _

Lon, #84q is ch Starts with the usual display and clear screen routines. In addi-

MAIN PROGRn 1 @8 the DELAY byte (lines 37 to 38). Let's now look at the
1N some detail,

START
JSR L .
INITIAL call to the INITIAL subroutine sets the initial byte
! Position, line number, and depth of the shape.
START1 ygg
DR
AW The shape is drawn with an EOR routine.
| LDA DELAY
JSR w _
AlT A time delay is introduced.
LDA LINEA
STA LINE

Because the shape is drawn line-by-line starting from
the top and working down, to erase the shape using the
same EOR-draw routine, the starting line number for
the erase has to be reset to its original value; e.g.,

...

LINEA is used as a repository for the original line number—unlike LINE, it is not
changed by the DRAW subroutine.

JSR DRAW This call to the DRAW subroutine now erases the shape since the
screen locations already contain the shape bytes.

INC DEPTH

INC LINEA

LDA LINEA

STA LINE Because we're moving the shape down, we want the top of the
shape to begin at a new line, one down from the previous position.
To move down a line, we increment, as lines are counted O to 191,
top to bottom. The new line number is stored in LINE and also in
LINEA so that it can be recalled for the erase routine. Note that we
do not do an INC LINE because LINE has been altered by the
DRAW subroutine. DEPTH is also incremented so that the DRAW

routine will draw the entire shape.

CMP #$BB This compares the new line number in the Accumulator to the
value #8BB to see if the shape has reached the bottom of the
screen. If it has, we want to erase the last drawn shape and start
over from the beginning, or at least do something other than
allowing the shape to go beyond the screen border. If this
happens, the shape may appear in unexpected locations and you
will lose control of your program (you could always pull the plug
at this point to show who’s boss, but let'’s be more elegant). To
see why we selected #$BB as the comparison byte, we should look
at how the shape is drawn as it approaches south of the border.

Vertical Animation

41

Hi.nas Gmphlcs and Animation Usiﬂg Assemb[y Languaga ..

LINE NUMBER

Decimal Hex
185 #3589 ® [N l
186 #$BA Y Y o |
187 #$BB ® 000 O oO0O0OGO ®
188 #$BC Y ®© o000 o oecocoo
189 #$BD ® O (N N ® L N N :
190 #SBE o o ® O ._; @ “
191 (bottom) #$BF ® ® ® o

The value we want to use in this comparison is the top or starting line of the
shape (it doesn’t have to be; it’s just that we’'re drawing the shape from top to
bottom). Thus, the last shape we want to draw (and erase) starts at line 186
(#3BA). If we start a shape at line 187 (#$BB), part of it will be off the screen.
BGE START
JMP START1

42 BGE (Branch if Greater or Equal) can be used by some
] assemblers in place of the normal BCS (Branch if Carry Set).

Together with the CMP #$BB instruction, it says that if the
number in the Accumulator (the new line number) is greater
than or equal to #$BB, branch back to START to begin animation
from the initial parameters, ie., the top of the screen. This
branch will be taken when the line number reaches #$BB. If the
line number is less than #$BB, the branch will not be taken and

the JMP instruction sends the program back to continue drawing
from the last line number.

The rul
e
the SCreep iso i thumb when using these instructions to test for the bottom of
| really o tTACt the shape depth from 193 (193 — 6 = 187 = #8BB). It
righe), At complicated once you understand the principles involved
Finall n

us, We};reottlztdlmt the last JSR DRAW before this comparison is a shape erase.
top of the SCreen eft with a shape on the screen when we start again from the

The INIT i
I ere me T :ﬁ:iﬁzg?liFlne in this program is essentially self-explanatory. It is
| o e set 4 ¢ ini ine number (0 for top of screen) and the screen byte
/ positio N #8310 (decimal 16) just to get the shape away from the

-T.'he DRAW Subroutipe sh
position, X with the line num
and XCOUNT for ac
both drawing and er

ould be familiar to you. We load Y with the byte
ber, use the HI and LO tables to get line addresses,

a(:_TSSing the shape table. We then use an EOR routine for
ing.

——

LDA (LOW
j ()Y Load the Accumulator with the byte at the screen position
determined by X and Y.

... Vertical Animation

LDA (LOW)Y — LOCATION CONTENTS ACCUMULATOR
LOW g#$nn
HIGH HINN |

| !

Byte at location #$NNnn + Y

EOR SHAPE,X EOR the Accumulator with a byte from the shape table (X is
loaded from XCOUNT).

STA (LOW),Y Store the result at the same screen position.

STA (LOW)Y —— LOCATION CONTENTS ACCUMULATOR
LOW #Snn
HIGH HENN

H#ENNNNn + Y 9

Because the screen initially is clear, when first accessed these instructions will
draw. When accessed next, they will erase.

DISPLAY SCREEN, HI-RES
PAGE 1

'

CLEAR SCREEN

Y

SET INITIAL LINE NUMBER, ————
BYTE POSITION AND DEPTH

Y

» DRAW

v

DELAY

¥

RESET LINE

Y

ERASE

¥

NEXT LINE DOWN

Y

No Yes
BOTTOM OF SCREEN?

44

Hi-Res Graphics and Animation Using Assembly Language

JPROGRAM 4-1

:ASM

6000: 4C 09 60

6009:
600C:
600F :
6012:
6015:
6017:
6019:
601B:
601D:
601F -
6021:
6023:
6024 .
6026
6028
602A -
602C.
602E .
6030:

605B :
} 605D:
6060:
6062:

6033.
6036:
6039,
603C .
603F .
6042.
6045
6048:
6048
604E :
6051
6054
6056;
6058:

OCO~NOOPH WN -

..............................

*ONE SHAPE VERTICAL MOVING DOWN

hhkhkkhkkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkkkkhkk

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP

dhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkkkhkhkkkkkkk

ORG $6000
JMP PGM
XCOUNT DS 1
BYTE DS 1
LINE DS 1
LINFA DS 1
DEPTH DS 1
DELAY DS 1
GRAPHICS = $C050
MIXOFF = $C052
HIRES = $C057
PAGE1 = $C054
WAIT = $FCA8
PGM LDA GRAPHICS ;HIRES,P.1
LDA MIXOFF
LDA HIRES
LDA PAGE1
LDA #300 :CLEAR SCREEN 1
STA LOW
LDA #$20
STA HIGH
CLR1 LDY #$00
LDA #$00
CLR STA (LOW),Y
INY
BNE CLR
INC HIGH
LDA HIGH
CMP #$40
T CLR1
EBA #%$40 :LOAD TIME DELAY
STA DELAY
% Je gk kd ok kkk MAIN PROGRAM ********** & DEPTH
START ~ JSR INITIAL ;SETUPSaZgE,LINE
START1 JSR DRAW ;DRﬁXY
LDA DELAY ;DE
JSR WAIT
:RESET LINE TO
E?ﬁ t%:EA ORIGINAL LINE
JSR DRAW :ERASE SHAPE
INC DEPTH :NEXT DEPTH
INC LINEA & NEXT LINE
LDA LINEA
S OF SCREEN?
1S LINE AT BOTTOM
BGE g%iﬁT IF YES, DRAW FROM I:éTIAL VALUES
JMP START1 :IF NO, DRAW NEXT LI
*hkmkackknx SUBROUT INES *#kwkakxsx
INITIAL
g?ﬁ gi%g .SET STARTING BYTE
D 00
ETQ i?NE .SET STARTING LINE

...

083E5D1C1422 ;SHAPE TABLE

6065: 8D 06 60 59 STA LINEA
6068: 18 60 CLC
6069: 69 06 61 ADC #3%06
606B: 8D 07 60 62 STA DEPTH
606E: 60 63 RTS
606F: A9 00 64 DRAW LDA #$00
6071: 8D 03 60 65 STA XCOUNT
6074: AC 04 60 66 DRAWI1 LDY BYTE
6077: AE 05 60 67 LDX LINE
607A: BD A3 60 68 LDA HI,X
607D: 85 1B 69 STA HIGH
607F: BD 63 61 70 LDA LO,X
6082: 85 1A 71 STA LOW
6084: AE 03 60 72 LDX XCOUNT
6087: Bl 1A 73 LDA (LOW),Y
6089: 5D 9D 60 74 EOR SHAPE,X
608C: 91 1A 75 STA (LOW),Y
608E: EE 03 60 76 INC XCOUNT
6091: EE 05 60 77 INC LINE
6094: AD 05 60 78 LDA LINE
6097: CD 07 60 79 CMP DEPTH
609A: 90 D8 80 BLT DRAW1
609C: 60 81 RTS
609D: 08 3E 5D 82 SHAPE HEX
60A0: 1C 14 22
Hi
LO

547 bytes
Symbol table - numerical order:

LOW =$1A HIGH =$1B

LINE =$6005 LINEA =$6006

PGM =$6009 CLR1 =$601D

START1 =$6036 INITIAL =$605B

SHAPE =$609D HI =$60A3

MIXOFF =$C052 PAGE1 =$C054

ONE SHAPE MOVING UP

ooo

Suppose now we want to move a shape up, from the bottom to the top of
the screen (see Program 4-2). There are very few changes that have to be made.
First, in the INITIAL subroutine, we set the starting line to #3BA (186). The
shape is 6 lines deep, so the first shape will be drawn from lines 186 to 191, just
at the bottom border. Second, in the MAIN PROGRAM, we decrement (DEC)
LINE and DEPTH instead of increment, because going up means lower line
numbers. Then, to test for the top border, we check if LINE has reached zero:

LDA LINEA
STA LINE
BEQ START
JMP START1

A CMP #8300 is not needed here because BEQ executes a branch if the result of a
previous operation was zero. Thus, when LINE equals zero, the branch is taken

Vertical Animation

;ADD DEPTH OF SHAPE TO LINE

;ZERO XCOUNT

;LOAD BYTE

;LOAD LINE

;:LOAD LINE ADDRESS INTO HIGH,LOW

;LOAD X WITH XCOUNT

;GET BYTE FROM SCREEN

;EOR BYTE FROM SHAPE ADDRESS+X
;PLOT BYTE

sNEXT LINE
;FINISH SHAPE?

;IF NO, DRAW NEXT LINE
;IF YES, NEXT DRAW CYCLE

XCOUNT =$6003 BYTE =$6004
DEPTH =$6007 DELAY =$6008
CLR =$6021 START =$6033
DRAW =$606F DRAW1 =$6074
LO =$6163 GRAPHICS=$C050
HIRES =$C057 WAIT =$FCA8

46

Hi-Res Graphics and Animation Using Assembly Language

———
N
e e

................................

and the shape begins another journey from the screen bottom. These instruc-

tions actually stop (and erase) the shape at line 1. This is of little import in our

programs, as a one-line difference at a screen border is hardly noticeable.

Finally, the shape has been changed (easy to do just by changing bytes in the
shape table) from a person to a sort of spaceship, as it’s a bit disquicting to sce i
person rising without any visible means of support.

DISPLAY SCREEN, HI-RES
PAGE 1

Y

CLEAR SCREEN

'

SET INITIAL LINE NUMBER,
BYTE POSITION AND DEPTH

{

—» DRAW

; ;

DELAY

Y

RESET LINE

’—EL?
—

NEXT LINE UP

6000: 4C 09 60

Y

—— Mo,

Yes
TOP OF SCREEN?

]pROGRAM
:ASM 4-2

OCOo~NOPwnN -

—
— O

——
L wnN

*ONE SHAPE VERTICAL MOVING UP

% e e J K dede d e dede de K K de e de Kk K ke K Kok g kkek

*SHAPE IS 1 BYTE WIDE BY 6 BYTES DEEP

& Je Je K e e d K e K K K ke de dode e de e ek keoke ok

ORG $6000

JMP PGM
XCOUNT DS 1
BYTE DS 1
LINE DS 1
LINEA DS 1
DEPTH DS 1
DELAY DS 1
GRAPHICS = $C050
MIXOFF = $C052
HIRES = $C057

... Vertical Animation

16 PAGE1 = $C054
17 HIGH = $18
18 LOW = $1A
19 WAIT = $FCA8
6009: AD 50 CO 20 PGM LDA GRAPHICS JHIRES,P.1
600C: AD 52 CO 21 LDA MIXOFF
600F: AD 57 CO 22 LDA HIRES
6012: AD 54 CO 23 LDA PAGEl
6015: A9 00 24 LDA #3500 ;CLEAR SCREEN 1
6017: 85 1A 25 STA LOW
6019: A9 20 26 LDA #3%20
601B: 85 1B 27 STA HIGH
601D: A0 00 28 CLR1 LDY #300
601F: A9 00 29 LDA #3500
6021: 91 1A 30 CLR STA (LOW),Y
6023: C8 31 INY
6024: DO FB 32 BNE CLR
6026: E6 18 33 INC HIGH
6028: A5 1B 34 LDA HIGH
602A: C9 40 35 CMP #$40
602C: 90 EF 36 BLT CLR1
602E: A9 40 37 LDA #3%40 ;LOAD TIME DELAY
6030: 8D 08 60 38 STA DELAY

39 xxkkxkkkax MAIN PROGRAM ***xiikkkx
6033: 20 59 60 40 START JSR INITIAL ;SETUP BYTE,LINE & DEPTH

6036+ 20 6D 60 41 STARTL JSR DRAW :DRAW SHAPE
6039: AD 08 60 42 LDA DELAY ;DELAY o
603C: 20 A8 FC 43 SR WAIT
603F: AD 06 60 44 LDA LINEA ;RESET LINE TO |
6042: 8D 05 60 45 STA LINE ORIGINAL LINE
6045: 20 6D 60 46 JSR DRAW ;ERASE SHAPE
6048: CE 07 60 47 DEC DEPTH sNEXT DEPTH
604B: CE 06 60 48 DEC LINEA & NEXT LINE
604E: AD 06 60 49 LDA LINEA
6051+ 8D 05 60 50 STA LINE ;IS LINE AT TOP OF SCREEN?
6054: FO DD 51 BEQ START .IF YES, DRAW FROM INITIAL VALUES
6056: 4C 36 60 52 JMP STARTL ;IF NO, DRAW NEXT LINE
53 *hkkkhkkkkkk SUBROUTINES *khkkkkkkkk
6059: A9 10 54 INITIAL LDA #$10
6058: 8D 04 60 55 STA BYTE ;SET STARTING BYTE
605E: A9 BA 56 LDA #$BA
6060: 8D 05 60 57 STA LINE ;SET STARTING LINE
6063: 80 06 60 58 STA LINEA
6066: 18 59 cLC
6067: 69 06 60 ADC #306 ;ADD DEPTH OF SHAPE TO LINE
6069: 8D 07 60 61 STA DEPTH
606C: 60 62 RTS
606D: A9 00 63 DRAW LDA #3500
606F : 8D 03 60 64 STA XCOUNT ;ZERO XCOUNT
6072: AC 04 60 65 DRAWL LDY BYTE ;LOAD BYTE
6075: AE 05 60 66 LDX LINE :LOAD LINE
6078: BD Al 60 67 LDA HI,X ;LOAD LINE ADDRESS INTO HIGH,LOW
6078: 85 1B 68 STA HIGH
607D: BD 61 61 69 LDA LO,X
6080: 85 1A 70 STA LOW
6082: AE 03 60 71 LDX XCOUNT ~ ;LOAD X WITH XCOUNT

6085: Bl 1A 72 LDA (LOW),Y ;GET BYTE FROM SCREEN

Hi-Res Graphics and Animation Using Assembly Language

..

6087: 5D 9B 60 73 EOR SHAPE,X ;EOR BYTE FROM SHAPE ADDRESS+X
608A: 91 1A 74 STA (LOW),Y ;PLOT BYTE

608C: EE 03 60 75 INC XCOUNT

608F: EE 05 60 76 INC LINE ;NEXT LINE

6092: AD 05 60 77 LDA LINE

6095: CD 07 60 78 CMP DEPTH ;FINISH SHAPE?

6098: 90 D8 79 BLT DRAW1 ; IF NO, DRAW NEXT LINE

609A: 60 80 RTS ;IF YES, NEXT DRAW CYCLE

6098: 08 1C 22 81 SHAPE HEX 081C223E227F ;SHAPE TABLE
609E: 3E 22 T7F

Hi

|
545 bytes

Symbol table - numerical order:

LO¥ =$1A HIGH =$18 XCOUNT =$6003 BYTE =$6004
EéﬂE f$6005 LINEA =3$6006 DEPTH =$%$6007 DELAY =%$6008
START] =$6009 CLR1 =$601D CLR =$6021 START =$6033
SHADL =$6036 INITIAL =$6059 DRAW =$606D DRAW1 =$6072
MIXOF :$6093 HI =$60A1 LO =$6161 GRAPHICS=$C050
F=3C052 PAGE1 =3%C054 HIRES =$C057 WAIT =$FCA8
DRAW-DRAW ROUTINES

oo

EORW;Sth;uSCCteig, o th’e previous two programs, how to erase a shape usiqg the
another way ton' Let’s call this type of routine DRAW-ERASE. There is yet
advantages 2 Wel;ase a% shape and that is by drawing over it, a process that has
The salient poi e as dfsadvantages. We'll call this type of routine. DRAW -I)RAW.
any) alre, dy nt here is that when a byte is sent to a screen position, the byte (if

Present at that position is replaced by the new byte.

Ekanqﬂe

...

g?A #$23 #317
Let’S ada
pt th
the scree €D

n (see Pro RAW-DRAW routine to Program 4-1, moving a shape down
shape byte, STA Scrcgram 4'3') The shape is drawn with an ordinary draw (LDA
down one line 2t a tjfr:: loc_atlon) instead of the EOR routine. The shape is moved
down two lines. ¢ without any erase routine. Let’s follow the shape moving

...

------ Vertical Animation

LINE NEXT LINE DOWN | NEXT LINE DOWN
0 o o @
1 00000 o ®
2 o 000 O o0O0OCGO @
3 000 ® 000 O o0O0O0CGOC
4 ® ©o 000 ® 000 O
5 o o ® © 00
6 o ® ® O
7 @ @

As you can see, each shape byte, as it moves down one line, erases the byte
that was there before, thus preserving the shape. As you can also see, something’s
not quite right. We're always left with the top byte on the screen, because
nothing moves into those positions. We solve this problem by providing the
shape with a border of #$00 at the top. Now see what happens.

LINE NEXT LINE DOWN | NEXT LINE DOWN
0 #$00

1 @ #$00

2 00000 ® #300

3 ® 000 O o00O06OC o

4 00 O 000 © OoO0O0OCGO

5 ® O | X N J ® 000 ©
6 o o ® © | N N J

7 @ ® ® O

8 ® L J

The border is always placed behind the direction of movement and serves to
erase the first line of the shape. To introduce the border into the person shape,
we add #800 at the beginning of the shape table. Thus, the person-shape table
with a trailing border is 00083E5D1C1422 (compare to Program 4-1). We must
also remember to change the shape depth from 6 to 7 in the INITIAL subroutine.
A general rule is that the border size has to equal the maximum shape move.
Thus, if we’re moving a shape two lines at a time, the trailing border would be
two #300’s.

There is one further complication we have to deal with in programs that use
DRAW-DRAW routines. For example, in the program we're discussing, when the
shape reaches the bottom of the screen, it will stop and then appear again from

49

50

Hi-Res Emphics and Animation Using Assemb[y [_anguage ..

e

the top. Then, because we have no erase instructions, the shape at the bottom
stays on the screen. We have to introduce an erase routine to erase the last shape
when it reaches a border. For this, we can use our usual EOR instructions in a
routine called ERASE. Thus, in the MAIN PROGRAM of Program 4-3,

CMP #$BA #8$BA is used instead of #$BB as in Program 4-1 because this shape
is 7 lines deep due to the border (193 — 7 = 186 = #$BA).

BGE ERASE

JMP START1 Now the comparison tells us if the shape is at the screen bottom,
go to the ERASE routine, which erases the shape and then sends
the program back to START to continue the animation from the
initial parameters, i.e., top of the screen.

DISPLAY SCREEN, HI-RES
PAGE 1

Y

CLEAR SCREEN

Y

SET INITIAL LINE NUMBER,
BYTE POSITION AND DEPTH

'

DRAW

Y

DELAY

Y

NEXT LINE DOWN

v

No
BOTTOM OF SCREEN?
* Yes
ERASE
JPROGRAM 4-3
:ASM
1 *ONE SHAPE VERTICAL MOVING DOWN; DRAW-DRAW CYCLE
2 hhkkkhkkkkhkhkkkkkhkkkkkkkkkkkkkikkk
3 *SHAPE IS 1 BYTE WIDE BY 7 BYTES DEEP
4 Akkhkkkkkkkkkkkkkkkkkhkkkkkkhkkkk
5 ORG $6000
6000: 4C 09 60 6 JMP PGM
7 XCOUNT DS 1
8 BYTE DS 1
9 LINE DS 1
10 LINEA DS 1
11 DEPTH DS 1
12 DELAY DS 1
13 GRAPHICS = $C050
14 MIXOFF = $C052
15 HIRES = $C057
16 PAGE1 = $C054

... Verﬁcal A”ima"an

6009:
600C:
600F :
6012:
6015:
6017:
6019:
6018:
601D:
601F:
6021:
6023:
6024:
6026:
6028:
602A:
602C:
602t :
6030:

6033:
6036:
6039:
603C:
603F:
6042:
6045:
6048:
604B:
604D:
604F :

6052:
6054:
6057:
6059:
605C:
605F :
6060:
6062:
6065:
6066:
6068:
6068B:
606E :
6071:
6074:
6076:
6079:
607B:
607E:
6081:
6083:
6086:
6089:
608C:
608F :
6091:

Cco

Co
o

60

60
60
FC
60
60

60

60

60
60
60

60

60

60
60

61

60
60

60
60
60
60

HIGH
LOW
WAIT
PGM

CLR1

CLR

xkxkxxxxxx MAIN PROGRAM **

START
START1

JMP
AkkrhAKKKK SUBROUTINE

-
oo
> >

LDA
LDA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
BNE
INC
LDA
CMP
BLT
LDA
STA

JSR
JSR
LDA
JSR
INC
INC
LDA
STA
CMP
BGE

INITIAL LDA

DRAW

DRAW1

STA
LDA
STA
STA
cLC
ADC
STA
RTS
LDA
STA
LDY
LDX
LDA
STA
LDA
STA
LDX
LDA
STA
INC
INC
LDA
CMP
BLT
RTS

$18

$1A

$FCA8

GRAPHICS ;HIRES,P.1
MIXOFF

HIRES

PAGE1

#3$00 ;CLEAR

LOW SCREEN 1
#%20

HIGH

#%00

#3$00

(LOW), Y

CLR
HIGH
HIGH
#$40

CLR1
#$40 :LOAD TIME DELAY

DELAY

T i

INITIAL SETUP BYTE,LINE & DEPTH
DRAW DRAW SHAPE

DELAY DELAY

WAIT
DEPTH sNEXT DEPTH

L INEA & NEXT LINE
LINEA

LINE
;1S LINE AT BOTTOM OF SCREEN?

#$BA
ERASE IF YES, ERASE SHAPE, START OVER

START1 IF NO, DRAW NEXT LINE

S **********

#$10

BYTE ;SET STARTING BYTE
#$00

LINE

LINEA

#$07
DEPTH

;SET STARTING LINE

:ADD DEPTH OF SHAPE TO LINE

#$00
XCOUNT ;ZERO XCOUNT

BYTE :LOAD BYTE

NE ;LOAD L INE

hi X :LOAD L LINE ADDRESS INTO HIGH,LOW
HIGH

LO, X

LOW
XCOUNT :LOAD X WITH XCOUNT
;LOAD SHAPE BYTE

SHAPE , X
(LOW),Y 3PLOT BYTE

XCOUNT

LINE :NEXT LINE

LINE

DEPTH :FINISH SHAPE?

DRAW1 :IF NO, DRAW NEXT LINE
JIF YES NEXT DRAW CYCLE

51

Hi-Res Graphics and Animation Using Assembly Language

6092: CE 05 60 78 ERASE DEC LINE
6095: A9 Q0

79 LDA #%00 :ZERO XCOUNT
: 6097: 38D 03 60 80 STA XC?gNT
E 609A: AC 04 60 81 ERASE1 LDY BY
609D: AE 05 60

. LDX LINi
' 60A0: BD CC 60 83 LDA HI,
\ 60A3: 85 18 84 STA HIGQ
3 60A5: BD 8C 61 85 LDA LO,

60A8: 85 1A 86 STA LOW
\ 60AA: AE 03 60 87 LDX XCOUNT

60AD: B1 1A 88 LDA (LOM),Y

60AF: SD C5 60 89 EOR SHAPE, X

60B2: 91 1A 90 STA (LOW),Y -ERASE

60B4: EE 03 60 9] INC XCOUNT |

60B7: EE 05 60 97 INC LINE .

60BA: AD 05 60 93 LDA LINE |

60BD: CD 07 60 9a CMP DEPTH

60C0: 90 D8 95 BLT ERASE1

60C2: 4C 33 69 og JMP START

60C5: 00 08 3 97 suapE HEX 00083E5D1C1422 ;SHAPE TABLE

60C8: 5D 1C 14 22

HI
LO
588 bytes

Symbo1 table - numerical order

LOu =$1A HIGH =$18 XCOUNT =$6003 BYTE =$6004
EINE =$6005 LINEA =$6006 DEPTH =$6007 DELAY =$6008
oM =$6009 CLR1 =$601D CLR =$6021 START =$6033
EEQRTl =3$6036 INITIAL =$6052 DRAW =$6066 DRAW1 i$60gg
LO E =360 ERASEL =$609A SHAPE =$60C5 HI :$8854
HIRps - 9618C GRAPHICS=$C050 MIXOFF =$C052 PAGE1 =%
S =3c0s57 WAIT =$FCA8
W .
and d.e Ctioneq before that DRAW-DRAW routines have certain advantages
1sadvantages. As th
DRAW mo

€re is no erase cycle as such, shapes animated by DRAW-
o Ve faster ang with
ﬂleer” is

2 Subicc.s €ssentially no flicker. (It should be pointed out that

Characteristi “bjective term and depends to some extent on the image retention

ize flick €S of the monitor or TV you're using—long retention times rminim-
Cker, Whereag short tj

among diffe

Mes emphasize it, and retention times vary greatly

requires tw;ent brands of display screens.) On the other hand, DRAW-DRAW

) cour rO}ltlnes, one to draw and one to erase the last shape (unless, of
S€, a shape is ¢4 Stay on the scre

/ DRAW.DRA

en). Also, collision detection is difficult with
Toutines (but on| with horizontally movin shapes as we’ll see in
Chapter 7), y y g shap

In addition, the speed advant
grams, is more th

age of DRAW-DRAW, at least in simple pro-

coretical than practical. If you compare Programs 4-1 and 4-3,
you'll see that the shape traverses the screen at about the same speed in both
cases. This js because the determining factor is the time delay, which is #$40 in
both programs. sq Wwhile the speed of DRAW-DRAW is greater than DRAW-
ERASE, the speed differential is much less than the time delay. The speed advan-
tage of DRAW-DRAW becomes important only in programs with larger and m().rc
complicated shapes where drawing and erasing the shape takes up an apprecia-
ble amount of time. 1t should also be noted that a time delay in DRAW-DRAW

.. feeececncacasscscscscrcsnsesesessnaansneasssssnansess Vertical Animation

routines is not necessary to reduce flicker by ensuring that the shape is on the
screen longer than it is off because the shape is not erased. However, delays are
still generally required to slow a program down to a reasonable pace.

One further drawback of DRAW-DRAW is that it is inappropriate for drawing
over backgrounds—this will be discussed in more detail in Chapter 14.

The decision whether to use DRAW-DRAW or DRAW-ERASE routines
depends on the particular requirements of the program. If the shape is not
involved in collision detection, if you're not drawing over a background, and if
more speed and the absence of flicker are desirable, use DRAW-DRAW. If speed
and flicker are not problems and collision detection (for shapes moving horizon-
tally) is required, use DRAW-ERASE. The final game program uses DRAW-ERASE
routines, mostly because it makes the program easier to write and read, requir-
ing only one draw routine, and speed and flicker are not problems. This should
not be construed in any way as relegating I)RA\X’-I)MW r_outincs to second-class
status. They are quite useful for smooth and r'txpid animation and sh9uld b_c kept
in mind for your own programs. and indeed .tor the game program 1tselfi in fact
the reader may find it a useful and instructwe.cxcrs‘lsc_ to modd).’ plarts o‘fhthe
final program to DRAW-DRAW. With this in mind, I've included, “? ;}tfr C a}:l
ters, some routines in both DRAW-ERASE and DRAW-DRAW modes. There w1

be more on program modifications in the last chapter.

53

Moving a shape horizontal
Can cause problems periodontal
The frustrations underneath
Lead to gnashing of teeth
Side to side and back to frontal.

Horizontal Movement and
Internal Animation

_M)ving a shape horizontally across the hi-res screen involves the same
basic animation principles as vertical movement, i.e., DRAW-DELAY-ERASE-
MOVE-DRAW, but a certain complication arises that will become immediately
apparent upon examining the following diagram.

Screen Byte
1 2
1 2 4 81 2 4|11 2 4 8 2 4| Shape Byte

Pot [@f [[| [| [T T T [[] #so1
Nextplot [J@ [[[T [T T T [[[] #s02
Nextplot | | [e] [[[T [[[[[[| #s04
Nextplot [T T Je[T T T T T T T T [] #s08
Nextpot [T [| J@[[I [[[[T [] #$10
Nextplot [T T T [J@f I [[[J [[] #s20
Nextpot [[[[[[[@f T T [[[[] #840
Nextscreenbyte [[[[T [[JTel [T T T T] #s01
Nextpiot [T | T [[[[Je[] [[[T 1] #so02

etc.

..

Horizontal Movement and Internal Animation

Here the shape is a single dot, moving left to right one bit position at a time
(we can move the shape any number of bits at a time, but a one-bit move pro-
duces the smoothest animation). Obviously what’s happening is that every time
we move the shape over one bit, the shape byte changes. After moving seven bit
positions (one screen byte), the same series of shape bytes is plotted, but now in
the next screen byte. Thus, for each shape to be moved horizontally, we need
seven different shape bytes (or shape tables in the case of larger shapes). Shapes
plotted in this manner are called preshifted shapes. Note that movement results
from plotting the different shape bytes and not by changing screen byte positions
(except at the screen byte boundaries).

Actually, the example just shown is a special case (one dot at the leftmost
position). Let's look at a more general example.

Screen Byte

1 2 3
1 2 4812 4(1 2 4812 4|1 2 4 8
Pot (@@ [[I

1 2 4 | Shape Table
[T T 1T 103 oo

|
Nextplot [JeJe] [[|

1 I
[T T T T T T T T T T T T 106 00
Nextplot [J@J®] | [T [T T [T T [T T T [[[]oc
Nextplot [T | J@lel [[T T T T T T { [[1T L [T 1*®
Nextplot T [T Jel®l T T T T T T T T T [[T [[13 o
Nextplot [T | | Jelel T [[[I T T [[[[T [160 00
Nextplot [T [[[| Jelel [[[[[T [[[T [T T 140 O
Nextscreenbyte [T 1 1 1 1 [Iel®l I [[[T [[T T [[103
Nextplot T T T [[L [1el®e [[[[[[[T [1]06 00
Nextplot [T T [[L L L T Telel I [T T [[[[[[]oc 00
Nextplot [T T [[T L L [Jelel I I [[[[[[11 00
Nextplot T T [[T L 1T T T T Jelel T T [T T T [130 00
Nextplot T [T [T T T T T T T | Jelel T T T T T [160 00
Nextplot T T [[T T T [T T T [Jelel [[[T [140 O

Here we’re moving a two-dot shape left to right one bit position at a time.
Again, seven different shape tables are required. We also see that the seventh
shape is partly in one screen byte and partly in the next. Therefore, in construct-
ing our shape tables, we have to include an extra screen byte in the direction of
movement (for one-bit moves). Thus, for a shape one screen byte wide or less,
as in the above example, the shape table will cover two screen bytes, and a two
screen byte wide shape will require a shape table covering three screen bytes,

and so on. This is a general rule, applicable in all cases except the special case of
the one-dot shape in the first example.

B

Hi-Res Graphics and Animation Using ASSEMbBIY LANGUAGE - - - - -« -« wnnenenennene ettt

To summarize, horizontal movement for one-bit moves requires:

1. Seven shape tables for each shape.

2. Shape tables with an extra screen byte in the direction of movement.

Obviously a higher level of complication has been introduced compared to
vertical animation, but that’s the way it is. There's no way to get around it unless
we want to move a shape just one screen byte at a time. In some cases this may
be satisfactory, but usually the large distances involved produce an unacceptably
jumpy animation.

Let's now look at some actual shape tables we’re going to use in our game
\ program. The following diagrams illustrate the seven shape tables for a two-

‘\ Shape Number|{1 2 4 8 1 2 41 2 4 8 1 2 4|1 2 4 8 1 2 4l$rhiape Tables
1 D) ~ 102 00 00
D 06 00 00
0 D00 ® °® 7E 1F 00
oo o/o/e/o|jo o]0 ® @ 7E 37 00
ole|e D) e 7E 7F 00
0 1 04 00 o0 i
1 N0 0C 00 00 |
e/o|e N o 7C 3F 00 ‘
o ojo/o/o|oo[0(e o @ 7C 6F 00
olele ® ol|e 7C 7F 01
D) 08 00 00
ol® 18 00 00
2 oo ooje|0o0oe|e®) 78 7F 00
ololo/ofeo 000 e@ oleo 78 5F 01
o o/ojejojo|eo0o]e olo(e@ 78 7F 03
0 10 00 00
olo® 30 00 00
3 D0 e ® 70 7F 01
olo/ojoo0oje @@ o @ 70 3F 03
| o ele ® oo|e@ 70 7F 07
? ® 20 00 00
:’ 0 60 00 00
| 4 ol @ © ®® @ 60 7F 03
" ojejeo/o/0o/®0/0/®|0® ole 60 7F 06
| D0 ° e 00 60 7F OF
| ® 40 00 00
eole 40 01 00
5 olofe) ® ® 40 7F 07
oloe oo e 000 ol @ 40 7F 0D
ole|e @ ® 00 40 7F 1F
® 100 01 00
0 00 03 00
6 ®|® e @ ® ® 00 7F OF
e o o o e oo|le|e ol e loo 7F 1B
ele) ® eo|e 00 7F 3F

.. Hariza”tal Moyement and In'ernal Anima[ign

screen-byte-wide airplane that’s going to move horizontally across the screen,
left to right, one bit position at a time (the tables are labelled O to 6 instead of 1
to 7, because they will be referred to by these numbers in the program to facili-
tate routines that access them).

The trick to incorporating these shapes into a program is to direct each of
the seven shapes to its proper location. The following program (5-1) illustrates
one approach to this problem. The program moves the plane shape across the
screen from left to right. When the shape reaches the right border, it disappears
and then reappears at the left border for another screen journey ad infinitum.
Thus, we're also going to discuss in this program tests for the vertical ends of
screens. Pay attention to Program 5-1 because we’re going to use its routines in
our final game program.

TEMP AND SHAPE ADDRE.S‘:S TABLES
rive for is to minimize the number of

s as much as possible. This produces a more compact program,

casier to write and understand. Program 5-1 has only a single draw r.outmetf.or all
seven preshifted shapes, and both draws and erases using the EOR instruction.

One way to use a single draw routine accessing seven diﬂ‘erent,lslhaplf ;*a;\lf;
is to store the shape bytes temporarily in an area of memory wF cat e
(aren’t we clever with our labels), and use TEMP instead of the shappe a‘th 0
the draw routine. To draw any of the seven shapes, we load TEM :;1 sine
appropriate shape bytes and access the draw routine. Another advant(zilgbecauSe 8
TEMP is that for the shape erase, TEMP doesn’t have to be reloade
already contains the appropriate shape bytes, i.€.,

SHAPE 1 IN TEMP \
DRAW

where in
To load the shape bytes into TEMP, the program has to know

i .truct a shape address
memory the shape tables are located. To do this, we)C_O’?';:;utable il store the

table and let’s label it SHPADR (more clever labelling bles. For example, in
beginning memory locations of each of the seven shape ta5 sﬁAPEZ "t $6104,
Program 5-1, the SHAPE! table begins at location $60F', o

SHAPE3 at $6113, and so on. The SHPADR table will look like this:

A programming technique I generally st
drawing routine

SHAPE 2 IN TEMP

SHPADR F5 (SHAPE1)
60
04 (SHAPEZ2)
61
13 (SHAPES3)
61
etc.

ysv each address of the 7 shape

Shape address tables contain 14 bytes, 2 fc 4
stored low byte first). Now we

tables (note that the shape table addresses are

57

Hi-Res Graphics and Animation Using Assembly Language

can access each shape table by referring only to SHPA'DR—[}‘l::r’\;;ik)z;::lt)(}){ U:u‘;
single routine for loading all the shape tab‘lcs mtol TE! ; ;‘,}ri\pAll)R_u, ;\-i“
SHPADR+1 will give us the address of SHAPEL, SHPAI))R-rZ and ¢ PADR w3 vill
i the address of SHAPE2, SHPADR+4 and SHIéI)R-i—S will give us L
iivcfreiss of SHAPE3, and so on. More specifics about this technique will be dis-
cussed below: e have to discuss how the SHPADR table is constructed. This
dep:r(l)(;sn(?:/t:; type of assembler you're using. Full-feature assemblers support
instructions that allow the assembler to construct a shape address table ‘dlrcctly
from within the program. This is illustrated in Program 5-1. Look at the SHPADR
table starting at line 22. The instruction DFB #<§HAPE1 loads the l(‘)v’v‘ byte (')f
the SHAPE1 table; DFB #>SHAPE1 loads the high byte (the DOS Tool Kit
assembler does this backwards — #> for the low byte and #< for the high byte —
the ORCA/M assembler uses the instruction DC A ‘shape table’—a good reason
to read your assembler’s instructions!). The entire SHPADR table is constructed
by the assembler using these DFB instructions for all seven shape tables. If your
assembler doesn’t have this capability, you have a problem, but one that is not
insurmountable, merely inconvenient. In this situation, the problem is you (and
the assembler) don’t know the shape table memory addresses until after the
program is assembled, because assemblers simply start at the ORG and then fill
up memory sequentially. The solution in this case is to assemble the program
without a SHPADR table, write down the memory addresses of the shape tables,

sed by reference to its | specific

memory address, Y abel and not to a specific
Now th ’

load TERE at we've constructed the SHPADR table, let’s see how it's used to

as the operand — the BIG MAC does not). What this
Accumulator one position to the left — the result is t

O multiply the number in the
Accumulator by 2, i.e.,

128 64 32 16 8 4 2 1 Decimal

..

.. Horizontal Movement and Internal Animation

The result of the ASL instruction is stored in the Accumulator. Because the
Accumulator contained 0, the result is still 0. The next instruction (TAX—
Transfer Accumulator to X-Register) does what it says—the number in the
Accumulator is transferred to the X register. X now contains 0. Now the instruc-
tion LDA SHPADR,X loads the Accumulator with the byte found at address
SHPADR + X; because X = 0, A is loaded with the value #$F5, the byte at loca-
tion SHPADR. This byte is stored in a zero page location, LOW or $1A. The
Accumulator is then loaded with the next byte in the SHPADR table, #$60, by the
instruction LDA SHPADR+1,X. This byte is stored in another zero page location,
HIGH or $1B. LOW and HIGH now contain the low byte and high byte respec-
tively, of the address of SHAPE1 ($60F5). This completes the process of selecting
which shape table is to be loaded into TEMP. The next step is to load TEMP with
the shape bytes.

The Y register is loaded with 0 (line 90). The next instruction on line 91
(LDA(LOW),Y) is one we've seen before—indirect indexing. It says load the
Accumulator with the byte to be found at a memory address calculated as
follows—get the low byte of the address from LOW, the high byte from HIGH,
and add the contents of the Y register. The byte found at this address is then

loaded into the Accumulator.

LDA (LOW)Y — | LOCATION CONTENTS ACCUMULATOR
LOW HSF5
HIGH #$60

1

BYTE IN $60F5 (#$02)

table. The next

The Accumulator now contains the first byte of the SHAPE1
f TEMP. The Y

instruction, STA TEMP,Y stores this byte in the first position O ;
register is then incremented by one (INY) and, if it is less than the numbel; I?T
bytes in the shape table (15 or #$0F), CPY #$0F (compare Y to #$0F) and Y
(Branch if Less Than) LOADSHP1 sends the program back to LDA (LOWI\Z,P
(line 91) to load the second byte of SHAPEL1 into the second position of TEMF,
ie.,

$60F5 + 0; 1st byte in SHAPE1 loaded into 1st positigp of TEr\é:’nP
$60F5 + 1; 2nd byte in SHAPE1 loaded into 2nd po.3|'t|on of ':’EMP
$60F5 + 2; 3rd byte in SHAPE1 loaded into 3rd position of T

' i iti EMP
$60F5 + 14; 15th (last) byte in SHAPE1 loaded into last position of T

$60F5 + 15; stop and return to MAIN PROGRAM

The shape in TEMP is then drawn and erased with the EOR routin¢ ~Wet;12
seen before, except TEMP instead of a shape table is accessed to oDt
shape bytes. We'll discuss the draw routine in more detail below. _ .

Now we would like to draw the next shape, SHAPEZ. To do this we 1n?r€—
ment SHPNO by one (line 64) so that SHPNO now contains the value 1. The

60

Hi-Res Graphics and Animation Using Assembly Language

i ine 83) multiplies this by 2 (result = 2), and the result
?s()t:grf};i)azggrﬁlu;;]rlce)glll'zgistiz (line %5). The instruction LDA SHPADR X (line
86) now loads the Accumulator with the third byte ()‘f thc.s}{l’Al)/R t'u'hl'c
(SHPADR + 2), which is the low byte of the address of SHAPE2 '(#804). This
byte is stored in LOW. LDA SHPADR+1,X loads the ACCleL‘llﬂl()l"V&'lth the f()'urt-h
byte of SHPADR, which is the high byte of the address of S‘HAPI:Z (#861). Ijhxs
byte is stored in HIGH. Thus, LOW and HIGH now contain the low and high

respectively, of the address of SHAPE2. The subsequent instructions load
AN I;rom SHAPE2 into TEMP in preparation for drawing and crasing. In the
tsl;fnzwvs:y SHAPE3 is selected by loading SHPNO with 2, SHAPE4 by loading
SHPNO with 3, and so on, i.e,

SHPNO ASL X LDA SHPADR X LDA SHPADR+1,X SHAPE TABLE

..
.

.
.........

0 0 0 SHPADR +0 SHPADR + 1 1
y 2 2 SHPADR + 2 SHPADR + 3 2
> 4 4 SHPADR + 4 SHPADR + 5 3
3 6 6 SHPADR + 6 SHPADR + 7 4
4 8 8 SHPADR + 8 SHPADR + 9 5
5 10 10 SHPADR + 10 SHPADR + 11 6
6 12 12 SHPADR+12 SHPADR + 13 7

ACCESSING SEQUENTIAL SHAPES
AND TESTING FOR END OF SCREEN

Let’s look at the MAIN PROGRAM section of Program 5-1. The first instruc-
tion accesses the INITIAL subroutine, which sets the initial screen byte and line
(0 in both cases) and also specifies the shape depth. Because we want to start
with SHAPE1, SHPNO is loaded with 0. We then load TEMP, draw, delay, and
erase. The erase is accomplished by the DRAW routine itself because we're using
the EOR (DRAW-ERASE) technique discussed in previous chapters. Note that
TEMP already contains the bytes of the shape we want to erase and so TEMP
does not have to be reloaded with shape bytes for the erase routine.

We’re now ready to draw and erase SHAPE?2. To do this we first load SHPNO
with 1 by INC SHPNO. The next instructions (LDA SHPNO, CMP #3807, BLT
START2) say if the value in SHPNO is less than 7, continue the program at
START2; i.e., load TEMP, draw, delay, erase. SHPNO is incremented again for the
next shape and so on until SHPNO contains the value 7. At this point, we've
plotted the seven shapes (0 to 6 in SHPNO) in the first screen byte.

We now want to start over with SHAPE1 but at the next screen byte.
Because SHPNO contains the value 7, the branch BLT START?2 (line 67) is not
taken and the program skips to the next line (INC BYTE), which increments
BYTE by 1. The DRAW routine will now draw in the next screen byte. Before we
draw, however, we have to test to see if the shape has reached the right end of
the screen because we can't allow the shape to go beyond the screen bound-
aries. To do this, we load the Accumulator with the value in BYTE and compare
it to the value #$26 (decimal 38). If the value is less than #%26, the branch in

line 71 (BLT START1) is taken and the program continues with all seven shapes

..

drawn in the next screen byte starting with SHAPEL. This continues until the
value in BYTE is #8206, at which point the branch is not taken and the program
skips to line 72 (JMP START), which starts the program from the beginning; i.c.,
the shape now begins its screen traversal in the first (leftmost) screen byte.
Because we always follow a draw with an crase, the last shape at the right border
is not left on the screen when the shape begins its new journey on the left.

The reason for choosing #8206 for the end of screen comparison warrants
some discussion, because it might seem at first glance that we should use =$27
(decimal 39) for the comparison since #827 is in fact the last screen byvte
(remember screen bytes are numbered 0 to 39 or #800 to #$27, left to rigl‘;t).

The reason for choosing #$26 becomes apparent when we examine our shape as
it approaches the right border.

Screen Byte End of screen

#$25 #$26 #3527 '/
°
o|e®
[3K BK 3K) [) [)
oo o/o/0oojee @ 30
ol olee ° 00

° 1 T T 11
0 L L1
DD elelo [
oo eo/o/ojoeo00 O

0 o0 eooojo] |

Here we see the first two shapes drawn starting at screen byte #825. 1t's Ob\'l(l)ust
that once we get past SHAPE1, the other shapes extend into byte #$27, the P;SZ
screen byte, as the shape table is 3 bytes wide. If we start at byte #$20, SSHAnce
to SHAPE7 will extend beyond byte #8$27, i.e., beyond the screen border. So O e
the value for BYTE reaches #$26, we want to start over from the left scre
position.) . t
This discussion emphasizes the importance of examimr?g a ngr;“;t";viffo
detail before choosing numbers or instructions that seem right. Tht?deil seldom
debug a program is to get it right from the start, admlttﬁdly an l.u save your-
realized. But if you make prior examination of details a habit, you Wi ’
self many headaches later on. .
Finally, the DRAW routine in Program 5-1 is essentlal?’ utine, using EOR
we've seen in previous chapters. It is a DRAW-ERASE type © r(;n a ;hap€ table,
both to draw and erase the shape. However, instead of aczCS? thge outine, LINE
TEMP is accessed to obtain the shape bytes. Also, at the te'zn (;or the next cycle.
is reset to its starting value (from LINEA) in prc.para : DRAW routine and so
(Remember that LINE, but not LINEA, is changed in the rt drawing each shape
must be reset for the erase cycle because We want to sta s
on the same line —otherwise, it wouldn’t be horizontal movement.

the same as Ones

Horizontal Movement and Internal Animation

Hi-Res Graphics and Animation Using Assembly Language

INTO SHPADR

v

DISPLAY AND
i CLEAR SCREEN

Y

i
i SET INITIAL LINE NUMBER,
| BYTE POSITION AND DEPTH |~

Y

— FIRST SHAPE

Y

\
|‘ —————=| LOAD INTO TEMP

Y

DRAW

9

DELAY

v

ERASE

'

NEXT SHAPE

No +

ALL 7 SHAPES?

‘ Yes

NEXT SCREEN BYTE

No *

END OF SCREEN?

g \ LOAD SHAPE ADDRESSES
1

Yes

IPROGRAM 5.
:ASM Bl

1 *] SHAPE HORIZONTAL*

g *2 BYTES WIDE, 5 LINES DEEP
6000: 4¢ 27 g § gﬁg gggoo

5 LINE DS 1

6 LINEA DS 1

7 BYTE DS 1

8 DEPTH DS 1

9 XCOUNT DS 1

10 SHPNO DS 1

11 DELAY DS 1

12 TEMP DS 15

13 GRAPHICS = $C050

14 MIXOFF = $C052

15 HIRES = $C057

16 PAGE1 = $C054

17 HIGH = $1B

18 LOW = $1A

...................
...............................
...

Horizontal Movement and Internal Animation

19 WAIT = $FCAS8
20 *LOAD SHAPE ADDRESSES IN
21 *CONTINUE FOR ALL 7 SHAng SHPADR, LOW BYTE FIRST
6019: F7 22 SHPADR DFB #<SHAPE1
601A: 60 23 DFB #>SHAPE1
601B: 06 24 DFB #<SHAPE?2
601C: 61 25 DFB #>SHAPE?2
601D: 15 26 DFB #<SHAPE3
601E: 61 27 DFB #>SHAPE3
601F: 24 28 DFB #<SHAPE4
6020: 61 29 DFB #>SHAPE4
6021: 33 30 DFB #<SHAPES
6022: 61 31 DFB #>SHAPES
6023: 42 32 DFB #<SHAPE6
6024: 61 33 DFB #>SHAPEG
6025: 51 34 DFB #<SHAPE7
6026: 61 35 DFB #>SHAPE7
6027: AD 50 CO 36 PGM LDA GRAPHICS ;HIRES,P.1
602A: AD 52 CO 37 LDA MIXOFF
602D: AD 57 CO 38 tgﬁ EAEE?
6030: AD 54 CO 39
6033: A9 00 ‘ 40 LDA #$00 :CLEAR SCREEN 1
6035: 85 1A 41 STA LOW
6037: A9 20 42 LDA #$20
6039: 85 1B 43 STA HIGH
6038: A0 00 44 CLR1 LDY #$00
603D: A9 00 45 LDA #300
603F: 91 1A 46 CLR STA (LOW),Y
6041: C8 47 INY
6042: DO FB 48 BNE CLR
6044: E6 1B 49 INC HIGH
6046: A5 1B 50 LDA HIGH
6048: C9 40 51 gT? gfg?
604A: 90 EF 52
604C: A9 60 53 LDA #$60 ;LOAD DELAY
604E: 8D 09 60 54 STA DELAY en

xxkkxrkxrx MAIN PROGRAM *hk kKK
6051: 20 7F 60 22 START JSR INITIAL .SET INITIAL BYTE, LINE, DEPTH

6054: A9 00 57 STARTL LDA #5800 'FIRST SHAPE NUMBER

6056: 8D 08 60 58 STA SHPNO

6059: 20 91 60 59 START2 ISR LOADSHP .LOAD SHAPE INTO TEMP

605C: 20 AD 60 60 JSR DRAW - DRAW

605F: AD 09 60 61 LDA DELAY -DELAY

6062: 20 A8 FC 62 JSR WAIT

6065: 20 AD 60 63 JSR DRAW -ERASE

6068: EE 08 60 64 INC SHPNO -NEXT SHAPE NUMBER

606B: AD 08 60 65 LDA SHPNO

606E: C9 07 66 CMP #$07 -FINISHED ALL 7 SHAPES?

6070: 90 E7 67 BLT START2 'IF NO, CONTINUE WITH NEXT SHAPE

6072: EE 05 60 68 INC BYTE -IF YES, NEXT BYTE

6075: AD 05 60 69 LDA BYTE

6078: C9 26 70 CMP #$26 .END OF SCREEN?

607A: 90 D8 71 BLT START1 :IF NO, CONTINUE DRAW

607C: 4C 51 60 72 JMP START ‘IF YES, START OVER
73 * Kk kdkkkkk SUBROUTINES AkkkkkhAkk

607F: A9 00 74 INITIAL LDA #3$00

6081: 8D 05 60 75 STA BYTE

6084: 8D 03 60 76 STA LINE

6087: 8D 04 60 77 STA LINEA

6088: 69 05 79 ADC #$05 .DEPTH OF SHAPE

H=

Hi-Res Graphics and Animation Using Assembly Language

| 608D:
6090:

60CC:
60CD:
60CF .
60D2:
60D4 -
60D5.
60D7:
60DA;
60DC .
60DF .
60E2;
60ES.

6091:
6094 :
6095:
6096:
6099:
609B:
609E :
60A0:
60A2:
60A4:
, 60A7:
60A8:
60AA:
60AC:

60AD:
60AF :
60B2:
60B5:
60BS8:
60BB -
60BD-
60CO0:
60C2:
60C5-
60C7:
60CA:

60ES-
60ER ;
60EE .
60F0:
60F 3.
60F6 -
60F7.
60FA -
6100:
6103:
6106:
6109:
610F:
6112:
6115:
6118:
611E:
6121:
6124;

8D 06 60
60

AD 08 60

80 STA DEPTH
81 RTS
82 kkhkkkhkkhkkhkkkkkhkkkhkkkhkkhkkk
83 LOADSHP LDA SHPNO :LOAD SHAPE INTO TEMP
84 ASL
85 TAX
86 LDA SHPADR, X
87 STA LOW
88 LDA SHPADR+1,X
89 STA HIGH
90 LDY #3%00
91 LOADSHP1 LDA (LOW),Y
92 STA TEMP,Y
93 INY
94 CPY #$0F
95 BLT LOADSHP1
96 RTS
97 khkkhkkhkkkkkkkhkhkkkhkkkkkkkk
98 DRAW LDA #3$00
99 STA XCOUNT
100 DRAW1 LDY BYTE
101 LDX LINE
102 LDA HI,X
103 STA HIGH
104 LDA LO,X
105 STA LOW
106 LDX XCOUNT
107 LDA (LOW),Y
108 EOR TEMP,X
109 STA (LOW),Y
1 INY
1%? LDA (LOW),Y
112 EOR TEMP+1,X
113 STA (LOW),Y
114 INY
115 LDA (LOW),Y
116 EOR TEMP+2,X
117 STA (LOW),Y
118 INC XCOUNT
119 INC XCOUNT
120 INC XCOUNT
121 INC LINE
122 LDA LINE
123 CMP DEPTH
124 BLT DRAW1
132 égﬁ t{:EA .RESET LINE FOR NEXT CYCLE
127 RTS
128 SHAPE1 HEX 0200000600007E1F00 ;SHAPE TABLES
TE 1F 00
129 HEX 7E37007E7F00
130 SHAPE2 HEX 0400000C00007C3F00
7C 3F 00
131 HEX 7C6F007C7F01
132 SHAPE3 HEX 080000180000787F00
78 7F 00
133 HEX 785F01787F03
134 SHAPE4 HEX 100000300000707F01

... Horizontsl Movement and Internal Animation

2{27: 30 00 00 70 7F 01
D: 70 3F 03 135 HEX
o T o7 703F03707F07
6133: 20 00 00 136 SHAPES HEX 20000
6136: 60 00 00 60 7F 03 0600000607703
613C: 60 7F 06 137 HEX 607F06607FO0F
613F: 60 7F OF
6142: 40 00 00 138 SHAPEG HEX 400000400100407F0Q7
6145: 40 01 00 40 7F 07
614B: 40 7F 0D 139 HEX 407FOD407F1F
614E: 40 7F 1F
6151: 00 01 00 140 SHAPE7 HEX 000100000300007FO0F
6154: 00 03 00 00 7F OF
615A: 00 7F 1B 141 HEX O0O07F1BOO07F3F
615D0: 00 7F 3F
Hi
LO

736 bytes

Symbol table - numerical order:

LOW =$1A HIGH =$18 LINE =$6003 LINEA =$6004
BYTE =$6005 DEPTH =$6006 XCOUNT =$6007 SHPNO =$6008
DELAY =$6009 TEMP =$600A SHPADR =$6019 PGM =$6027
CLR1 =$603B CLR =$603F START ~ =$6051 START1 =$6054
START2 =$6059 INITIAL =$607F LOADSHP =$6091 LOADSHP1=$60A2
DRAW =$60AD DRAW1 =$60B2 SHAPE1 =$60F7 SHAPE2 =$6106
SHAPE3 =$6115 SHAPE4 =$6124 SHAPES =$6133 SHAPE6 i$61§2
SHAPE7 =$6151 HI =$6160 LO =$6220 GRAPHICS:$EOA3
MIXOFF =$C052 PAGE1 =$C054 HIRES =$C057 WAIT =$FC

The more astute among you might wonder why TEMP is used at all, as mul-

tiple shape tables can be accessed directly by using a counter (i€ 2 number
stored in the X register) with the instruction LDA SHAPEX if the shape tables
begin with a single label, SHAPE. If each of the seven shapes contains 10 bytes,
the first shape can be called by LDA SHAPEX when X = '0, tht_f second shape
when X = 10, the third shape when X = 20, etc. By manipulating X, all seven
shape tables can be addressed. The problem here is that the X register (as well
as the Y register and the Accumulator) can contain only a single byte, which has
a maximum value of 255 decimal (#$FF hex). Thus, if the total number of bytes
in all seven shape tables is large, we may have a problem if X cannot be large
enough to access all the shape bytes. we would then have to use two or more
counters and/or a more complicated draw routine.

Lest you think this an unusual situation, look at the shape tables in Program
5-4. Each shape contains 39 bytes; the seven shapes together contain 273 bytes,
and this for shapes that are not particularly large. The use of TEMP solves this
problem to a large extent. TEMP also uses a counter (see line 94 of Program
5-1), but only to load a single shape, so the limitation here is that a single shape
must contain 256 bytes or less. I suppose it's conceivable that in a state of
programming frenzy, you might want to draw and animate horizontally a shape
that cor.uains more than 256 bytes, although it would be so large, say 10 screen
23’;:: V(V:ﬁ(clnbzf _;,()Sline’s deep, that' it would hardly have room to move. Th?s can be

say at the beginning that versatility is one of the virtues of

assembly language?), but not with the exact routines described here. T'll leave

-

Hi-Res Graphics and Animation Using ASSEMblY LANGUAGE ~++--««+++++rvvvmmmmmnneieiiiiiiii it

this to you as a problem you should be able to solve after reading this book
(hint: divide the shape into less than 256 byte sections, use multiple TEMPs, and
modify the draw routine). .

Using TEMP and a single draw routme.makes for a neat and compact pro-
gram but the price W€ pay is an increase in program execution time because
TEMP has to be loaded for each draw. Ordinarily this is not a problem, and it
certainly isn’t for our game program, but if extra speed is required, we can do
away with TEMP and use seven different draw routines, each accessing one of
the seven shape tables. This would also eliminate the need for shape address
tables and counting shape numbers, and the program flow would be relatively
simple—we would just draw and erase each shape in turn, testing only for the
end of the screen. The program size would increase, and dramatically so with
large numbers of shapes, but the program would run faster. The next program
(Program 5-2) illustrates the point—it’s the same as Program 5-1 but without
TEMP and shape address tables.

DISPLAY AND |
CLEAR SCREEN

'

SET INITIAL LINE NUMBER, BYTE
POSITION AND DEPTH '

'

> DRAW SHAPE 1

v

DELAY

v

ERASE SHAPE 1

/

DRAW SHAPE 2

Y

DELAY

v

ERASE SHAPE 2]

'

etc. THROUGH SHAPE 7

| Y

) NEXT SCREEN BYTE

1"‘ No ‘

r END OF SCREEN?

—
—
—_—
e

Yes

........................
....................
.....................

JPROGRAM 5-2

:ASM

6000: 4C 09 60

6009 :
600C:
600F :
6012:
6015:
6017:
6019:
6018 :
601D:
601F :
6021:
6023:
6024 :
6026:
6028:
602A:
602C:
602E :
6030:

6033:
6036:
6039:
603C:
603F:
6042:
6045:
6048:
6048 :
604E :
6051 :
6054 :
6057:
605A:
605D :
6060 :
6063 :
6066 :
6069:
606C :
606F :
6072:

co
co
co
co

OO NOO O HWMN —

] SHAPE HORIZONTAL 7 DRAW ROUTINES

*2 BYTES WIDE,

LINE

L INEA
BYTE
DEPTH
XCOUNT
DELAY
GRAPHICS
MIXOFF
HIRES
PAGEL
HIGH
LOW
WAIT
PGM

CLR1

CLR

xxkxkkkkxx MAIN PROGRA

START
START1

ORG
JMP
DS
DS
DS
DS
DS
DS

[T L A | N | L 1

—_—A NV
- oo 40499999
TP <P PEP>

BNE
INC
LDA
CMP
BLT
LDA
STA

JSR
JSR
LDA
JSR
JSR
JSR
LDA
JSR
JSR
JSR
LDA
JSR
JSR
JSR
LDA
JSR
JSR
JSR
LDA
JSR
JSR
JSR

5 LINES DEEP
$6000
PGM
1

Pt b e ek

$C050

$C052

$C057

$C054

$18

$1A

$FCA8

GRAPHICS ;HIRES,P.1
MIXOFF

HIRES

PAGE1

#$00 :CLEAR SCREEN 1
LOW

#$20

HIGH

#$00

#$00

(LOW),Y

CLR

HIGH

HIGH

#$40

CLR1

#$60 :LOAD DELAY

DELAY

M kkkkKIXKKK
INITIAL
DRAW1 ;DRANW
DELAY

WAIT
DRAW1 ;ERASE

DRAW2 ;DRAW
DELAY

WAIT

DRAW2 .ERASE
DRAW3 - DRAW
DELAY

WAIT

DRAW3 -ERASE
DRAW4 ;DRAW
DELAY

WAIT

DRAW4 -ERASE
DRAWS ;DRAW
DELAY

WAIT

DRAW5 ;ERASE
DRAW6 ;DRAW

Horizontal Movement and Internal Animation

67

68

6075:
6078:
607B:
607E:
6081 :
6084 :
6087:
608A:
608D :

6090:
6092 :
6094 :

6097
6099
609C:
609F :
60A2:
60A3:
60A5:
60AS8:

60A9 .
60AC :
60AF .
60B2-
60B4 -
60B7:
60B9 -
60BC:

60BD:
60BF -
60C2-
60C5:
60C7 -
60CA.
60CC -
60CD .
60CF .
60D2:
60D4 -
60D5 .
60D7.
60DA -
60DC :
60DF :
60E2:
60ES5:
60ES8:
60EB :
60EE ;
60F0:
60F3:

60F6:
60F7:
60F9:
60FC:
60FF :
6101 :
6104 :

60

60
60
60

60

60
60
62
63

60

60
60

62

62

62

60
60
60
60
60
60

60
60
60
60

62

117
118
119
120

LDA
JSR
JSR
JSR
LDA
JSR
JSR
INC
LDA
CMP

DELAY
WAIT
DRAWG6
DRAW7
DELAY
WAIT
DRAW7
BYTE
BYTE
#$26

BLT STARTI

JMP START
INITIAL LDA #$00

STA BYTE

STA LINE

STA LINEA

cLC

ADC

STA

RTS
Khkhkkhkhkhkkhkhkhkhkhhkhhhkhhkk
SETUP LDY BYTE

LDX LINE

LDA HI,X

STA HIGH

LDA LO,X

STA LOW

LDX XCOUNT

RTS
‘k******************
DRAW1 LDA #$00
STA XCOUNT
JSR SETUP
LDA (LOW),Y
EOR SHAPE1,X
STA (LOW),Y
INY
LDA
EOR
STA
INY
LDA
EOR
STA
INC
INC
INC
INC
LDA
CMP
BLT
LDA
STA
RTS
LDA
STA
JSR
LDA
EOR
STA

#%05
DEPTH

DRAW1A

(LOW) ,Y
SHAPE1+1,X
(LOW),Y

(LOW),Y
SHAPE1+2,X
(LOW),Y
XCOUNT
XCOUNT
XCOUNT
LINE

LINE

DEPTH
DRAW1A
LINEA

LINE

DRAW?2 #3$00
XCOUNT
SETUP
(LOW),Y
SHAPEZ ,X
(LOW),Y

DRAW2A

;ERASE
;DRAW

;ERASE

;DEPTH OF SHAPE

.. Horizontal Movement and Internal Animation

6106: C8 121 INY

6107: B1 1A 122 LDA (LOW),Y
6109: 5D 63 62 123 EOR SHAPEZ2+1,X
610C: 91 1A 124 STA (LOW),Y
610E: C8 125 INY

610F: B1 1A 126 LDA (LOW),Y
6111: 5D 64 62 127 EOR SHAPE2+2,X
6114: 91 1A 128 STA (LOW),Y
6116: EE 07 60 129 INC XCOUNT
6119: EE 07 60 130 INC XCOUNT
611C: EE 07 60 131 INC XCOUNT
611F: EE 03 60 132 INC LINE

6122: AD 03 60 133 LDA LINE

6125: CD 06 60 134 CMP DEPTH
6128: 90 D2 135 BLT DRAWZA
612A: AD 04 60 136 LDA LINEA
612D: 8D 03 60 137 STA LINE

6130: 60 138 RTS

6131: A9 00 139 DRAW3 LDA #500

6133: 8D 07 60 140 STA XCOUNT
6136: 20 A9 60 141 DRAW3A JSR SETUP
6139: Bl 1A 142 LDA (LON),YX
6138: 5D 71 62 143 EOR SHAPE3;
613E: 91 1A 144 ?;ﬁ (LOW) ,
6140: C8 145

6141: Bl 1A 146 LDA (LOW),Y . 69
6143: 5D 72 62 147 EOR SHAPE3;1, pa
6146: 91 1A 148 ?;ﬁ (LOW)
6148: C8 149

6149: B1 1A 150 LDA (LOW)’Y2 y
614B: 5D 73 62 151 EOR SHAPE3; ,
614E: 91 1A 152 STA (LO”);
6150: EE 07 60 153 INC XCOU:T
6153: EE 07 60 154 INC xcouNT
6156: EE 07 60 155 INC xcog

6159: EE 03 60 156 INC LI:E
615C: AD 03 60 157 LDA LIPTH
615F: CD 06 60 158 cMp DE W3A
6162: 90 D2 159 BLT DRA 3
6164: AD 04 60 160 LDA LINE

6167: 8D 03 60 161 STA LINE

616A: 60 16?2 RTS

616B: A9 00 163 DRAW4 LDA #$00NT
616D: 8D 07 60 164 STA xcogP
6170: 20 A9 60 165 DRAWAA ISR SETN) .
6173: Bl 1A 166 LA (LOV
6175: 50 80 62 167 EOR SHISTY
6178: 91 1A 168 ?Lﬁ (LOW)»
617A: C8 169

6178: Bl 1A 170 LDA (Lowgail \
617D: 50 81 62 171 EOR SHAP v
6180: 91 1A 172 5;¢ (LOW),
6182: C8 173 I

6183: Bl 1A 174 LDA (LOW),Y
6185: 5D 82 62 175 EOR SHAPE4+Z,X
6188: 91 1A 176 STA (LOW),Y
618A: EE 07 60 177 INC XCOUNT
618D: EE 07 60 178 INC XCOUNT
6190: EE 07 60 179 INC XCOUNT
6193: EE 03 60 180 INC LINE

6196: AD 03 60 181 LDA LINE

70

Hi-Res Graphics and Animation Using Assembly Language

6199:
619C:
619E:
61A1:
61A4:
61A5:
61A7:
61AA:
61AD:
61AF :
61B2:
61B4:

61B5:
61B7:
61BA:
61BC:
61BD:
61BF:
61C2:
61C4:
61C7:
61CA:
61CD:
61D0:
61D3:
61D6-
61D8:
61DB:
61DE:
61DF .
61E1:
61E4:
61E7 .
61E9-
61EC:
61EE:
61EF .
61F1.
61F4 .
61F6:
61F7.
61F9.
61FC:
61FE:
6201:
6204 :
6207:
620A:
620D:
6210:
6212:
6215;
6218:

6219:
621B:
621E:
6221:
6223:

6226
6228:
6229:

CD 06 60
90 D2

AD 04 60
8D 03 60
60

A9 00

8D 07 60
20 A9 60
Bl 1A

5D 8F 62
91 1A

C8

Bl 1A

5D 90 62
91 1A

c8

Bl 1A

5D 91 62
91 1A

EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
CD 06 60
90 D2

AD 04 60
8D 03 60
60

A9 Q0
8D 07 60
20 A9 60
Bl 1A
5D 9 62
91 1A
C8
Bl 1A
5D gf 62
91 1A
C8
Bl 1A
5D A0 62
91 1A
EE 07 60
EE 07 60
EE 07 60
EE 03 60
AD 03 60
CD 06 60
90 D2
AD 04 60
8D 03 60
60
A9 00
8D 07 60
20 A9 60
Bl 1A
5D AD 62
91 1A
C8
B1 1A

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
£33
234
235
236
237
238
239
240
241
242

DRAW5

DRAW5A

DRAW6

DRAW6A

DRAW7

DRAW7A

CMP
BLT
LDA
STA
RTS
LDA
STA
JSR
LDA
EOR
STA
INY
LDA
EOR
STA
INY
LDA
EOR
STA
INC
INC
INC
INC
LDA
CMP
BLT
LDA
STA
RTS
LDA
STA
JSR
LDA
EOR
STA
INY
LDA
EOR
STA
INY
LDA
EOR
STA
INC
INC
INC
INC
LDA
CMmp
BLT
LDA
STA
RTS
LDA
STA
JSR
LDA
EOR
STA
INY
LDA

...........................

DEPTH
DRAW4A
LINEA
LINE

#3500
XCOUNT
SETUP
(LOW),Y
SHAPES, X
(LOW),Y

(LOW),Y
SHAPES+1,X
(LOW),Y

(LOW) ,Y
SHAPES+2,X
(LOW),Y
XCOUNT
XCOUNT
XCOUNT
LINE
LINE
DEPTH
DRAWSA
LINEA
LINE

#300
XCOUNT
SETUP
(LOW),Y
SHAPEG6, X
(LOW),Y

(LOW),Y
SHAPE6+1,X
(LOW),Y

(LOW),Y
SHAPE6+2, X
(LOW),Y
XCOUNT
XCOUNT
XCOUNT
LINE
LINE
DEPTH
DRAW6A
LINEA
LINE

#$00
XCOUNT
SETUP
(LOW),Y
SHAPE7 , X
(LOW),Y

(LOW),Y

...

622B:
622E :
6230:
6231:
6233:
6236:
6238:
623B:
623E:
6241 :
6244 :
6247:
624A:
624C:
624F:
6252:
6253:
6256:
625C:
625F :
6262 :
6265:
6268B:
626E:
6271:
6274
627A:
627D:
6280:
6283:
6289:
628C:
628F :
6292:
6298:
6298B:
629E:
62A1:
62A7:
62AA:
62AD:
62B0:
62B6:
62B9:

1084 bytes

62

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
7E 1F
260

261
7C 3F
262

263
78 7F
264

265
70 7F
266

267
60 7F
268

269
40 7F
270

271
00 7F
272

SHAPE1
00

SHAPE?Z
00

SHAPE3
00

SHAPE4
01

SHAPES
03

SHAPE6
07

SHAPE/
OF

HI
LO

EOR
STA
INY
LDA
EOR
STA
INC

INC

INC

INC

LDA

CMP
BLT

LDA

STA

RTS

HEX

HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

HEX

SHAPE7+1, X
(LOW),Y
(LOW),Y
SHAPE7+2, X
(LOW),Y
XCOUNT
XCOUNT
XCOUNT
LINE

LINE

DEPTH
DRAW7A
LINEA

LINE

0200000600007E 1F00
7E37007E7F00
0400000C00007C3F00
7C6F007CTFOL
080000180000787F00
785F01787F03
100000300000707F01

703F03707F07
200000600000607F03
607F06607FOF
400000400100407F07
407F0OD407F1F
000100000300007FOF

007F1B007F3F

Horizontal Movement and Internal Animation

s SHAPE TABLES

77

Hi-Res Graphics and Animation Using Assembly LaNGUAGE -----«ccvvemnnneeen e

Symbol table - numerical order:

LOW =$1A HIGH =%18B LINE =$6003 LINEA =$6004
BYTE =$6005 DEPTH =$6006 XCOUNT =%6007 DELAY =$6008
: PGM =$6009 CLR1 =$601D CLR =$6021 START =$6033
] START1 =%$6036 INITIAL =$6097 SETUP =$60A9 DRAW1 =$608BD
| DRAW1A =3%60C2 DRAWZ =$60F7 DRAW2A =%$60FC DRAW3 =$6131
| DRAW3A =%$6136 DRAW4 =$6168B DRAW4A =%6170 DRAWS =361A5
\ DRAWSA =3%61AA DRAW6 =$61DF DRAW6A =3%61E4 DRAW7 =$6219
E DRAW7A =%$621E SHAPE1 =%$6253 SHAPEZ2 =%6262 SHAPE3 =%6271
| SHAPE4 =%$6280 SHAPES =%$628F SHAPE6 =%$629E SHAPE7 =%62AD
HI =$62BC LO =$637C GRAPHICS=%C050 MIXOFF =%C052
PAGE1 =$C054 HIRES =$C057 WAIT =$FCA8

As you can see, Program 5-2 is larger than Program 5-1. With more shapes, it
would be larger still, but it does run faster, even though it doesn’t seem to—the
plane traverses the screen in about the same time for both programs but this is
because the programs are simple, with only one shape, and so the determining

factor is the time delay. The speed difference would be noticeable only with
larger and more complicated programs.

..........
cee

Before
illustrate h

In the nex

80Ing on to the next section, allow a minor digression—I want to
OW easy it is to modify our programs to make them more interesting.
Planes pe itnli;()g-ram (5-3) we’re going to modify Program 5-1 so that the air-
Same linegeach ClF Sen eef‘ traversal at five different line positions instead of at the
The modif tm?C- This makes for a more visually appealing program. .
line for each thatlons are fairly simple. In the INITIAL subroutine, the starting
NEWLINE thatravers?l Is determined by accessing numbers in a table labelled
Selected by LDiomams five bytes, one for each new line position. The bytes are
values for X NEWLINE, X (line 86) where X contains values O to 4. 'I:l:l(:
(LDX COUN’I?};; loaded from a reserved memory location labeled COUNTER
is incremented b’ I 85). Initially, COUNTER is set to O (lirTes 79 and 80) and
values jn COUNTy one at the end of each screen traversal (line 75). When the
Starts at 3 pey, l-ER are from 0 to 4, the branch in line 78 is taken and the shape
the end of the I\}ne Position. When the value in COUNTER reachc§ 5, we re at
branch at jjpe 78E.WLINE table and so we want to start over. At this point, the
NEXt screen joy 'S not taken and COUNTER is reset to 0 before we beg'nr? the
place the desire(rjncy (lines 79 to 81). To program more or less line positions,
number of b Values in NEWLINE and change the CMP value in line 77 to the
Yi€s in the NEWLINE table.

.. Horizontal Movement and Internal Animation

LOAD SHAPE ADDRESSES
INTO SHPADR

Y

DISPLAY AND
CLEAR SCREEN

Y

SET INITIAL BYTE
POSITION AND DEPTH

Y

GET LINE POSITION
FROM TABLE

{

R —— FIRST SHAPE

Y

s LOAD INTO TEMP

Y

DRAW

Y

DELAY 73

Y

ERASE

Y

NEXT SHAPE

Y

ALL 7 SHAPES?

‘ Yes

NEXT SCREEN BYTE

|

END OF SCREEN?

* Yes

NEXT LINE POSITION

Y

END OF LINE No
POSITION TABLE?

* Yes

RESET TO FIRST LINE
POSITION IN TABLE

No

No

Hi-Res Graphics and Animation Using Assembly Language

..

JPROGRAM 5-3

| :ASM
\ 1 *1 SHAPE HORIZONTAL NEWLINE*
2 *2 BYTES WIDE, 5 LINES DEEP
\ 3 ORG $6000
6000: 4C 28 60 4 JMP PGM
5 LINE DS 1
6 LINEA DS 1
7 BYTE DS 1
8 DEPTH DS 1 |
9 XCOUNT DS 1 |
10 SHPNO DS 1 .
11 DELAY ps 1 |
12 COUNTER DS 1 5
13 TEMP DS 15
14 GRAPHICS = $c050
15 MIXOFF = $C052 |
%g HIRES = ¢co57 |
PAGE1 =
18 HIGH = %%854
;g LOW = $1A
WAIT = FCAS8
21 *LOAD SHAPE ADSRESSES INTO SHPADR, LOW BYTE FIRST
601A: 17 22 *CONTINUE FOR ALL 7 SHAPES
6018+ §] 23 SHPADR DFB #<SHAPEL
74 601C: 26 24 DFB #>SHAPE1
601D: g 25 DFB #<SHAPE2
| 601E: 3t 26 DFB #>SHAPE2
601F:) 27 DFB #<SHAPE3
6020; 44 28 DFB #>SHAPE3
6021: ¢ 29 DFB #<SHAPE4
6022: 53 30 DFB #>SHAPE4
6023 ¢ 31 DFB #<SHAPE5
6024: g 32 DFB #>SHAPES
6025 g 33 DFB #<SHAPE6
6026: 7] 34 DFB #>SHAPE6
6027 6 35 DFB #<SHAPE7
6028: pp gy oo 38 DFB #>SHAPE?
6028: pp 5, 37 peM LDA GRAPHICS ;HIRES,P.1
| 602E: pp 5 2 3 LDA MIXOFF
| 6034 2 30 ag oA bAGET
J 6036: g5), 41 LDA #300 ;CLEAR SCREEN 1
6038: pg 5, 42 STA LOW
603A: g5 | 43 LDA #$20
| 603C: Ao go o STA HIGH
f 283E: A9 0g s CMR1 LDY #$00
| 6042 R VT STA ?583> Y
| : 48 ’
| 6043: DO Fp 49 éNY
| 6045: £6 1p 50 125 %EH
| 6047: A5 1g 51 Tl e
| 6049: €9 40 52 o
| 604B: 90 EF 53 #$40
604D: A9 60 52 BLT CLRI
| 604F: 8D 09 60 LDA #$60 ;LOAD DELAY
| ; 55 STA DELAY
| 6052: A9 00 56 LDA #300 ,ZERO COUNTER
6054: 8D 0A 60 57 STA COUNTER
58 *A KK KKk kdkok MAIN PROGRAM *** %k %k ki
6057: 20 94 60 59 START JSR INITIAL ;SET INITIAL BYTE, LINE, DEPTH

...

605A:
605C:
605F :
6062:
6065:
6068:
6068 :
606E :
6071:
6074 :
6076
6078:
6078B:
607E :
6080:
6082:
6085:
6088:
608A:
608C:
608E :
6091:

6094 :
6096:
6099:
609C:
609F :
60A2:
60A5:
60A6:
60A8:
60AB:

60AC:
60AF :
60BO:
60B1:
60B4:
60B6:
6089:
60BB:
60BD:
60BF :
60C2:
60C3:
60C5:
60C7:

60C8:
60CA:
60CD:
60D0:
60D3:
60D6:
60D8:
60DB :
60DD:
60EO:
60E2:
60E5:

00
08
AC

09
A8
c8
08
08
07
E7
05
05
26
D8
0A

05
05
00

57
00
OA

12
03

05
06

08

1A
1A
1B
1B

1A
0B

OF
F6

60
60

60
60

60

60
60
61
60
60

60

60

60

60

60

60
60
60
61
62
60

60

116
117
118
119
120

START1 LDA
STA
JSR
JSR
LDA
JSR
JSR
INC
LDA
CMP
BLT
INC
LDA
CMP
BLT
INC
LDA
CMP
BLT
LDA
STA

#3$00
SHPNO
LOADSHP
DRAW
DELAY
WAIT
DRAW
SHPNO
SHPNO
#307
START2
BYTE
BYTE
#$26
START1
COUNTER
COUNTER
#$05
CONT
#3$00
COUNTER
START

STARTZ

CONT

JMP
xxkxkxxxxx SGUBROUTINES **

INITIAL LDA #300
STA BYTE
LDX COUNTER
LDA
STA
STA
CLC
ADC
STA
RTS

LOADSHP LDA SHPNO
ASL

LINE
LINEA

#$05
DEPTH

TAX
LDA
STA
LDA
STA
LDY
LDA
STA
INY
cPY
BLT
RTS

LDA #300
DRAY STA XCOUNT
LDY BYTE
LDX LINE
LDA HILX
STA HIGH
LDA LO,X
STA LOW
LDX XCOUNT
LDA (LOW),Y
EOR TEMP,X
STA (LOW),Y

SHPADR, X

HIGH
#$00 y
LOADS TEMP,Y
#30F
LOADSHP1

DRAW1

NEWLINE,X

LOW
SHPADR+1,X

* kK

Horizontal Movement and Internal Animation

;FIRST SHAPE NUMBER

;LOAD SHAPE INTO TEMP
;DRAW
;DELAY

sERASE
;NEXT SHAPE NUMBER

;FINISHED ALL 7 SHAPES?
;IF NO, CONTINUE WITH NEXT SHAPE
; IF YES, NEXT BYTE

;END OF SCREEN?
;IF NO, CONTINUE DRAW
;IF YES, INCREMENT COUNTER

;FINISHED 5 LINES?
;IF NO, CONTINUE
;IF YES, RESET COUNTER
TO ZERO AND
START OVER

xxkkkkkk

75

:DEPTH OF SHAPE

:LOAD SHAPE INTO TEMP

i UQE - ---vrrmeeeeerrrarnnes
Hi-Res Graphics and Animation Using Assembly Languag

INY
% gggéi g? 1A 122 EBR TEMP+1,X
i 60EA: 5D OC 60 igz STA (LOM),Y
| .
. 60ED: 91 1A INY
‘ 60EF: C8 125 LDA (LOW),Y
| 60F0: B1 1A 126 EOR TEMP+2,X
60F2: 5D 0D 60 127 STA (LOW),Y
60F5: 91 1A 128 INC XCOUNT
60F7: EE 07 60 129 INC XCOUNT
60FA: EE 07 60 130 INC XCOUNT
60FD: EE 07 60 131 INC LINE
6100: EE 03 60 132 DA LINE
6103: AD 03 60 133 CMP DEPTH
6106: CD 06 60 }gg BLT DRAW1 i, |
6109: 90 C2 INEA EXT CY
610B: AD 04 60 136 A :RESET LINE FOR N |
610E: 8D 03 60 13
RTS
T 60 138 3060
gii%: 00 AD 14 139 NEWLINE HEX 00AO14
6115: 30 6

-SHAPE TABLES
Ol17: 02 00 00 140 SHAPEI HEX 0200000600007E1F00
611A: 06 00 g 7E- 1F 00

0
6120: 7€ 37 9o 143 HEX 7E37007E7FO
6123: 7€ 7F gg

07C3F00
6126: 04 0o (g 142 SHAPE2 HEX 0400000C000
6129: oc o9 g 7C 3F 00

01
612F: 7¢ 6F 00 143 HEX 7C6F007C7F
o132 e /F 01 00787F00
6135: (g 00 00 144 SHAPE3 HEX 0800001800
6138: 13 00 00 78 7f 00 03
613€: 73 SF 01 145 HEX 785F01787F 1
o1l 78 7P 03 000707F0
gi44: 10 00 g 146 SHAPE4 HEX 100000300

47: 30 00 oo 70 7F 01 07
614p: 7 3F 03 147 HEX 703F03707F .
b1ag; 10 TF 07 000607F
6153: g 00 00 148 SHAPES HEX 200000600
6156 60 00 00 60 7F 03
615C: 60 7¢ 06

149 HEX 607F06607FOF
615F . 60 7F of 00407F07
gig§= 2000 00 150 SyapEg HEX 4000004001
4001 09 40 7¢ o7 1F
| 2}63; 10 7F op 15 HEX 407FOD407F
| 0 TF g 300007FOF
/ g};i= 00 0L 90 152 Suape7 WEx 000100000
00003 09 gg°% OF
| 617A2 00 7F 1B 153 HEX 007F1B007F3F
[617D: 00 7¢ IF
Hi
LO
| 768 bytes
E Symbol table - numerical ordep <6004
: < NEA =
| LOW =$1A HIGH -4 LINE :»6833 E;PNO -$6008
| piLAy 6005 pepry g LINE =$6007 SHPADR =601
DELAY =$6009 COUNTER =$600p TEMP :$6040 START =$5?§4
PGM =$6028 CLR1 =$603C CLR ;26091 INITIAL i%iééo
START1 =$6054 START2 =$605F CONL g ORAW1 SJh8cH
LOADSHP =$60AC LOADSHP1=$QOBD DE?“EZ -$6126 SHAPE? “SR17]
NEWLINE =$6112 SHAPE1 =§9}}? éﬁA;EG =$6162 SHQEFF —ECrED
SHAPE 4 :%6143 EgAPES i;gézé GRAPHICS=$0050 MI
" =$618 i
xAnsl :$2$5A HIRES

=$C057 WAILT =$FCA8

.. ” 0 ri zo n ta I M 0 Vemgnt and I”’e,.nal A”ima’ion

DRAW-DRAW

....................................

As a special added attraction, for your edification and programming pleasure

I hereby present Program 5-4, which is the same as Program 5-1 e‘(cc&tpit ;1‘ s a
DRAW-DRAW routine instead of DRAW-ERASE. Let’s look at so’m;: ofpthe dibt;s :
ences between Program 5-1 and 5-4. .
. First, since there is no erase step, attention has to be paid to the shape tables

F() insure that no part of a shape is left on the screen. For vertical animation, we
include a border of #$00’s equal to the maximum shape move. For h‘orizo’ntal
animation, the situation is somewhat different. If we look at the shape tables at
the beginning of this chapter, we scc that the last shape (number 6) has no bits
in the first byte. Thus when we continue with shape O in the second byte, shape
crased. Fine. But supposc wWe drew the shape starting with the

6 is completely
first column instead of the second. shape 6 would then have bits in the first byte.

If we then continue with shape 0 in the second byte, the bits in the first byte
would remain on the screen. Solution? Draw the shapes so the first byte is empty
at shape 6 —otherwise, a trailing whole byte of #800's will have to be included.
This not only would increase the size of the shape tables but would also mean
that a shape could not start at a screen border but rather one byte over.

Next, the DRAW routine does not use EOR instructions, but rather plots by
LDA shape byte, STA screen location. Note also that the shape bytes are retrieved
from TEMP rather than from the shape tables directly, as in Program 5-1.
Because we want to erase the shape when it reaches the right border in prepara-
tion for a new screen traversal, we do need a separaic ERASE routine. This
ERASE routine is essentially identical to the DRAW routine of Program 5-1;i.e., 1t
erases using the EOR method of plotting because when accessed, the screen
bytes already contain the shape bytes to be erased. .

Finally, let’s examine some details in the MAIN PROGRAM. First w€ initialize
the shape position and depth, select the first shape, load TEMP, draw, and then
delay. We do not erase as was done in Program 5-1, as the erase is necessary only
when the shape has reached the screen border. We continue by testing to see if
we've drawn all seven shapes and, if we have, we start again at the next screen
byte; this continues until we've rea YTE = #$26).

ched the end of the screen (B
At this point, before going to START to begin 2 new screen traversal, we go to
the ERASE routine to erase the last s

hape. Note that the last shap¢ is drawn
starting in screen byte #$25 but BYTE con

tains the value #826. So the first line in
the ERASE routine is DEC BYTE, which pu

ts #$25 in BYTE in preparation for ;)he
erase. The last line of ERASE then sends the program to START for a new D&
ginning.

If we run Programs 5-1 and 5-4,
somewhat smoother animation in 5-4

this is a somewhat lon am b se of th
ger program becau o »
choice of DRAW-ERASE or DRAW-DRAW depends on the programs particular

requirements. With a larger, more complicated shap¢, the smoot‘hness inherent
in DRAW-DRAW may become more apparent and, of cours_e, if the program
doesn’t remove shapes from the screen, the extra erase routin€ would not be
needed. On the other hand, Program 5-4 would not be appropriate if the shape
were involved in collision detection or were 10 be drawn over d background.

Programs 5-2, 5-3, and 5-4 are not incorporated into the final game program
bccause I would like you to use them as starting points to ease you into attempt- |
lflg yqur own modifications to the game 0nce you've finished Part One. Sugges- \
nl(ms for modifications and the problems to consider will be discussed in the last \
chapter.

ifference with perhaps
The price we pay for
e extra eras€ routine. Again, the

we see very little d
on close inspection.

Hi-Res Eraphics and Animation Uging Assembly Language ..

! LOAD SHAPE ADDRESSES
INTO SHPADR

Y

DISPLAY AND
CLEAR SCREEN

'

SET INITIAL LINE, BYTE
POSITION AND DEPTH

&

i FIRST SHAPE ~—

Y

frm——l LOAD INTO TEMP ‘

Y |

DRAW

{

DELAY

{

NEXT SHAPE

No +

ALL 7 SHAPES?

‘ Yes

NEXT SCREEN BYTE

No ‘

END OF SCREEN?

IPROGRAM
:ASM =

1 *1 SHAPE HORIZONTAL - DRAW-DRAW*
| 2 *2 BYTES WIDE, 5 LINES DEEP
| 6000: 4¢ 27 4o 3 SRS ggaoo
! 5 LINE DS 1

| 6 LINeA DS 1

; 7 BYTE DS 1

| 8 DEPTH ps]

z 9 XCOUNT ps 1

| 10 supNo DS 1

; 11 DELAY DS 1

; 12 TEmP DS 15

; 13 GRAPHICS = $C050

' 14 MIXOFF = $C052
15 HIRES = $C057
16 PAGE1 = $C054
17 HIGH = $1B
18 Low = $1A

...................................
...............
.....

6019:
601A:
6018B:
601C:
601D:
601E:
601F:
6020:
6021:
6022:
6023:
6024 :
6025:
6026:
6027 :
602A:
602D:
6030:
6033:
6035:
6037:
6039:
603B:
603D:
603F:
6041:
6042:
6044
6046:
6048:
604A:
604C:
604E :

6051:
6054 :
6056:
6059:
605C:
605F :
6062 :
6065:
6068:
606B:
606D :
606F :
6072:
6075:
6077:
6079:

607C:
607E:
6081:
6084 :
6087:
6088:
608A:

co
co
co
co

60
60

60
60
60
60
FC

60

60
60

60

60
60
60

60

Eﬁélo SHAPE SREes
ADDRESSES
*CONTINUE FOR ALL 7 SHiﬁlg SHPADR, LOW BYTE FIRST
SHPADR ~ DFB #<SHAPE1
DFB #>SHAPE1
DFB #<SHAPE2
DFB #>SHAPE2
DFB #<SHAPE3
DFB #>SHAPE3
DFB #<SHAPE4
DFB #>SHAPE4
DFB #<SHAPES
DFB #>SHAPES
DFB #<SHAPE6
DFB #>SHAPE6
DFB #<SHAPE7
DFB #>SHAPE/
PGM LDA GRAPHICS ;HIRES,P.1
LDA MIXOFF
LDA HIRES
LDA PAGEl
LDA #3500 ;CLEAR SCREEN 1
STA LOW
LDA #$20
STA HIGH
CLR1 LDY #$00
LDA #$00
CLR STA (LOW),Y
INY
BNE CLR
INC HIGH
LDA HIGH
CMP #340
BLT CLR1
LDA #3$60 ;LOAD DELAY

STA DELAY

*hkkkkhkkkkk MAIN PROGRAM Axkkkkhkkkk DEPTH

; YTE, LINE,

START JSR INITIAL ;SET INITIAL BYIE,
STARTL LDA #%00 ;FIRST SHAPE NUMBER

STA SHPNO
JSR LOADSHP ;LOAD SHAPE INTO TEMP
JSR DRAW ; DRAW
LDA DELAY ;DELAY

SR WAIT
fNC SHPNO :NEXT SHAPE NUMBER
LDA SHPNO
cMp #307
BLT STARTZ .1F NO, C

INC BYTE 'IF YES, NEXT BYTE
BYTE
Eﬂﬁ #$26 _END OF SCREEN? '
BLT STARTL 'IF NO, CONTINUE DRA)
'IF YES, ERASE & START OVER

JMP ERASE
sxxxarxrxx SUBROUTINES T 2

INITIAL LDA #$00
STA BYTE
STA LINE
STA LINEA

cLC)
ADC #305 .DEPTH OF SHAPE

STA DEPTH

START2

:FINISHED ALL 7 SHAPES?

Horizontal Movement and Internal Animation

ONTINUE WITH NEXT SHAPE

79

80

—_—

Hi-Res Graphics and Animation Using Assembly Language

608D :

608E :
6091 :
6092:
6093:
6096
6098:
609B:
609D :
609F :
60Al:
60A4 :
60A5:
60A7:

60A9:

60AA:
60AC:
60AF :
60B2:
60B5:
60B8:
60BA:
60BD:
60BF :
60C2:
60C5:
60C7:
60C8:
60CB -
60CD-
60CE -
60D1:
60D3+
60D6 -
60D9.
60DC -
60DF -
60E2.
60E5 .
60E7 -
60EA:
60ED .

610E :
6110:
6111:
6113:

60EE ;
60F1] .
60F3:
60F6 :
60F9:
60FC:
60FF :
6101:
6104 :
6106:
6109:
6108B:

60

60

60

60

60
60

61
62

60
60

60

60
60
60
60
60
60
60
60
60
60
60
60
61
62
60

60

60

139
140

RTS
khkkhkhkhkhkhkkkkhkkkkkhkkkkkk
LOADSHP LDA SHPNO

ASL

TAX

LDA SHPADR, X

STA LOW

LDA SHPADR+1,X

STA HIGH

LDY #300
LOADSHP1 LDA (LOW),Y

STA TEMP,Y

INY

CPY #$0F

BLT LOADSHP1

RTS
hkkkkkkkkhkkkkhkhkkkkkkkkk
DRAW LDA #$00

STA XCOUNT
DRAW1 LDY BYTE

LDX LINE

LDA HI,X

STA HIGH

LDA LO,X

STA LOW

LDX XCOUNT

LDA TEMP,X

STA (LOW),Y

INY

LDA TEMP+1,X

STA (LOW),Y

INY

LDA TEMP+2,X

STA (LOW),Y

INC XCOUNT

INC XCOUNT

INC XCOUNT

INC LINE

LDA LINE

CMP DEPTH

BLT DRAWI

LDA LINEA

STA LINE

RTS
hkkhkkkhkhhkhkhhkkhkkkkkhkkkkkkkk
ERASE DEC BYTE

LDA #$00

STA XCOUNT
ERASEL LDY BYTE

LDX LINE

LDA HI,X

STA HIGH

LDA LO,X

STA LOW

LDX XCOUNT

LDA (LOW),Y

EOR TEMP,X

STA (LOW),Y

INY

LDA (LOW),Y

EOR TEMP+1,X

.............................

:LOAD SHAPE INTO TEMP

:RESET LINE FOR NEXT CYCLE

6116:
6118:
6119:
611B:
611E:
6120:
6123:
6126:
6129:
612C:
612F:
6132:
6134:
6137:
613A:
613D:
6140:
6146:
6149:
614C:
614F:
6155:
6158:
615B:
615E:
6164:
6167 :
616A:
616D:
6173:
6176:
6179:
617C:
6182:
6185:
6188:
618B:
6191:
6194:
6197:
619A:
61A0:
61A3:

91
C8
B1
5D
91
EE
EE
EE
EE
AD
CD
90
AD
8D
4c
02
06
7E

04
0C
7C
7C
08
18
78
78

30
70
70
20
60
60
60
40
40
40

00
00

00

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

7E 1F
157

158
7C 3F
159

160
78 7F
161

162
70 7F
163

164
60 7F
165

166
40 7F
167

168
00 7F
169

Horizontal Movement and Internal Animation

806 bytes

Symbol table - numerical order:

LOW =$1A

BYTE =$6005
DELAY =$6009
CLR1 =$603B
STARTZ =$6059
DRAW =$60AA
SHAPE1 =$613D
SHAPES =$%$6179
LO =$6266
HIRES =$C057

STA (LOW),Y
INY
LDA (LOW),Y
EOR TEMP+2,X
STA (LOW),Y
INC XCOUNT
INC XCOUNT
INC XCOUNT
INC LINE
LDA LINE
CMP DEPTH
BLT ERASE1
LDA LINEA
STA LINE
JMP START
SHAPEL HEX (0200000600007E1FO00 ;SHAPE TABLES
o EX 7E37007E7FO0
SHAPE2 HEX 0400000C00007C3F00
%0 HEX 7C6F007CTFOL
SHAPE3 HEX 080000180000787F00
% HEX 785F01787F03
SHAPE4 HEX 100000300000707F01
. HEX 703F03707F07
SHAPES HEX 200000600000607F03
o HEX 607F06607FOF
SHAPE6 HEX 400000400100407F07
o HEX 407FOD407FLF
SHAPE7 HEX 000100000300007F0F
oF HEX 007F1BOO7F3F
Hi
LO
- LINEA =$6004
- LINE =$6003 56004
géﬁ?H :gégoe XCOUNT =§gggg gzaNo =§%027
- SHPADR = -
g =$682é START ~ =$6051 START1P1:§%%%§
T i$207(: LOADSHP =$608E LOADEq -3609%
INITIAL =200 F ERASE =$60EE ERASE1l =
N figlac SHAPE3 =$615B SHAPE4 i$2§i%
AbEe 36188 SHAPE7 =$6197 M1 ¢
SRAPRICS- MIXOFF =$C052 PAGEL =5C054

GRAPHICS=$C050

WAIT =$FCA8

81

82

.............
......................................

Internal animation refers to movement of parts of a shape as the shape itself
moves (or doesn’t move) around the screen. For example, if we're moving a
person shape around, we might want to move his (her) arms and legs to simu-
late walking or running. This is exactly what we're going to do in the next
program (5-5).

The trick to internal animation is simply to have different shape tables dis-
playing various parts of the shape in different positions. This can be done with
any type of general movement—vertical, horizontal, diagonal, or curved—or even
if the shape is standing still, but it is applied most naturally to horizontal move-
ment, because such movement requires different shape tables anyway. Program
5-5 is virtually identical to Program 5-1 except that the shape is now a person
and the seven shape tables display arms and legs in different positions. When

these shapes are displayed sequentially, the illusion of walking is produced. The
iny other change is that a line is drawn along the bottom of the screen (see
lm.es 55 t0 65) at screen line #8B7 (decimal 183) so that the person has some-
thing to walk on. You could omit the line and have the person walk on air (with
a smile on his/her face?), but both the line and the shape tables are going to be
Incorporated into the final game program, so let’s leave it the way it is. Here are
3}1)6 ;e(;'en shapes for Program 5-5. (One minor note: one arm is shown pointing

_ not moving—this is the arm that carries the gun with which the person is
801ng to shoot at airplanes—who said game designs have to make sense?)

Shape Number |1 2 4 8 1 2 4|1

o000
o
S

o o00000Q0OC6 ~
00000006 0600
o0/0000 060
-
®

(I]
IN
o

o000000 OGO0O N

0o
S
S

000060 Qe e
o
S

1.2 4|11 2 4 8 1 2 4 |Shape Tables

OE O1
OE O1
OE Of
4 O1
7 00
1F 00
1F 00
1F 00
1F 00
1F 00
1B 00
31 00
60 00
1C 02
1C 02
1C 02
08 03
7E 01
3E 00
3F 00
3F 00
3E 00
3E 00
36 00
36 00
63 00

.. Horizontal Movement and Internal Animation

o e00
o
o
w
@
o
BN

N
0000
ooeeeeoe oele

o 0000
o
)
\J
O
o
S

oe
(J[]
o
S
o)
O
o
o

A l 00 46 O1

o000
o
S
~
o
o
®

o000 e e
o
o
~
®
o
=

w
N0
oloo/o/o/e/e/ee (oo
olo/o/o/o/o/e/e/ee/eee
olo/oooe/eee oo

I
o000 0
ool0o0o0o0 00 OGO00
o0o0 00
o
S
~
o
o
@

ojojele

|o/e/ele[e/e]e| (o/ele
\hh@bhkkkkp

40 OF
40 OF
40 0D
60 18
30 30

eeooeee

At first glance, it might seem that these shape tables violate thc.rulc ()f l'm\'-.
ing an extra shape byte in the direction of movement. Howcvcr.. if the shapc
extends only one bit into the last byte, this is okay because there is room for all
seven shapes in the last byte and an extra shape byte is not needed (see shape
6). We could have drawn the shapes over to the left, thus presenting the more
usual type of shape tables, but the reason for not doing so is that drawing shap?s
this way makes it easier to align the fired bullet with the upraised arm, as we'll
see in the next chapter.

The principle of internal animation is simple, but the application often is not
because greater demands are placed on the artistic talents of the programmer.
Even the crude animation of Program 5-5 required much time drawing and e
drawing until I could Stop the arms from flapping and keep the legs from placing
themselves in dnatomically impossible positions. Thank goodness for shape
ta.bles—they make this kind of tinkering much easier than if the shape bytes were
dispersed throughout the draw routines. _

You may €nvy, and with good reason, the type of internal animation found in
Some commercig] game programs. I'm thinking specifically of Olympic Decath-
lon, which displays athletes running, jumping hurdles, throwing the javelin, and
pole vaulting in €Xquisite silhouettes. These shapes almost surely were derived
g;ﬁlsgftggraphs of athletes in action and transferred to the computer scxicch
computeis .al'fxlsts, perh-ap > WQrking with graphic utihty.programs Onsz'lilnfrfd tmht
tiniest arg; sl:: Pple II simulation mode. But don’t despair. 1 rpyself, d‘cvm) ~0f o
photogra hle) taler{t, have successfully transferred coml-)lncz.ltcd)shapsbl fvcn
managedpat Y tracing the shape onto graph paper and filling in the dots. Ieven

» 4t Oone time, to write a program displaying unicorns galloping across

Fhe Screen, complete with heads bobbing and tails flapping. If I can do this, there
1S hope for anyone,

JPROGRAM 5_5
:ASM

1 *1 SHAPE HORIZONTAL - INTERNAL ANIMATION
g *2 BYTES WIDE,13 LINES DEEP
6000: 4C 3F 69 4 83& 32300
5 LINE DS 1
6 LINEA DS 1
| 7 BYTE DS 1
| 8 DEPTH ps]
f 9 XCOUNT DS 1
, 10 SHPNO DS 1
| 11 DELAY DS 1
12 TEMP DS 39
13 GRAPHICS = $C050
14 MIXOFF = $C052
15 HIRES = $C057
16 PAGEl = $C054
17 HIGH = $18
18 Low = $1A

......................................
..

6031:
6032:
6033:
6034 :
6035:
6036:
6037:
6038:
6039:
603A:
603B:
603C:
603D:
603E:
603F:
6042 :
6045:
6048:
6048 :
604D:
604F :
6051:
6053:
6055:

6057
6059:
605A:
605C:
605E :
6060:
6062:
6064 :
6066:
6069:
606B:
606D :
6070:
6072:
6075:
6077 :
6079:
607B:
607C:
607E:

6080:
6083:
6085:
6088
608B:
608E :
6091:
6094 :
6097:
609A :
609D :
609F
60A1:

co
co
Co
co

60

62
62

60

60
60
60
60
FC
60

60

60

WAIT =

*LOAD SHAPE ADDRESSES INTO SHPADR, LOW BYTE FIRST
*CONTINUE FOR ALL 7 SHAPES

SHPADR DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
LDA
LDA
LDA
LDA
LDA
STA
LDA
STA
LDY
LDA

STA
INY
BNE
INC
LDA
CMP
BLT
LDA
STA
LDX
LDY
LDA
STA
LDA
STA
LDA
STA
INY
cPY

PGM

CLR1

CLR

LN

BLT LN
xkkkxkkxxx MAIN PROGRA

JSR
LDA
STA
JSR
JSR
LDA
JSR
JSR
INC
LDA
CMP
BLT
INC

START
START1

START2

$FCA8

#<SHAPE1
#>SHAPE1
#<SHAPE?2
#>SHAPE?2
#<SHAPE3
#>SHAPE3
#<SHAPE4
#>SHAPE4
#<SHAPES
#>SHAPES
#<SHAPEG6
#>SHAPEG
#<SHAPE7
#>SHAPE7
GRAPHICS
MIXOFF
HIRES
PAGE1
#$00

LOW

#%20
HIGH
#300
#300

(LOW),Y

CLR
HIGH
HIGH
#$40
CLR1
#$60
DELAY
#387
#$00
HI,X
HIGH
LO, X
LOW
#$7F
(LOW),Y

#%27

INITIAL
#$00
SHPNO
LOADSHP
DRAW
DELAY
WAIT
DRAW
SHPNO
SHPNO
#%07
STARTZ
BYTE

M **********

Horizontsl Movement and Internal Animation

:HIRES,P.1

:CLEAR SCREEN 1

:LOAD DELAY

:DRAW LINE

;SET INITIAL BYTE, LINE, DEPTH
:FIRST SHAPE NUMBER

.LOAD SHAPE INTO TEMP
- DRAW
-DELAY |

-ERASE
INEXT SHAPE NUMBER

:FINISHED ALL 7 SHAPES?
:1F NO, CONTINUE WITH NEXT SHAPt
:IF YES, NEXT BYTE

85

86

Hi-Res Graphics and Animation Using Assembly Language

e ——

60A4:
60A7:
60A9:
60AB :

60AE:
60B0:
60B3:
60B5:
60B8:
60BB:

60BC:
60BE:
60C1:

60C2:
60C5:
60C6:
60C7:
60CA:
60CC:
60CF :
60D1:
60D3:
60D5;
60D8:
60D9:
60DB :
60DD:

60DE

60EE

6110:
6113:
6116:
6119:
611C:
611F:
6121:
6124:
6127:
6128:

AD 05
C9 26

90 D8
4C 80

A9 00
8D 05
AS AA
8D 03
8D 04

69 0D
8D 06
60

AD 08

AA

BD 31
85 1A
BD 32
85 1B
A0 00
Bl 1A
99 0A

Co 27
90 F6
60

A9 00
60EQ:

60E3:
60E6:
60E9:
60EC :

8D 07
AC 05
AE 03
BD 39
85 1B

¢ BD Fo9
60F1.

60F3:
60F6 :
60F8:
60FB:
60FD:
60FE ;
6100:
6103:
6105:
6106:
6108:
6108:
610D:

85 1A
AE 07
Bl 1A
5D oA
91 1A
C8
Bl 1A
5D 0B
91 1A
C8
Bl 1A
50 0C
91 1A
EE 07
EE 07
EE 07
EE 03
AD 03
CD 06
90 C2
AD 04
8D 03
60
00 OE

60

60

60
60

60

60

60

60

60

60

60

60
60
60
60
60
60

60
60

01

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

T g5z OF SCREEN?
CMP #326 ;END ?
BLT START1 ; IF NO, CONTINUE DRAW

JMP START ;IF YES, START OVER

kkkkkkkkkk SUBROUT I NES khkkkkkkkkk

INITIAL LDA #%00

STA BYTE

LDA #$AA

STA LINE

STA LINEA

CLC

ADC #30D

STA DEPTH

RTS

LOADSHP LDA SHPNO

ASL

TAX

LDA SHPADR, X

STA LOW

LDA SHPADR+1, X

STA HIGH

LDY #%00
LOADSHP1 LDA (LOW),Y

STA TEMP,Y

INY

CPY #%$27

BLT LOADSHP1

RTS

DRAW LDA #$00

STA XCOUNT
DRAW1 DY BYTE

LDX LINE

LDA HI,X

STA HIGH

LDA LO,X

STA LOW

LDX XCOUNT

LDA (LOW),Y

EOR TEMP,X

STA (LOW},Y

INY

LDA (LOW),Y

EOR TEMP+1,X

STA (LOW),Y

INY

LDA (LOW),Y

EOR TEMP+2,X

STA (LOW),Y

INC XCOUNT

INC XCOUNT

INC XCOUNT

INC LINE

LDA LINE

CMP DEPTH

BLT DRAW1

LDA LINEA

STA LINE

RTS

;DEPTH OF SHAPE

;LOAD SHAPE INTO TEMP

140 SHAPE1 HEX OOOEO1000E01000E01

;RESET LINE FOR NEXT CYCLE

....................
.........................
...

612B:
6131:
6134:
613A:
613D:
6143:
6146:
614C:
614F:
6152:
6158:
615B:
6161:
6164:
616A:
616D:
6173:
6176:
6179:
617F:
6182:
6188:
618B:
6191:
6194:
619A:
619D:
61A0:
61A6:
61A9:
61AF:
61B2:
61B8:
61BB:
61C1:
61C4:
61C7:
61CD:
61D0:
61D6:
61D9:
61DF :

61E2:
61ES8:
61EB:
61EE:
61F4:
61F7:
61FD:
6200:

6206:

6209:

620F :

6212:
6215:

621B:

621E:
6224 :
6227:
622D:
6230:

00 OF
141
60 1F
142
00 1F
143
40 31
144
145
00 1C
146
00 3E
147
00 3E
148
00 36
149
150
00 38
151
00 7C
152
00 7C
153
00 6C
154
155
00 70
156
00 78
157
00 78
158
00 70
159
160
00 60
161
00 70
162
00 70
163
00 30
164
165
00 40
166
00 60
167
00 60
168
00 60
169
170
00 00
171
00 70
172
00 40
173
00 60

01
00
00
00

SHAPE?2
02

00
00
00

SHAPE3
04

00
00
00

SHAPE4
08

01
01
00

SHAPES
11

03
03
03

SHAPE6
23

07
07
06

SHAPE7
47

OF
OF
18

HEX
HEX
HEX

HEX
HEX

HEX
HEX

HEX

HEX
HEX

HEX
HEX
HEX

HEX
HEX

HEX
HEX
HEX

HEX
HEX

HEX
HEX

HEX

HEX
HEX

HEX

HEX

>

HE

HEX
HEX

HEX
HEX
HEX

004401007F00601F00
301F00181F00001F00
001F00001B00403100

606000
001€02001€02001C02

000803007E01003E00
003F00403F00003E00O
003E00003600003600

006300
003804003804003804

001006007€03007C00
007C00007E00007C00
003800003800006C00

004601

007008007008007008
00200€007807007801
007801007801007801
007000007000007000

007000
006011006011006011

00401800700F007003
007003007803007003
006001006001003003
88%822004023004023
00003100601F006007
007007007807006007

006007006006006006

00300C
000047000047000047

00006200403F00700F
00580F004COF00400F

00400F004000006018

Horizontal Movement and Intsrnal Animation

87

88

Hi-Res Graphics and Animation Using Assembly Language

-

6236: 00 30 30 174 HEX 003030
HI
Lo
953 bytes
Symbol table - numerical order:
¢ LOW =$1A HIGH =518 LINE =$6003 L
BYTE =$6005 DEPTH =$6006 XCOUNT =$6007 SHE
DELAY =$6009 TEMP =$600A SHPADR =$6031 A
CLR1 =$6053 CLR =$6057 LN =$6079
START1 =$6083 START2 =$6088 INITIAL =$60AE
LOADSHP1=$60D3 DRAW =$60DE DRAWl =$60E3 e
SHAPEZ =$614F SHAPE3 =$6176 SHAPE4 =$619D i
SHAPE6 =$61EB SHAPE7 =$6212 HI =$6239 s
GRAPHICS=$C050 MIXOFF =$C052 PAGEL ~ =$C054 HIR

WAILT =$FCA8

One final note before leaving this chapter. The line drawing routine in Pro-
gram 5-5 (lines 55-65) works okay, but there is a faster way to do it. Consider
the routine from the program:

LDA #$7F

LN STA (Low)y

INY

CPY #3207

BLT LN

Now consider the following routine, which draws the same line:
LDY #$27
LDA #$7F

STA (Low) y
DEY

BPL LN

LN

?;:,Iéé i;a;lsC(f)loon PLus) executes a branch if the result of an operation is in th;*
In both cases tO.#s?F' Thus, the branch is taken until Y is decremented to '#$F -
Second cage ’Eihlme ° dfaWn from screen byte positions #800 to #$27, but. 1\n thc
done Within’ th ¢ loop is shorter by one instruction becaus_e no comparison ll%
the first for twe loop. This routine, however, while faster, 1s.n0t as versatile as
(or to #8071 i O reasons: first, it works only if we wish a register to go to zero

e use BNE LN)—it cannot be used to draw the line from screen

byte # r
vz?lt:e z? tto #$05, for €xample, and second, the loop cannot be initialized with a

poer than #$7F_ g i Id not work in the
LOADSHP gyp, this routine for example wou

. : Ubroutine if the shape were larger than #87F. Nevertheless, | mention
it because it jg 4y ¢Xample of good programming technique and while I use the
more ve.rsatil.e routine in the programs in this book, the second routine should
be kept in mind fo, Program optimization where applicable.

Congratulations vy,
and animation. With
and move it around
positions and screen

Ou have now learned the basic principles of hi-res drawing
this knowledge you now should be able to draw any shape
the screen, even in complicated paths (by changing line
bytes at the same time instead of just one or the other).
This knowledge in itself provides you with a powerful tool for a wide variety of
applications. The remaining chapters in Part One will deal with aspects of game
design and construction together with techniques of more general applicablity
such as animating multiple shapes discussed in Chapter 6. The chapters in Part
Two discuss other aspects of hi-res animation applicable to both game programs
and any other type of program where hi-res animation would be useful.

LINEA

1]

LOADSHP

I

SHAPE1

Paddle and Jopstick
Gontrols and Muitiple Shapes

How's this for a bit of twaddle—

Try moving a duck shape with a paddle.
If your band is unsteady

The duck will, are you ready?

Move with a quite pronounced waddle.

. . i ta
‘ t hat would a game be without a joystick or paddles? A game w1th01:l :
joystick or paddles. Take my keyboard, pleasc. Seriously folks, some gates

the keyboard to control shape movement and initiate actions such as shoom:%
bullets, but joystick or paddle controls are much easier to us€ a.n-d are moIrl
entertaining— that’s why they exist and why most game programs utilize thlem-rti_
this chapter we're going to see how to us¢ these hand controls to contr(} VZI .
cal and horizontal movement and how to use the “firing” PuttonS- wflil;fe re;t
going to discuss the not insignificant problem of how to. display tw(?lb euscd
moving shapes at the same time. Most of the routines in this chapter will be

in the final game program.

PADDLE AND JOYSTICK CON. TROLS

...

e 0 and paddie I,

bines both paddles into a single
addle buttons. Thus,

Paddles have rotary knobs and come in sets
each with its own “firing” button. A joystick com
instrument—the two joystick buttons arc equivalent o the p finer control is
joysticks and paddles can be used interchangeabl.y ﬂl[hf)}lg[?s one can access
afforded by paddles. By choosing the appropriatc msu.-u;ttl(())r t”orward-back) or
either paddle O or paddle 1 (equivalent tO iOYStiCk left-r1g difference which but-
either button. When using a joystick, it doesn't make 0¥ ropriate to the
ton is chosen but with paddles, one should choose the button a:)ppyoum equie &
paddle —using paddle 0 with button 1 or paddle] WiFh buttonh “m ram’s user.
certain amount of dexterity certain not to be appreciated by the i f%he knob or

“Reading” a paddle or joystick (i.e., determining the posmoln o i
stick) fortunately is made easy by accessing 4 built-in Appl.e Sk ams. The
at memory address 8FB1E, which is labelled PREAD in our pmgrdmb' -
number of the hand control you want to access is placed in the X register and a

89

Hi-Res Graphics and Animation Using Assembly Language

=$FF) i Y regis-
JSR PREAD then returns a number from 0 to 255 (#800 to = Sfln-)[;n'r[::s. g
ter, the particular number depending on the hand control position. :

LDX #$00 Read paddle 0 (stick left-right)
JSR PREAD Returns 0-255 in Y register

LDX #$01 Read paddie 1 (stick forward-back)

JSR PREAD Returns 0-255 in Y register

The number in Y can then
movement or line for vertic
To test whether 3 bu

be manipulated to select screen byte for horizontal
al movement (more about this soon). . "

tton is pressed or not requires only 'rcadlr?g SO :
switches, $C061 for button 0 and $C062 for button 1. In conjunction with the
opcode BMI (Branch op

MInus), the branch is taken if the button is pressed and
not taken if the button is not pressed. Thus:

LDA $Co61

BMI CONT If button 0 is pressed, branch to CONT
RTS

CONT JsRr DRAW

LDA $Coe2

BMI ConT If button 1 is pressed, branch to CONT
RTS

CONT Jsgr DRAW

--------------------------------- ‘/EanL MO‘/EMENT
T?le NEXt program (Program ¢ 1) is essentially identical to Program 4-2
(moving a Spaceship Vertically), exce

JSR PREAD), and we're going to
However, as there are only 192 screen lines (0-191)

ines i m the top line down,
 lines d'eql)lzll\?kqiisl?;:‘;vg$g,2)—the shI;pe will then be drawn from lines 186 to
N “fam l.ﬂ t uclti()ns in lines 63 to 67 accomplish the clipping. We compare the
91 lﬁt‘ o r1187 (#8BB) and if it less than this, we store the value in v in LINE.
Valu? n Yo r greater than 187, we store the value 186 (#$BA) in Y and then
i 155?‘?311[;’};0(]g])A #$BA, TAY [Transfer A to Y], STY LINE). Thus, no matter
store ANECL

the maximum line position

...

Paddle and Joystick Controls and Multiple Shapes

what the paddle position, LINE will not contain a value greater than 186 and this
keeps the shape on the screen.

We then go back to the MAIN PROGRAM and jump to the DEP subroutine
which stores LINE in LINEA and also sets DEPTH—remember that while the
shape depth is a constant, the value in DEPTH depends on the value in LINE.
Back in the MAIN PROGRAM, we draw the shape with JSR DRAW, delay, and
erase with JSR DRAW (we're using the DRAW-ERASE protocol). The next
instruction sends the program back to PADDLE for another paddle read and we
continue in this loop, continually updating LINE from the paddle position.

DISPLAY AND
CLEAR SCREEN

Y

SET SCREEN
BYTE POSITION

Y

‘ . READ PADDLE — CLIP VALUE TO

0-186 AND STORE IN LINE
SET LINEA
AND DEPTH 9f
Y m
DRAW
DELAY
ERASE
JPROGRAM 6-1
A PADDLE*
1 *ONE SHAPE VERTICAL CONTROLLED BY
2 **************************** EP
3 *SHAPE IS 1 BYTE WIDE BY 6 BYTES DE
4 Jkdok ok kk ok ok ok ok kk kR kxR K IIIIIK
5 ORG $6000
6000: 4C 09 60 6 JMP PGM
7 XCOUNT DS 1
8 BYTE ps 1
9 LINE ps 1
10 LINEA DS 1
11 DEPTH DS 1
12 DELAY DS 1
13 GRAPHICS = $C050
14 MIXOFF = $C052
15 HIRES = $C057
16 PAGE1 = $C054
17 HIGH = $18B
18 LOW = $1A |
19 WAIT - iggqg \
20 PREAD = .
6009: AD 50 CO 21 PGM LDA GRAPHICS ;HIRES,P.1 \

600C: AD 52 CO 22 LDA MIXOFF

Hi-Res Graphics and Animation Using Assembly Language

600F :
6012:
6015:

! 6017:
6019:
601B:
601D:
601F:
6021:
6023:
6024:
6026:
6028:
602A:
602C:
602E:
6030:

6033:
6036:

6039:
603C:
603F :
6042:
6045:
6048:

92

6051:
6054:
6057:
6058:
605A:
605D

L

604B:
604D:
6050:

605E :
6060:
6063:
6065:
6067:
6069:
606A:
606D:

606E :
6070:
6073:
6076:
6079:
607C:
607E:
6081:
6083:
6086:
6088:
608B:
608D:
6090:

AD 57 co 23
AD 54 CO 24
A9 00 25
85 1A 26
A9 20 27
85 1B 28
A0 00 29
AS 00 30
91 1A 31
C8 32
DO FB 33
E6 1B 34
A5 1B 35
C9 40 36
90 EF 37
A9 40 38
8D 08 60 39
40
20 4B 60 41
20 5E 60 42
20 51 60 43
20 6E 60 44
AD 08 60 45
20 A8 FC 46
20 6E 60 47
4C 36 60 48
49
A9 10 50
8D 04 60 51
60 52
53
AD 05 60 54
8D 06 60 55
18 56
69 06 57
8D 07 60 58
60 59
60
A2 01 61
20 1E FB 62
CO BB 63
90 03 64
A9 BA 65
A8 66
8C 05 60 67
60 68
69
A9 00 70
8D 03 60 71
AC 04 60 72
AE 05 60 73
BD A8 60 74
85 1B 75
BD 68 61 76
85 1A 77
AE 03 60 78
Bl 1A 79
5D A2 60 80
91 1A 81
EE 03 60 82
EE 05 60 83

LDA
LDA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
BNE
INC
LDA
CMP
BLT
LDA
STA

HIRES
PAGE 1
#$00
LOW
#%$20
HIGH
#%$00
#$00
(LOW),Y

CLR1
CLR

CLR
HIGH
HIGH
#%$40
CLR1
#%40
DELAY

......................

:CLEAR SCREEN 1

;LOAD TIME DELAY

Kk kdkhhkkkkk MAIN PROGRAM *hkhkhkkkhkhkkk

JSR
JSR
JSR
JSR
LDA
JSR
JSR
JMP

INITIAL
PDLE
DEP
DRAW
DELAY
WAIT
DRAW
PADDLE

PADDLE

;SET SCREEN BYTE
;READ PADDLE 1
;SET DEPTH

;DRAW

;DELAY
;ERASE
;READ PADDLE AGAIN

% Jk Kk Kk kkkk SUBROUTINES *khkkhkkkkk

INITIAL LDA #%10
STA BYTE
RTS
ek ek e de e o ek e e e ek ok ek e keok
DEP LDA LINE
STA LINEA
CLC
ADC
STA
RTS

R Rt d L L L T T T T
PDLE LDX #%$01

JSR PREAD

CPY #$BB

BLT CONT

LDA #$BA
TAY

STY
RTS
khkhkkkkhkhkkkhkkkkhkkhkhkkhkkk
DRAW LDA #$00

STA XCOUNT
LDY BYTE

LDX LINE

LDA HI,X

STA HIGH

LDA LO,X

STA LOW

LDX XCOUNT
LDA (LOW),Y
EOR SHAPE X
STA (LOW),Y
INC XCOUNT
INC LINE

#3506
DEPTH

CONT LINE

DRAW1

;SET STARTING BYTE

;SET DEPTH

;READ PADDLE 1
;0-255 IN Y
;CLIP TO 0-186

;0-186 IN LINE

;ZERO XCOUNT

;LOAD BYTE
;LOAD LINE

;LOAD LINE ADDRESS INTO HIGH,LOW

;LOAD X WITH XCOUNT
;GET BYTE FROM SCREEN

;EOR BYTE FROM SHAPE ADDRESS+X
;PLOT BYTE

;NEXT LINE

N

6093: AD 05 60 84 LDA L

: INE

28382 gg 8; 60 gg CMP DEPTH ;FINISH SHAPE?

6098: AD 06 60 87 PbA LINEA P Yoz DRAY NEXT

609E: 8D 05 60 88 STA LINE P YES, RE ¢
i STA LINE , RESET LINE AND

60ot: &0 S8 1o DRAW NEXT CYCLE

60A2: 08 1C 22 90 SHAPE H
GOAG. 3E 22 TF EX 081C223E227F ;SHAPE TABLE

552 bytes

Symbol table - numerical order:

LOW =$1A HIGH =$1B XCOUNT =$6003
BYTE -
EINE =$6005 LINEA =$6006 DEPTH =$6007 DELAY =§288§
GM =$6009 CLR1 =$601D CLR =$6021 PADDLE =$6036
éNITIAL =$6048B DEP =$6051 PDLE =$605E CONT =$606A
RAW =$606E DRAW1 =$6073 GHAPE ~ =$60AZ HI =$60A8
hO =$6168 GRAPHICS=$C050 MIXOFF =$C052 PAGEl =$C054
IRES =3$C057 PREAD =$FBIE WAIT =$FCA8
PADDLE CONTROL OF HORIZONTAL M OVEMENT 93
]

........
.......
..................................

nent where We specify @ par-
t the line position,
far line posi-

ertical mover
a paddle read to selecC
at involves specifying 2 particu

lect the screen byte position. However, a8
s that simple with horizontal movement.
een byte can contain on¢ O

the screen byt€ position by
apes was rela-

‘ In contrast to paddle control of v
ticular screen byte position and use
paddlc control of horizontal moveme
tion and using the paddle read to s€
you might suspect, things are not alway
?:V‘:sm:er that in horizontal movement, each scr
b dsl)apes. Therefore, we not only have tO specify ‘
.y p , N read, but also which shape is to be drawn. specifying sh

vely casy in previous programs because W€ started with the first shape and then
itl)cccssed the other shapes sequentially. with a paddle read, shap€ and screen
dzl)trlccsfxiecrii()n is accomplished by the use of look-up tables. we'll see how thi
h()ri7()mn[{1 e next program (Program 6-2), which is basec} on‘Program m 62
will l;c i‘ ‘ m()vement. of a person shape with internal animation (Progra

ncorporated into the final game program). ,

In Program 6-2, we’re going to usc the same shape tables and the lin¢ for the
person to walk on as Program 5-5 an g to control horizomal move-
ment by paddle 0. In the MAIN PkOGRAM, we first go to the INITIAL subroutin€
to set LINE and DEPTH. Then we jump 10 the PDLE subroutin€, which reads

paddle 0 and returns a value of 0-255 in the Y register. .
WC. first want to convert the value in Y t0 2 screen byt€ position. Wwe do qns
PY the instruction LDA BYTETBL,Y (lin€¢ 85) wher¢ BYTETBL is 4 table consist-
X‘g f)f 37 lines of 7 bytes each, 7 #$00’s, 7 #801'S, 7 #$02's, etc., up tO 7 #$24's.
screen byte from 0 to 36 is selected, depending On the value in Y ie.,
\

d we're goin

RS

Value in Y Screen Byte
0-6 0
7-13 1
14-20 2
21-27 3

245-251 35
252-255 36

The screen byte obtained is then stored in HORIZ (line 86), which will be
used in the draw routine to denote the screen byte position. Note that we are
accessing only 37 (0-3(9 screen bytes even though 40 (0-39) are available. This
is because Y can contain a maximum value of 255 and, to access all 40 screen
bytes, a value of 280 would be needed (40 X 7). We could make the BYTETBI
shorter by storing, for example, 6 bytes per line for 40 lines but there is a rC;ISOT{

for having 7 bytes per line as we’ll soon see (if !

ValuemY Screen Byte Shape Number

<1) 0 0

> 5 ‘

;o :

4 0 4

5 0 5

: 0 6

7 1 0

8 1 1

1

10 1 :

11 1 :

12 1 .

15 1 ;

14 2

0

252 36 0

253 36 !

254 36 2
255 36 3

...

...

The instruction LDA OFFSET.Y loads the Accumulator with a shape number and
the rest of the PDLE subroutine loads the shape into TEMP using the same
instructions we've seen in Chapter 5. The program then draws the shape, delays,
erases, and loops back to PADDLE to update the horizontal position continually.
The DRAW routine is th